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Abstract
A fundamental ability of humans is to utilize commonsense
knowledge in language understanding and question answering.
In recent years, many knowledge-enhanced Commonsense
Question Answering (CQA) approaches have been proposed.
However, it remains unclear: (1) How far can we get by ex-
ploiting external knowledge for CQA? (2) How much potential
of knowledge has been exploited in current CQA models? (3)
Which are the most promising directions for future CQA? To
answer these questions, we benchmark knowledge-enhanced
CQA by conducting extensive experiments on multiple stan-
dard CQA datasets using a simple and effective knowledge-
to-text transformation framework. Experiments show that: (1)
Our knowledge-to-text framework is effective and achieves
state-of-the-art performance on CommonsenseQA dataset, pro-
viding a simple and strong knowledge-enhanced baseline for
CQA; (2) The potential of knowledge is still far from being
fully exploited in CQA — there is a significant performance
gap from current models to our models with golden knowl-
edge; and (3) Context-sensitive knowledge selection, hetero-
geneous knowledge exploitation, and commonsense-rich lan-
guage models are promising CQA directions.

Introduction
Using a variety of knowledge to help in understanding the
meaning of language is one of the key abilities of humans
(Minsky 2000). Commonsense question answering (CQA)
evaluates whether machines can understand language like
humans do by asking questions whose answers rely on com-
monsense knowledge. For example, Figure 1 shows a ques-
tion, and the answer to this question needs commonsense
knowledge “puzzle is used for intellectual challenge”.

Witnessed the importance of commonsense knowledge
for CQA, many studies have been conducted to incorporate
external knowledge bases (KBs) in CQA models. These ap-
proaches usually leverage knowledge to enhance a specific
CQA component: 1) enhancing representations (Weissenborn,
Kočiskỳ, and Dyer 2017; Bauer, Wang, and Bansal 2018;
Mihaylov and Frank 2018; Ma et al. 2019); 2) enhancing at-
tention mechanism (Chen et al. 2018; Wang and Jiang 2019);
and 3) enhancing reasoning mechanism (Lin et al. 2019; Lv
et al. 2020).

*Corresponding authors.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Our knowledge-to-text framework for benchmark-
ing knowledge-enhanced CQA with an example from Com-
monsenseQA (Talmor et al. 2019).

Although many knowledge-enhanced CQA approaches
have been proposed, we found it is still unclear: (1) How far
can we get by exploiting external knowledge for CQA? (2)
How much potential of knowledge has been exploited in cur-
rent models? For example, can GNN-based models (Lin et al.
2019; Lv et al. 2020) encode and exploit all useful evidence
provided by external knowledge? (3) Which are the most
promising directions for knowledge-enhanced CQA? We be-
lieve answering these questions can provide valuable insights
for future CQA studies and shed light on other knowledge-
dependent tasks like reading comprehension (Rajpurkar et al.
2016) and conversation generation (Zhou et al. 2018).

To answer the above questions, we benchmark knowledge-
enhanced CQA by conducting extensive experiments on mul-
tiple standard datasets via a simple and effective knowledge-
to-text transformation framework. Intuitively, to benchmark
knowledge-enhanced CQA, external knowledge should be
incorporated in a simple way that is not specialized to specific
models/components. This is challenging, due to 1) the het-
erogeneity between structured knowledge and unstructured
textual questions/answers, i.e., knowledge facts are usually
triples such as <person, Desires, Intellectual challenge>,
but questions and answers are text; and 2) the context-
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sensitivity of knowledge, i.e., a KB may contain thousands
of facts about a concept, but only several of them are rel-
evant to the given question. For example, among the thou-
sands of facts about “person”, only <person, Desires, Intel-
lectual challenge> is useful for answering the question in
Figure 1.

Specifically, our knowledge-to-text framework consists of
three stages, which are shown in Figure 1. Firstly, we re-
trieve facts from a commonsense knowledge graph (CKG).
Then we transform the knowledge facts to textual descrip-
tions via three transformation algorithms (template-based,
paraphrasing-based, and retrieval-based). Finally, we utilize
machine reading comprehension (MRC) models to predict
answers by exploiting both the original questions and the
textural knowledge descriptions. This framework is simple
and general for benchmarking knowledge-enhanced CQA:
1) By transforming structured knowledge into textual de-
scriptions, our method resolves the heterogeneity problem
between knowledge and text. 2) By adopting MRC models,
our method can learn to select question-relevant knowledge
automatically. 3) Our simple knowledge-enhancing strategy
allows us to easily compare the effects of different common-
sense knowledge.

We conduct thorough experiments on multiple standard
CQA datasets (Talmor et al. 2019; Levesque, Davis, and
Morgenstern 2012; Zellers et al. 2019; Sap et al. 2019b).

The contributions of our paper are:
1. Through benchmarking experiments we found that the

potential of external knowledge is still far from exploited in
knowledge-enhanced CQA, i.e., current methods can only
exploit knowledge to a limited extent. In our experiments,
there is a big performance gap from current models to our
models using golden knowledge.

2. We propose a simple and effective knowledge-to-text
framework for knowledge-enhanced CQA which achieves
state-of-the-art performance on the CommonsenseQA dataset,
providing a simple and strong knowledge-enhanced baseline
for CQA.

3. Our experimental results shed light on three important
future directions for knowledge-enhanced CQA: context-
sensitive knowledge selection, heterogeneous knowledge ex-
ploitation, and commonsense-rich language models.

Knowledge-enhanced CQA via
Knowledge-to-Text Transformation

Following CommonsenseQA (Talmor et al. 2019), the CQA
task in this paper is a multiple-choice problem with five
answer candidates. Given question Q = [q1, q2, . . . , qn] and
answer candidates A = {A1, A2, . . . , Am} with each answer
candidate Ak = [ak1 , a

k
2 , . . . , a

k
l ], a

k
j and qi are words, i and

j are indexes of words and k is the index of answer candidate,
a CQA model needs to choose the correct answer from A.

We propose a simple and effective knowledge-to-text
framework for benchmarking knowledge-enhanced CQA.
Our framework includes three steps: 1) retrieving facts from
CKG; 2) transforming knowledge to text; and 3) adopting an
MRC model to select the answer.

Notice that the purpose of our paper is to benchmark

knowledge-enhanced CQA rather than to propose new tech-
niques. So, it is critical to select classical, robust, and well-
known models, rather than new models which may lead to
biased conclusions. Our framework is not specialized to a
specific CQA setting, therefore it can also be used in other
MRC or QA tasks.

In the following, we describe the three stages of our frame-
work.

Knowledge Retrieval
To answer a question Q, our method first retrieves rele-
vant knowledge from a given CKG. For example, to an-
swer the question in Figure 1, we want to retrieve facts
like <person, Desires, Intellectual challenge> and <puzzle,
UsedFor, challenge>. Following a previous study (Lin et al.
2019), we retrieve paths on CKG connecting question con-
cepts and answer concepts as relevant facts, which provides
a good precision/recall trade-off for question-relevant facts.

Concretely, given a question Q and an answer candidate
Ak, we first identify concepts in them by exactly matching n-
grams with the concepts in CKG. (we use ConceptNet (Speer,
Chin, and Havasi 2017) in this paper). Then, for each pair
of <question concept, answer candidate concept>, we find
all paths between them on CKG (within K hops) as facts
for Ak (K is a hyper-parameter here). For the example in
Figure 1, “puzzle→IsA→problem→Synonym→challenge”
is a 2-hop knowledge path for answer candidate “intellectual
challenge”.

Knowledge-to-Text Transformation
This section describes how to resolve the heterogeneity prob-
lem between knowledge and text via knowledge-to-text trans-
formation. Specifically, we propose three transformation al-
gorithms: template-based, paraphrasing-based, and retrieval-
based, which are described as follows.

Template-based transformation. This algorithm trans-
forms knowledge to text using a description template for each
relation in a CKG. For example, we can use a template “X is
a Y” to generate the description of <puzzle, IsA, problem>
as “puzzle is a problem”. Because the number of relations in a
CKG is limited, we manually design a template for each rela-
tion type. For a knowledge path {k1, k2, . . . , kp, . . . } where
kp is a knowledge triple and p is its index, we sequentially
generate a sentence for each tuple, i.e., {s1, s2, . . . , sp, . . . }
where sentence sp describes triple kp.

Paraphrasing-based transformation. The main draw-
back of the template-based algorithm is the diversity issue,
i.e., it always generates the same description for one relation.
To address this issue, we employ a paraphrasing model to gen-
erate more diverse and fluent knowledge descriptions. Specif-
ically, given the template-based description of a knowledge
path, we generate its top-M paraphrases using beam-search
decoding and concatenate them as the knowledge description.
We adopt the encoder-decoder paraphrasing model trained on
PPDB (Pavlick et al. 2015) and WikiAnswers (Fader, Zettle-
moyer, and Etzioni 2013).

Retrieval-based transformation. The above two algo-
rithms can only generate pseudo textual descriptions, which
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Knowledge path Template-based Paraphrasing-based Retrieval-based

Silk→AtLocation→China Silk is located in China. Silk is in China. China is the world’s largest silk
producer.

Puzzle→IsA→Problem→Synonym
→Challenge

Puzzle is a problem. Prob-
lem is the same as challenge.

Puzzles are problems. The prob-
lem is the same as the challenge.

Puzzle problem is a challenge
game for children.

Walk←MotivatedByGoal←Hike→Have-
Subevent→See beautiful views

Hike in order to walk. Hike
have subevent see beautiful
views.

You go hiking in order to go
for a walk. You can see the
beautiful scenery on hiking.

Burghclere has some beautiful ru-
ral scenery, so you can walk along
the railway or go for a hike.

Table 1: Examples of knowledge descriptions generated by different knowledge-to-text algorithms.

are different from real-world knowledge descriptions. There-
fore, we propose a retrieval-based knowledge-to-text algo-
rithm, which retrieves texts from a real-world corpus (we use
Wikipedia in this paper) as knowledge descriptions. Specif-
ically, we adopt the distant supervision assumption (Mintz
et al. 2009) that “if a sentence contains the entities on a knowl-
edge path, it will express the meaning of the knowledge path”.
We split all Wikipedia documents into separate sentences
and build a Wikipedia sentence retrieval system using Elastic
Search. We use the knowledge descriptions from template-
based transformation as queries to retrieve corresponding
Wikipedia sentences containing the concepts on knowledge
paths via the BM25 algorithm (Robertson and Walker 1994).
Finally, the rank 1 sentence is used as the description.

To compare different knowledge-to-text transformation al-
gorithms, Table 1 shows some examples of generated knowl-
edge descriptions. We can see that: (1) The template-based
algorithm can produce reasonable textual descriptions, al-
though they may contain grammar errors (like “Hike in order
to walk” in the 3rd example). (2) The paraphrasing-based
algorithm can produce diverse and more fluent sentences
(“You go hiking in order to go for a walk”), but may change
some important words (e.g., “beautiful view” is changed to
“beautiful scenery” in the 3rd example). (3) The retrieval-
based algorithm can produce real-world sentences (“China
is the world’s largest silk producer”) but may contain extra
irrelevant content (like “Burghclere” in the 3rd example).

MRC-based Answer Prediction
Given a question and the generated knowledge descriptions,
we predict its answer using MRC models. We adopt MRC
models because: 1) MRC models can automatically learn
to identify relevant information in a document (Seo et al.
2016). In our settings this ability can be used to automatically
select question-relevant knowledge, as all knowledge facts
have been transformed into a textual document; 2) MRC is a
well-studied technique. Therefore, our method can directly
leverage the strong ability of existing state-of-the-art MRC
models, so that our benchmarking is effective, robust, and
easy-to-implement.

Specifically, we model CQA as an MRC problem by
treating knowledge descriptions as a document. In this
way, current MRC models can be directly used, including
BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019), XL-
Net (Yang et al. 2019b), and ALBERT (Lan et al. 2019)
based MRC models. Figure 2 shows our MRC frame-
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Figure 2: The MRC model for predicting answers in our
knowledge-enhanced CQA method.

work. For each question, we construct a sequence Sk =
{Kk, [SEP ], Q, [SEP ], Ak} for each answer candidate Ak,
where Kk is the generated knowledge descriptions, Q is the
question, and [SEP ] is the separation token in pretrained lan-
guage models (PLMs). Following Devlin et al. (2019), we use
a feed-forward classifier as the output layer which predicts
the answer score Score(Ak|Sk). Finally, the highest-scored
answer candidate is chosen as the answer.

Benchmarking Knowledge-Enhanced
Commonsense Question Answering

This section benchmarks knowledge-enhanced CQA by con-
ducting thorough experiments. We first verify the effective-
ness and robustness of our knowledge-to-text-based CQA
method, then we answer the three important questions: (1)
How far can we get by exploiting external knowledge for
CQA? (2) How much potential of knowledge has been ex-
ploited in current models? (3) Which are the most promising
directions for future knowledge-enhanced CQA?

Experimental Settings
Datasets. We use CommonsenseQA dataset v1.11 (Talmor
et al. 2019) as the primary dataset, and adopt the Winograd
Schema Challenge (WSC, Levesque, Davis, and Morgenstern
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Model Knowledge Source BERT XLNet RoBERTa ALBERT
Human – 88.9 88.9 88.9 88.9
Golden Knowledge Human Explanations 81.1 85.1 84.7 83.7
Knowledge-to-Text

Template-based ConceptNet 67.9 77.5 78.1 81.1
Paraphrasing-based ConceptNet 67.2 74.9 77.8 79.3
Retrieval-based ConceptNet 65.0 75.0 77.1 79.4
Full ConceptNet 70.4 80.3 80.8 83.3

Best Knowledge-enhanced
System with Different PLMs ConceptNet 69.0

(Ma et al. 2019)
79.3

(Lv et al. 2020)
80.8

(KEDGN)
(No available
model so far)

Base Model No knowledge 63.6 68.9 76.2 78.6

Table 2: Accuracies on CommonsenseQA.

2012), HellaSWAG (Zellers et al. 2019), and SOCIAL IQa
(Sap et al. 2019b) as secondary datasets.

(1) CommonsenseQA (Talmor et al. 2019) contains 12,102
human-generated questions with 5 answer candidates for each
question. All questions are elaborately designed to make sure
commonsense knowledge is needed for correctly answering
them. Furthermore, CoS-E (Rajani et al. 2019) provides each
question with a human-annotated golden knowledge explana-
tion. Due to the above advantages, We use CommonsenseQA
as the primary benchmarking dataset.

(2) WSC (Levesque, Davis, and Morgenstern 2012) is a
pronoun resolution dataset that requires commonsense knowl-
edge, which is recognized as one of the most difficult CQA
datasets (Zhou et al. 2020). Because WSC does not contain
training data, we use WSCR (Rahman and Ng 2012) for
training.

(3) HellaSWAG (Zellers et al. 2019) is an update of the
commonsense reasoning dataset SWAG: given an event de-
scription like “A woman sits at a piano”, a machine needs to
select the most likely follow-up: “She sets her fingers on the
keys”. The “Overall accuracy” on the dev set is used in our
evaluation.

(4) SOCIAL IQa (Sap et al. 2019b) is a QA dataset for com-
monsense reasoning about social situations, which requires
emotional and social commonsense in a variety of every-day
situations.

Knowledge base. We use ConceptNet 5 (Speer, Chin, and
Havasi 2017) as the KB for benchmarking, because: (i) Con-
ceptNet is general and can provide a large commonsense cov-
erage for our CQA experiments. Other CKGs like ATOMIC
(Sap et al. 2019a, if-then relations of events) and ASER
(Zhang et al. 2020, relations of events, states, and actions)
only contain partial knowledge for our experiments. (ii) The
primary CommonsenseQA dataset is constructed upon Con-
ceptNet and other datasets don’t accompany a given KB.
ConceptNet concepts can be easily and directly identified in
questions and answers for CommonsenseQA, so that we can
better benchmark knowledge-enhanced CQA by focusing on
the ability of knowledge exploitation. We use the same 22
relations in ConceptNet as Talmor et al. (2019).

Baselines. We benchmark knowledge-enhanced CQA
by assessing the performances of different MRC models

with/without external knowledge, including BERT-based (De-
vlin et al. 2019), RoBERTa-based (Liu et al. 2019), XLNet-
based (Yang et al. 2019b), and ALBERT-based (Lan et al.
2019) MRC models.

To verify the effectiveness of knowledge-to-text trans-
formation, we also report the performances of current
knowledge-enhanced systems with corresponding pretrained
language models as base encoders:

(1) Ma et al. (2019) (BERT + OCN + ConceptNet) is
the best BERT-based knowledge-enhanced CQA system on
CommonsenseQA, which uses an attention mechanism for
knowledge incorporation and an Option Comparison Net-
work (OCN) model for answer prediction.

(2) Lv et al. (2020) (XLNet + Graph Reasoning) is the best
XLNet-based system on CommonsenseQA, which uses GNN
to exploit knowledge from both ConceptNet and Wikipedia.

(3) KEDGN (RoBERTa + Knowledge) is the unpublished
best RoBERTa-based knowledge-enhanced system on the
leaderboard of CommonsenseQA, which exploits knowledge
via a dual graph network. For a fair comparison, in Table 2
we report the accuracy of the best single model as described
in its report.

Hyperparameters. For knowledge retrieval, we use
knowledge paths within 2 hops (K = 2). In paraphrasing-
based transformation, we use the top 1 paraphrasing result
(M = 1). For MRC models, we initialize them with the official
pretrained language models (BERT-Large, RoBERTa-Large,
XLNet-Large, and ALBERT-XXLarge) and fine-tune them
using CQA training data. The output layers have a 1024-
dimensional hidden layer with a tanh activation function.
All models are trained using Adam with a learning rate of
5e-6.

Effect of Knowledge-to-Text Transformation
Table 2 and Table 3 show the experimental results on Com-
monsenseQA and other datasets. For our method, we use four
settings: template-based, paraphrasing-based, retrieval-based,
and a full model that uses a concatenation of all the three
generated descriptions as a document. We found that:

1) Knowledge-to-text transformation is effective for
knowledge-enhanced CQA. Our full model achieves state-
of-the-art performance on CommonsenseQA. And all
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Models WSC HellaSWAG SOCIAL IQa
BERT 66.0 42.3 66.2
+ Knowledge 68.1 44.2 68.8

RoBERTa 81.4 82.5 74.3
+ Knowledge 82.5 83.0 75.0

ALBERT 84.9 86.1 77.2
+ Knowledge 87.0 86.9 77.8

Human 92.1 94.5 86.9

Table 3: Accuracies on other CQA datasets. “+ Knowledge”
means using our knowledge-to-text transformation method
(template-based) with 2-hop knowledge paths on ConceptNet.
Human accuracy of WSC is reported by Bender (2015).

Path Length BERT XLNet RoBERTa ALBERT
1-hop 67.1 74.7 77.9 80.0
2-hop 67.9 77.5 78.1 81.1
3-hop 65.0 68.6 77.2 79.2

Table 4: Accuracies on different lengths of knowledge paths
(template-based method).

template-based, paraphrasing-based, and retrieval-based mod-
els achieve improvements over non-knowledge base models.

2) Knowledge-to-text transformation can robustly exploit
knowledge for CQA. Table 3 shows that our method can
consistently improve the performances on three extra CQA
datasets by exploiting external commonsense knowledge. No-
tice that although ConceptNet is not specially designed for
WSC, HellaSWAG, and SOCIAL IQA datasets, our method
can still achieve improvements, which further verifies the
robustness of our method, and we believe the results on
these datasets can be further improved if more relevant com-
monsense knowledge sources are available. In Table 2 our
method achieves accuracy improvements on all base models
(BERT, RoBERTa, XLNet, and ALBERT) and all settings
(template-based, paraphrasing-based, and retrieval-based).
Table 4 shows that our method is also robust on different
lengths of knowledge paths, and the 2-hop knowledge path
setting achieves the best performance.

3) The three knowledge-to-text transformation algorithms
are complements of each other. In Table 2, the full model
can achieve the best performance by combining all three
knowledge-to-text algorithms, which verifies that these algo-
rithms can complement each other. Among the three single
algorithms, the template-based algorithm obtains the best per-
formance. This may be because it is easier for MRC models
to capture regularities in simple and formal sentences.

Overall, the above results verify that our simple knowledge-
to-text transformation is a good strategy for benchmarking the
effectiveness and robustness of knowledge-enhanced CQA.

In the following, we conduct benchmarking experiments
on the primary CommonsenseQA dataset using the full model
and 2-hop knowledge path setting.

Effect of Knowledge for CQA
This section studies “how far can we get by exploiting exter-
nal knowledge for CQA?”. To answer this question, Table
2 further shows the performances of MRC models using
manually-annotated golden knowledge for each question (Ra-
jani et al. 2019) as the knowledge description. We can see
that:

By incorporating golden external knowledge, CQA can
be significantly improved and can achieve close-to-human
performance. On all BERT, XLNet, RoBERTa, and ALBERT-
based MRC models, incorporating golden knowledge can
significantly achieve 27%, 14%, 11%, and 7% accuracy im-
provements, correspondingly. The best golden-knowledge
enhanced system (XLNet + Golden) can achieve 85.1% ac-
curacy, which is not far from the human accuracy of 88.9%.

These results show that knowledge can get us quite far, and
it is promising to study more effective knowledge-enhanced
CQA models.

Effect of Knowledge in Current Models
This section investigates “how much potential of knowledge
has been exploited in current models?”. From Table 2, we
can see that:

1) Current knowledge-enhanced CQA methods only ex-
ploit knowledge to a limited extent. In Table 2, we can see
that: (i) compared with models using golden knowledge,
all knowledge-enhanced CQA models have a big perfor-
mance gap; and (ii) our simple knowledge-to-text strategy
can achieve competitive performance with the complicated
GNN-based strategies (KEDGN and XLNet + Graph Reason-
ing) and Option Comparison Network.

2) Despite the effectiveness of our method, there is still
great potential in generating accurate question-relevant
knowledge descriptions. To show this, Table 5 shows sev-
eral bad cases of knowledge descriptions. We can see that,
the golden knowledge descriptions are typically simple, rel-
evant, and accurate, while the automatically generated de-
scriptions may miss important evidence (1st example), be too
complicated (2nd example), or contain noisy knowledge (3rd

example). Based on these observations, we believe seeking
and identifying more accurate question-relevant knowledge
can further improve the knowledge exploitation ability of
CQA methods.

3) The commonsense knowledge embedded in current pre-
trained language models is still not enough for CQA. In Table
2, we can see that there is a significant performance gap be-
tween base models without using knowledge and knowledge-
enhanced models, although they have been trained using very
large text corpus. To further study this, we also experiment
using ERNIE (Zhang et al. 2019b), a knowledge-enhanced
pretrained language model based on BERT, but the perfor-
mance is lower than BERT-based models (60.0% accuracy
on CommonsenseQA). We believe this is because ERNIE
focuses on entity-centric facts, instead of commonsense. This
shows that, although trained on very large text corpus, state-
of-the-art pretrained language models still can not encode
enough commonsense knowledge.

The above results show that the potential of knowledge
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Missing
Important
Evidence

Question What could people do that involves talking?
Answer candidates confession | state park | sing | opera | carnival
Golden knowledge confession involves talking.
Knowledge description people is located in confession. people is used for talk.

Complicated
Descriptions

Question They were getting ready for a really long hike, he put the food can in his what?
Answer candidates backpack | make person sick | cabinet | house | recycling center
Golden knowledge backpacks are used on hicks.
Knowledge description food can is located in backpack. backpack is in the context of sport. hike is in the

context of sport. . . . . .

Noisy
Knowledge

Question Most people who are family like to greet each other with a what?
Answer candidates listen to music | have friends | know what ophiolites | hug | apartments
Golden knowledge people who are family like to hug.
Knowledge description person desire hug. person is located in family. kissing have subevent hug. kissing cause

like. meeting friend have subevent hug. hug in order to love. love is located in family.
most people desire hug.

Table 5: Bad examples of generated knowledge descriptions (template-based) and golden knowledge, where: 1) In the 1st

example, the relational knowledge between “talking” and “confession” is missing in the generated knowledge description because
it is not covered by ConceptNet. 2) In the 2nd example, knowledge description provides the knowledge about “backpack” and
“hike” using two separate sentences, which is more complicated than golden knowledge and thus puts an extra burden on MRC
models. 3) In the 3rd example, there are many irrelevant/noisy sentences in knowledge description about unimportant question
words (like “people” and “like”).

Figure 3: Performances of different commonsense skills us-
ing XLNet-based model, with/without knowledge descrip-
tions (template-based).

is still far from being fully exploited by current knowledge-
enhanced CQA methods. This is because of 1) the limited
ability of current CQA models to exploit knowledge; 2) the
lack of ability to identify accurate question-relevant knowl-
edge; 3) the limited commonsense captured in pretrained
language models.

Detailed Analysis
This section analyzes our method in detail.

Performances on Different Commonsense Skills. CQA
questions require different types of commonsense skills
(LoBue and Yates 2011). To analyze the effects of knowledge
on different commonsense skills, we randomly sample 200
questions from CommonsenseQA and annotate their required

skills using the commonsense skill categories from Talmor
et al. (2019).

Figure 3 shows the performances of our CQA method
with/without knowledge on different skills. From Figure
3, we can see that: (1) Knowledge can significantly im-
prove skills including “Spatial” (+12.3%), “Cause & Effect”
(+10.0%), “Activity” (+8.3%) and “Purpose” (+6.5%). (2) For
“Definition”, “Social”, and “Has parts” skills, the knowledge-
enhanced model achieves similar performances with the base
model. We believe this may be because ConceptNet has a
low coverage for these types of knowledge.

Error Analysis. To understand why our model fails in
some cases, we randomly select 50 error cases and group
them into several categories. Table 6 shows the main error
types with their examples:

1) Indistinguishable knowledge, i.e., retrieved knowledge
cannot provide enough information for distinguishing answer
candidates. For example, the 1st error case provides strong
support for both correct and incorrect answers (“airplanes
can slow down/speed up”). This is the main error type of our
method (21 out of 50).

2) Noisy knowledge. Noisy knowledge misleads MRC mod-
els to give wrong answers, which often appears when knowl-
edge descriptions are too long. In the 2nd error case, we can
see that the important fact “curtain is located in show” is
obscured by noisy facts about irrelevant concepts like “seat”.

3) No Knowledge. Knowledge retrieval may not be able to
retrieve question-relevant facts and thus provides no useful
information for MRC models. From the 3rd case, we can see
that the knowledge facts are all irrelevant to the answers.

The above three types of errors show that it is important to
select accurate, complete, and context-sensitive knowledge
for more effective knowledge-enhanced models.
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Error type Example

Indistinguishable
Knowledge
(21/50)

Question What do airplanes do as they are arriving at the gate?
Answer candidates

√
slow down | × land | × crash | × speed up | × carry people

Knowledge for correct answer airplanes can slow down.
Knowledge for predicted answer airplanes can speed up.

Noisy Knowledge
(15/50)

Question I took my seat, the curtains drew back and I enjoyed the what?
Answer candidates × auditorium | × theatre | × movie |

√
show | × airplane

Knowledge for correct answer curtain is located in show. cover is opposite to back. seat is lo-
cated in show. show is located in opera. curtain is located in opera.
person desire enjoy. curtain is located in theater. . . . . .

Knowledge for predicted answer movie is located in theater. curtain is located in theater.

No Knowledge
(13/50)

Question Some animals can fly thanks to their lightweight hollow what?
Answer candidates × heads | × tails |

√
bodies | × bones | × eyes

Knowledge for correct answer bones is located in person. person desire fly.
Knowledge for predicted answer [NO KNOWLEDGE FACT IS RETRIEVED]

Table 6: Several error cases of XLNet-based model with template-based knowledge descriptions.

Related Work
Knowledge-enhanced CQA. Many studies have been pro-
posed to exploit commonsense knowledge for CQA. Rajani
et al. (2019) propose to train a GPT-based explanation gen-
eration model using manually labeled corpus, but it relies
on extra human effort. KagNet (Lin et al. 2019) represents
external knowledge as a graph and reasons via graph convolu-
tion and LSTM. Ma et al. (2019) incorporate knowledge with
text-to-knowledge attention and adopt a BERT-based Option
Comparison Network for answer prediction. Lv et al. (2020)
propose a GNN-based reasoning model over A heterogeneous
knowledge graph of both ConceptNet and Wikipedia sen-
tences. Compared with these methods, our knowledge-to-text
method exploits knowledge in a simple way and knowledge
can be effectively used by the whole model.

Knowledge Exploitation in Neural Models. There are
many studies which leverage external knowledge to enhance
models on a variety of NLP tasks (Lin, Sun, and Han 2017;
Yang and Mitchell 2017; An et al. 2018; Yang et al. 2019a;
Logan et al. 2019; Chen, Sun, and Han 2018). Chen et al.
(2018) leverage semantic relations in WordNet to enhance
attention and inference abilities in the NLI task. Mihaylov
and Frank (2018) apply key-value memory to represent com-
monsense facts and use word-to-knowledge attention for
cloze-style MRC. Bauer, Wang, and Bansal (2018) propose a
mutual information-based knowledge selection method and
fuse knowledge using gated attention for multi-hop reason-
ing. Zhang et al. (2019a) propose an attention-based knowl-
edge selection method for coreference resolution. ERNIE
(Zhang et al. 2019b) and K-BERT (Liu et al. 2020) incorpo-
rate knowledge in pretrained language models, but mainly
focus on entity-centric facts in KBs instead of commonsense.

Machine Reading Comprehension. In recent years,
many effective end-to-end MRC models have been proposed,
including BERT (Devlin et al. 2019), RoBERTa (Liu et al.
2019), XLNet (Yang et al. 2019b) and ALBERT (Lan et al.
2019) based models. It has been proven that MRC models
can effectively encode information in a document and find

the most relevant information for answer prediction. In this
paper, these abilities are utilized to select and exploit relevant
knowledge for knowledge-enhanced CQA.

Conclusions and Future Work

We benchmark knowledge-enhanced CQA using a simple and
effective knowledge-to-text transformation framework and
provides a strong knowledge-enhanced baseline for CQA.
By conducting thorough experiments, we found that: (1)
Our knowledge-to-text framework is effective and robust for
knowledge-enhanced CQA; (2) It is promising to incorporate
knowledge in neural models for CQA; (3) The potential of
knowledge is still far from being fully exploited — there is
a large performance gap from current models to our models
using golden knowledge.

The above results also shed light on the promising direc-
tions for knowledge-enhanced CQA:

1) Context-sensitive knowledge selection is critical for
knowledge-enhanced CQA. According to the error analysis,
more than 70% of errors are caused by noisy knowledge and
indistinguishable knowledge.

2) The knowledge-text heterogeneity is a critical bottle-
neck for exploiting the information from both knowledge
and text. We address this heterogeneity problem via simple
knowledge-to-text transformation, and even such a simple
strategy can outperform many knowledge-enhanced models
like GNN-based and attention-based models. Therefore, we
believe more advanced solutions for the heterogeneity prob-
lem will further improve CQA, e.g., uniform representation
learning and joint graph representations.

3) It is valuable to incorporate more commonsense in
pretrained language models. From our experiments, we can
see that current state-of-the-art pretrained language models
like BERT and XLNet still only encode limited commonsense
knowledge. So, we believe commonsense-rich language mod-
els will provide valuable techniques and resources for CQA.
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