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Abstract

Transformers are powerful for sequence modeling. Nearly
all state-of-the-art language models and pre-trained language
models are based on the Transformer architecture. However,
it distinguishes sequential tokens only with the token posi-
tion index. We hypothesize that better contextual representa-
tions can be generated from the Transformer with richer po-
sitional information. To verify this, we propose a segment-
aware Transformer (Segatron), by replacing the original to-
ken position encoding with a combined position encoding
of paragraph, sentence, and token. We first introduce the
segment-aware mechanism to Transformer-XL, which is a
popular Transformer-based language model with memory
extension and relative position encoding. We find that our
method can further improve the Transformer-XL base model
and large model, achieving 17.1 perplexity on the WikiText-
103 dataset. We further investigate the pre-training masked
language modeling task with Segatron. Experimental results
show that BERT pre-trained with Segatron (SegaBERT) can
outperform BERT with vanilla Transformer on various NLP
tasks, and outperforms RoBERTa on zero-shot sentence rep-
resentation learning. Our code is available on GitHub.1

Introduction
Language modeling (LM) is a traditional sequence model-
ing task which requires learning long-distance dependencies
for next token prediction based on the previous context. Re-
cently, large neural LMs trained on a massive amount of text
data have shown great potential for representation learning
and transfer learning, and also achieved state-of-the-art re-
sults in various natural language processing tasks.

To the best of our knowledge, state-of-the-art language
models (Dai et al. 2019; Baevski and Auli 2019; Rae et al.
2020) and pre-trained language models (Radford 2018; De-
vlin et al. 2019; Yang et al. 2019; Lan et al. 2020) all use
a multi-layer Transformer (Vaswani et al. 2017). The Trans-
former network was initially used in the seq2seq architec-
ture for machine translation, whose input is usually a sen-
tence. Hence, it is intuitive to distinguish each token with
its position index in the input sequence. However, the in-
put length can grow to 1024 or more tokens and come from
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1https://github.com/rsvp-ai/segatron aaai

different sentences and paragraphs for language modeling.
Although vanilla position encoding can help the transformer
be aware of the token position by assigning a unique index
to each token, the token index in a sentence, sentence in-
dex in a paragraph, and paragraph index in a document are
all implicit. Such segmentation information is essential for
language modeling, as tokens in different segments of con-
text hold different significance for next token prediction. If
the Transformer model can be aware of the segment posi-
tion of each context token, we hypothesize that the Trans-
former model will model language more efficiently and suc-
cessfully, and will generate better context representations. It
should be noticed that, although punctuations and paragraph
breakers can provide boundary information to some extent,
the boundary is not as straightforward as segment position,
especially for the self-attention’s dot-product operation in
Transformer.

Hence, we propose a novel segment-aware Trans-
former (Segatron), which encodes paragraph index in a doc-
ument, sentence index in a paragraph, and token index in a
sentence all together for the input sequence. We first ver-
ify the proposed method with relative position encoding on
the language modeling task. By applying the segment-aware
mechanism to Transformer-XL (Dai et al. 2019), our base
model trained with the WikiText-103 dataset (Merity et al.
2017) outperforms Transformer-XL base by 1.5 points in
terms of perplexity. Our large model achieves a perplexity of
17.1, the same score as Compressive Transformer (Rae et al.
2020), which is a more complicated model with longer input
context and additional training objectives. We also pre-train
masked language models with Transformer (BERT-base−)
and Segatron (SegaBERT-base−) with English Wikipedia
for 500K training steps. According to experimental results,
SegaBERT outperforms BERT on both general language un-
derstanding (GLUE) and machine reading comprehension
tasks. We further pre-trained a large model SegaBERT-large
with the same data used in BERT. Experimental results show
that SegaBERT-large not only outperforms BERT-large on
all the above tasks, but also outperforms RoBERTa-large on
zero-shot Semantic Textual Similarity tasks, where we use
less data and no more than 10% computational resources of
RoBERTa. These results demonstrate the value of segment
encodings in Transformers.
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Model
In this section, we show how to apply our proposed segment-
aware Transformer to language modeling. More specifi-
cally, we first introduce our Segatron-XL (Segment-aware
Transformer-XL) with non-learnable relative position en-
coding for autoregressive language modeling. Then we in-
troduce our pre-trained Segatron (SegaBERT) with learn-
able absolute position encoding for masked language mod-
eling (MLM).

Segatron-XL
We first introduce our method in the context of autore-
gressive language modeling, by replacing the vanilla Trans-
former index in Transformer-XL (Dai et al. 2019) with Sega-
tron. Transformer-XL is a memory augmented Transformer
with relative position encoding:
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(1)
where Arel

i,j is the self-attention score between query i and
key j. Exi

and Exj
are the input representations of query i

and key j, respectively. Ri−j is the relative position embed-
ding. Wk,E and Wk,R are transformation matrices for input
representation and position embedding, respectively. u and
v are learnable variables. The position embeddings are non-
learnable and defined as:
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where dim is the dimension size of Ri−j, and k is the di-
mension index.

Our proposed method introduces paragraph and sentence
segmentation to the relative position encoding. The new po-
sition embeddings RI,J are defined as:
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where I = {ti, si, pi}, J = {tj , sj , pj}. t, s, and p are to-
ken position index, sentence position index, and paragraph
position index, respectively. Rt, Rs, and Rp are the rela-
tive position embeddings of token, sentence, and paragraph.
These embeddings are defined in Eq. 2 and the dimensions
of each are equal to 1/3 of RI,J. The input representation of
our model is shown in Figure 1(a).

To equip the recurrence memory mechanism of
Transformer-XL with the segment-aware relative posi-
tion encoding, the paragraph position, the sentence position,
and the token position indexes of the previous segment
should also be cached together with the hidden states. Then,
the relative position can be calculated by subtracting the
cached position indexes from the current position indexes.

Pre-trained Segatron
We will introduce how to pre-train a language model with
our proposed Segatron in this section.

(a) Concating Relative Position Embedding

Input	Sequence

Word
Embeddings

Relative	Position
Embeddings

(b) Summing Absolute Position Embedding

Input	Sequence

Paragraph	Index	
Embeddings

Sentence	Index	
Embeddings

Token	Index	
Embeddings

Word
Embeddings

Figure 1: Input representation of Segatron-XL and
SegaBERT.

First, pre-training a masked language model in the setting
of BERT is a practical choice, as BERT is a popular base-
line model and requires less computational resources com-
pared with more recent large models. For example, BERT-
large only needs about 10% of the resources of RoBERTa-
large (Liu et al. 2019). Hence, in this paper, we first pre-train
two base size models: SegaBERT-base− and BERT-base−

with only English Wikipedia data for 500K training steps,
to compare BERT pre-trained with Transformer and Sega-
tron fairly. We then pre-train a large size model SegaBERT-
large with Wikibooks dataset and 1M training steps, same as
BERT-large.
Input Representation. Input X of SegaBERT is a sequence
of tokens, which can be one or more sentences or para-
graphs. The representation xt for token t is computed by
summing the corresponding token embedding Et, token in-
dex embedding Pt

t, sentence index embedding Ps
t , and para-

graph index embedding Pp
t , as shown in Figure 1(b). Two

special tokens [CLS] and [SEP] are added to the text se-
quence before the first token and after the last token, and
their paragraph/sentence indexes are the same as their adja-
cent tokens. Following BERT, the text is tokenized into sub-
words with WordPiece and the maximum sequence length is
512.
Training Objective. Following BERT, we use the masked
LM as our training objective. However, next sentence pre-
diction (NSP) is not used in our model, as our input contains
more than two sentences.
Data preparation. For the pre-training corpus we use En-
glish Wikipedia and Bookcorpus (Zhu et al. 2015). For each
document, we firstly split each into Np paragraphs, and all
the sub-tokens in the i-th paragraph are assigned the same
Paragraph Index Embedding Pp

i . The paragraph index starts
from 0 for each document. Similarly, each paragraph is fur-
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Model #Param. PPL

LSTM+Neural cache (Grave, Joulin, and Usunier 2017) - 40.8
Hebbian+Cache (Rae et al. 2018) - 29.9
Transformer-XL base, M=150 (Dai et al. 2019) 151M 24.0
Transformer-XL base, M=150 (ours) 151M 24.4
Segatron-XL base, M=150 151M 22.5
Adaptive Input (Baevski and Auli 2019) 247M 18.7
Transformer-XL large, M=384 (Dai et al. 2019) 257M 18.3
Compressive Transformer, M=1024 (Rae et al. 2020) 257M 17.1
Segatron-XL large, M=384 257M 17.1

Table 1: Comparison with Transformer-XL and competitive baseline results on WikiText-103.

ther segmented into Ns sentences with NLTK (Bird, Klein,
and Loper 2009), and all the sub-tokens in the i-th sentence
are assigned the same Sentence Index Embedding Ps

i . The
sentence index starts from 0 for each paragraph. Within each
sentence, all the sub-tokens are indexed from 0; the i-th sub-
token will have its Token Index Embedding Pt

i.
When building a training example, we randomly (length

weighted) sample a document from the corpus and randomly
select a sentence in that document as the start sentence.
Then, the following sentences are added to that example un-
til the example meets the maximum length limitation (512)
or runs out of the selected document. If any position index
in that example exceeds the maximum index, all such posi-
tion indexes will be subtracted by one until they meet the
maximum requirements. The maximum position index of
paragraph, sentence, and token are 50, 100, and 256, respec-
tively.

Training Setup. Liu et al. (2019) have shown that BERT
pre-trained with document input (more than two sentences)
without NSP performs better than the original BERT on
some tasks. Hence, we not only pre-train a SegaBERT-large,
but also pre-train two base models with the same setting for
fair comparison. Similar to BERT, the base model is 12 lay-
ers, 768 hidden size, and 12 self-attention heads. The large
model is 24 layers, 1024 hidden size, and 24 self-attention
heads. For optimization, we use Adam with learning rate 1e-
4, β1=0.9, β2=0.999, with learning rate warm-up over the
first 1% of the total steps and with linear decay of the learn-
ing rate.

Experiments
In this section, we first conduct autoregressive language
modeling experiments with our proposed Segatron and also
conduct an ablation study with this task. Then, we show the
results of pre-trained SegaBERT on general language un-
derstanding tasks, semantic textual similarity tasks, and ma-
chine reading comprehension tasks.

Autoregressive Language Modeling
Dataset WikiText-103 is a large word-level dataset with
long-distance dependencies for language modeling. This
dataset preserves both punctuations and paragraph line
breakers, which are essential for our segmentation pre-

Model PPL

Transformer-XL base 24.35
+ paragraph position encoding 24.07
+ sentence position encoding 22.51
Segatron-XL base 22.47

Table 2: Ablation over the position encodings using
Transformer-XL base architecture.

processing. There are 103M tokens, 28K articles for train-
ing. The average length is 3.6K tokens per article.

Model Configuration Following Transformer-XL, we
train a base size model and a large size model. The base
model is a 16 layer Transformer with a hidden size of 410
and 10 self-attention heads. This model is trained for 200K
steps with a batch size of 64. The large model is an 18 layer
Transformer with a hidden size of 1024 and 16 attention
heads. This model is trained with 350K steps with a batch
size of 128. The sequence length and memory length dur-
ing training and testing all equal 150 for the base model
and 384 for the large model. The main differences between
our implementation and Transformer-XL are: we use mixed-
precision mode; our input/memory lengths between training
and testing are the same; the large model training steps of
Transformer-XL are 4M according to their implementation.

Main Results Our results are shown in Table 1. As we
can see from this table, the improvement with the segment-
aware mechanism is quite impressive: the perplexity de-
creases 1.5 points for the Transformer-XL base and de-
creases 1.2 for Transformer-XL large. We also observe that
our large model achieves 18.3 PPL with only 172K train-
ing steps. We finally obtain a perplexity of 17.1 with our
large model – comparable to prior state-of-the-art results of
Compressive Transformer (Rae et al. 2020), which is based
on Transformer-XL but trained with longer input length
and memory length (512) and a more complicated memory
cache mechanism.

It is worth noting that we do not list methods with ad-
ditional training data or dynamic evaluation (Krause et al.
2018) which continues training the model on the test set.
We also note that there is a contemporaneous work Rout-
ingTransformer (Roy et al. 2020), which modifies the self-
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Figure 2: Valid perplexities during the training processes of
language modeling.
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Figure 3: Test perplexities of Segatron-XL and Transformer-
XL trained with different input lengths.

attention to local and sparse attention with a clustering
method. However, their implementations are not available.
We believe our method is orthogonal to their work and can
be introduced to their model.

Analysis We plot the valid perplexity of Segatron-XL base
and Transformer-XL base during training in Figure 2. From
this figure, we can see that the segment-aware model out-
performs the base model all the time, and the gap between
them becomes larger as training progresses. Segatron-XL
at 10K steps approximately matches the performance of
Transformer-XL at 20K steps. We then test the effective-
ness of Segatron over different input lengths (25, 50, 100,
and 150 input tokens) by comparing Transformer-XL and
Segatron-XL base models. As we can see from Figure 3, the
improvements are consistent and significant. There is no ev-
idence showing our method prefers shorter or longer input.

Ablation Study We finally conduct an ablation study with
Segatron-XL base, to investigate the contributions of the
sentence position encoding and the paragraph position en-
coding, respectively. Experimental results are shown in Ta-
ble 2. From this table, we find that the PPL of Transformer-
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Figure 4: Valid losses during the pre-training.

XL decreases from 24.35 to 24.07/22.51 after adding para-
graph/sentence position encoding, and further decreases to
22.47 by encoding paragraph and sentence positions simul-
taneously. The results show that both the paragraph position
and sentence position can help the Transformer to model
language. Sentence position encoding contributes more than
paragraph position encoding in our experiments.

Pre-trained Masked Language Model
We first plot the valid losses of BERT-base− and
SegaBERT-base− during pre-training in Figure 4. The
overall trends between Figure 2 and Figure 4 are simi-
lar, which demonstrates that our proposed segment-aware
method works on both auto-regressive language modeling
and masked language modeling. We will detail our experi-
ments with our pre-trained models in the following sections.

General Language Understanding The General
Language Understanding Evaluation (GLUE) bench-
mark (Wang et al. 2019) is a collection of resources for
evaluating natural language understanding systems. Fol-
lowing Devlin et al. (2019), we evaluate our model over
these tasks: linguistic acceptability CoLA (Warstadt, Singh,
and Bowman 2019), sentiment SST-2 (Socher et al. 2013),
paraphrase MRPC (Dolan and Brockett 2005), textual
similarity STS-B (Cer et al. 2017), question paraphrase
QQP, textual entailment RTE (Bentivogli et al. 2009) and
MNLI (Williams, Nangia, and Bowman 2018), and question
entailment QNLI (Wang et al. 2019). We fine-tune every
single task only on its in-domain data without two-stage
transfer learning.

On the GLUE benchmark, we conduct the fine-tuning
experiments in the following manner: For single-sentence
classification tasks, such as sentiment classification (SST-2),
the sentence will be assigned Paragraph Index 0 and Sen-
tence Index 0. For sentence pair classification tasks, such as
question-answer entailment (QNLI), the first sentence will
be assigned Paragraph Index 0 and Sentence Index 0 and
the second sentence will be assigned Paragraph Index 1 and
Sentence Index 0.

We conduct grid search with the GLUE dev set for small
data tasks: CoLA, MRPC, RTE, SST-2, and STS-B. Our grid
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Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B AVG

BERT-base− 83.2 90.4 86.5 68.3 91.3 92.6 55.0 88.9 82.0
SegaBERT-base− 83.8 91.5 87.0 71.8 92.1 92.4 54.7 89.0 82.8
BERT-large (best of 3) 87.3 93.0 91.4 74.0 94.0 88.7 63.7 90.2 85.3
SegaBERT-large 87.6 93.6 89.1 78.3 94.7 92.3 65.3 90.3 86.4

Table 3: Fair comparison on GLUE dev. The two base models are pre-trained in the same setting. For large models comparison,
we choose the best of 3 BERT-large models: the original BERT, whole word masking BERT, and BERT without NSP task.
Results of BERT-large (best of 3) are from Yang et al. (2019).

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B AVG

BERT-base− 82.9 90.1 70.8 65.4 91.2 88.9 43.5 83.9 77.1
SegaBERT-base− 83.5 90.8 71.4 68.1 91.5 89.3 50.7 84.6 78.7
BERT-large 86.7 92.7 72.1 70.1 94.9 89.3 60.5 86.5 81.6
SegaBERT-large 87.9 94.0 72.5 71.6 94.8 89.7 62.6 88.6 82.7

Table 4: Results on GLUE test set. Results of BERT-large are from Devlin et al. (2019).

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R AVG

S-BERT-large 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
S-BERT-large* 72.39 78.06 75.26 81.79 76.35 78.64 73.85 76.62
S-RoBERTa-large 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
S-SegaBERT-large 74.49 78.64 74.88 83.28 77.10 79.42 73.77 77.37

Table 5: Zero-shot spearman’s rank correlation ρ× 100 between the negative distance of sentence embeddings and the gold la-
bels. STS-B: STS benchmark, SICK-R: SICK relatedness dataset. Results of BERT-large and RoBERTa-large are from Reimers
and Gurevych (2019).

search space is as follows:

• Batch size: 16, 24, 32;

• Learning rate: 2e-5, 3e-5, 5e-5;

• Number of epochs: 3-10.

For QQP, MNLI, and QNLI, we use the default hyper-
parameters: 3e-5 learning rate, 256 batch size, and 3 epochs.
The other hyper-parameters are the same as in the Hugging-
Face Transformers library.2

We compare BERT and SegaBERT in a fair setting to de-
couple the effects of document-level inputs and the removal
of NSP. In Table 3, two base models are pre-trained by us
and the only difference is the position encoding. We can
see that our SegaBERT-base− outperforms BERT-base− on
most tasks. We also notice that SegaBERT-base− is lower
than BERT-base− by over 2.5 points on CoLA. However,
this gap decreases to 0.1 on the test set, which is shown in
Table 4. This is because the size of CoLA is quite small and
not as robust as other datasets. Improvements can also be
observed easily when comparing SegaBERT-large with the
best score of 3 BERT-large models.

These results demonstrate SegaBERT’s effectiveness in
general natural language understanding. The improvements
on these sentence and sentence pair classification tasks show
that our segment-aware pre-trained model is better than
vanilla Transformer on sentence-level tasks.

2https://github.com/huggingface/transformers

Sentence Representation Learning Since our SegaBERT
has shown great potential on sentence-level tasks, in
this section, we further investigate whether SegaBERT
can generate better sentence representations. Following
Sentence-BERT (Reimers and Gurevych 2019), we fine-tune
SegaBERT in a siamese structure on the combination of
SNLI (Bowman et al. 2015) and MNLI datasets. The fine-
tuned model is named S-SegaBERT. We then evaluate the
zero-shot performance of S-SegaBERT and other baselines
on Semantic Textual Similarity (STS) tasks using the Spear-
man’s rank correlation between the cosine similarity of the
sentence embeddings and the gold labels.

In Table 5, the results of S-BERT-large and S-RoBERTa-
large are from Reimers and Gurevych (2019). The results of
S-BERT-large* are re-implemented by us, which is similar
to Sentence-BERT’s results. We can see that our SegaBERT
achieves the highest average scores on STS tasks, even out-
performs RoBERTa, which uses much more training data,
larger batch size, and dynamic masking. These results con-
form with our improvements on GLUE benchmarks, which
indicate that a language model pre-trained with Segatron can
learn better sentence representations (single sentence encod-
ing) than the original Transformer.

Reading Comprehension We finally test our pre-trained
model on machine reading comprehension tasks. For these
tasks, the question is assigned Paragraph Index 0 and Sen-
tence Index 0. For a context with n paragraphs, Paragraph
Index 1 to n + 1 are assigned to them accordingly. Within
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(a) BERT-Layer 1 (b) BERT-Layer 6 (c) BERT-Layer 12

(d) SegaBERT-Layer 1 (e) SegaBERT-Layer 6 (f) SegaBERT-Layer 12

Figure 5: Self-attention heat maps of the first, the sixth, and the last layer of SegaBERT and BERT when encoding the first 512
tokens of a Wikipedia article.

System SQUAD1.1 SQUAD2.0

Model EM F1 EM F1

BERT-base 80.8 88.5 72.3 75.6
BERT-base− 81.9 89.4 75.4 78.2
SegaBERT-base− 83.2 90.2 76.3 79.2
BERT-large 84.1 90.9 78.7 81.9
BERT-large wwm 86.7 92.8 80.6 83.4
SegaBERT-large 86.0 92.6 81.8 85.2

Table 6: Evaluation results on SQUAD v1.1 and v2. Re-
sults of BERT-base and BERT-large are from Devlin et al.
(2019). Results of BERT-large wwm on SQUAD v1.1 are
from BERT’s github repository. There are no official results
of BERT-large wwm on SQUAD v2 and here we report our
fine-tuning results.

each paragraph, the sentences are indexed from 0.
We first fine-tune our SegaBERT model with SQUAD

v1.1 (Rajpurkar et al. 2016) for 4 epochs with 128 batch size
and 3e-5 learning rate. The fine-tuning setting of SQUAD
v2.0 (Rajpurkar, Jia, and Liang 2018) is the same as SQUAD
v1.1. Results are shown in Table 6. As we can see from
Table 6, our pre-trained SegaBERT-base− outperforms our
pre-trained BERT-base− on both dataset: 1.3 EM and 0.8
F1 improvements on SQUAD v1.1; 0.9 EM and 1.0 F1 im-
provements on SQUAD v2. It should be noticed that our
pre-trained BERT-base− outperforms the original BERT-
base model, although ours is pre-trained with fewer data and
steps. This confirms Liu et al. (2019)’s finding that BERT

Model Acc-Dev Acc-Test

BERT-large 72.7 72.0
SegaBERT-large 74.5 73.8

Table 7: Accuracy on dev and test sets of RACE. Results of
BERT-large are from Pan et al. (2019).

pre-trained with document-level input can contribute to per-
formance improvements on SQUAD. For large models, as
we cannot afford to train a new BERT-large model in the
same setting as BERT-base−, we compare our model with
BERT-large wwm (with whole word masking), which is a
stronger baseline model. We can see that SegaBERT large is
slightly lower than BERT-large wwm on SQUAD v1.1 but
outperforms it on SQUAD v2 over 1.2 EM and 1.8 F1.

We further test our models with RACE (Lai et al. 2017),
which is a large-scale reading comprehension dataset with
more than 28,000 passages. RACE has significantly longer
contexts than SQUAD. Our results are shown in Table 7. The
overall trend is similar to SQUAD.

Visualization We further visualize the self-attention
scores of BERT-base− and SegaBERT-base− in different
layers. Figure 5 shows the average attention scores across
different attention heads. By comparing Figure 5(d) with
Figure 5(a), we find that SegaBERT can capture context ac-
cording to the segmentation, for example, tokens tend to
attend more to tokens in its paragraph than tokens in the
other paragraphs. A similar trend can be observed at the sen-
tence level but is more prominent in the shallow layers On
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the other hand, the BERT model seems to pay more atten-
tion to its neighbors: the attention weights of the elements
around the main diagonal are larger than other positions in
Figure 5(a), and a band-like contour around the main diago-
nal can be observed in this figure.

From Figure 5(f) and Figure 5(c), we can see the attention
structure in the final layer is different from the shallow lay-
ers, and SegaBERT pays more attention to its context than
BERT. We also notice that a fractal-like structure can be ob-
served in the first 10 layers of SegaBERT, while the last two
layers of SegaBERT have a striped structure.

These attention behaviors show that: in the shallow layers,
our model is segment-aware while BERT is neighborhood-
aware; in the top layers, both of these two models focus on
some tokens across the article rather than local neighbors,
but our model can capture more contextual tokens.

Related Work
Language modeling is a traditional natural language pro-
cessing task which requires capturing long-distance depen-
dencies for predicting the next token based on the context.

Most of the recent advances in language modeling are
based on the Transformer (Vaswani et al. 2017) decoder
architecture. Al-Rfou et al. (2019) demonstrated that self-
attention can perform very well on character-level language
modeling. Baevski and Auli (2019) proposed adaptive word
input representations for the Transformer to assign more ca-
pacity to frequent words and reduce the capacity for less
frequent words. Dai et al. (2019) proposed Transformer-
XL to equip the Transformer with relative position encod-
ing and cached memory for longer context modeling. Rae
et al. (2020) extended the Transformer-XL memory segment
to fine-grained compressed memory, which further increases
the length of the context and obtains a perplexity of 17.1 on
WikiText-103.

Although these works prove that longer context can be
helpful for the language modeling task, how to generate bet-
ter context representations with richer positional informa-
tion has not been investigated.

On the other hand, large neural LMs trained with a mas-
sive amount of text have shown great potential on many
NLP tasks, benefiting from the dynamic contextual repre-
sentations learned from language modeling and other self-
supervised pre-training tasks. GPT2 (Radford et al. 2019)
and BERT (Devlin et al. 2019) are two representative mod-
els trained with the auto-regressive language modeling task
and the masked language modeling task, respectively. In ad-
dition, BERT is also trained with an auxiliary task named
next sentence prediction (NSP). ALBERT (Lan et al. 2020)
then proposed to share parameters across layers of BERT
and replaced NSP with sentence order prediction (SOP). Ac-
cording to their experiments, SOP is more challenging than
NSP, and MLM together with other downstream tasks can
benefit more from replacing NSP with SOP. Concurrently to
ALBERT, Wang et al. (2020) proposed two auxiliary objec-
tives to provide additional structural information for BERT.

All these powerful pre-trained models encode input to-
kens with token position encoding, which was first proposed

by Vaswani et al. (2017) to indicate the position index of
the input tokens in the context of machine translation and
constituency parsing. After that, Transformer has been ex-
tensively applied in machine translation and other sequence
generation tasks (Li et al. 2019; Liu and Lapata 2019; Roller
et al. 2020). However, the input length of language mod-
eling tasks are much longer than these tasks, and simply
assigning 0–512 token position embeddings is not enough
for LMs to learn the linguistic relationships among these to-
kens. Bai et al. (2020) show that incorporating segmentation
information with paragraph separating tokens can improve
the LM generator (GPT2) in the context of story genera-
tion. However, compared with punctuation and paragraph
breaker, segment position indexes are more straightforward
for dot-product self-attention based Transformers. In this
work, we try to encode segmentation information into the
Transformer with the segment-aware position encoding ap-
proach.

Conclusion
In this paper, we propose a novel segment-aware Trans-
former that can encode richer positional information for lan-
guage modeling. By applying our approach to Transformer-
XL, we train a new language model, Segatron-XL, that
achieves 17.1 test perplexity on WikiText-103. Addition-
ally, we pre-trained BERT with our SegaBERT approach
and show that our model outperforms BERT on general
language understanding, sentence representation learning,
and machine reading comprehension tasks. Furthermore,
our SegaBERT-large model outperforms RoBERTa-large on
zero-shot STS tasks. These experimental results demonstrate
that our proposed method works on both language models
with relative position embeddings and pre-trained language
models with absolute position embeddings.
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