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Abstract

Previous work for text summarization in scientific domain
mainly focused on the content of the input document, but sel-
dom considering its citation network. However, scientific pa-
pers are full of uncommon domain-specific terms, making it
almost impossible for the model to understand its true mean-
ing without the help of the relevant research community. In
this paper, we redefine the task of scientific papers summa-
rization by utilizing their citation graph and propose a cita-
tion graph-based summarization model (CGSUM) which can
incorporate the information of both the source paper and its
references. In addition, we construct a novel scientific pa-
pers summarization dataset Semantic Scholar Network (SSN)
which contains 141K research papers in different domains
and 661K citation relationships. The entire dataset constitutes
a large connected citation graph. Extensive experiments show
that our model can achieve competitive performance when
compared with the pretrained models even with a simple ar-
chitecture. The results also indicates the citation graph is cru-
cial to better understand the content of papers and generate
high-quality summaries.

Introduction
Text summarization is to automatically compress a docu-
ment into a shorter version preserving a concise description
of the content. Most of the previous work focused on News
domain (Nallapati et al. 2016; Rush, Chopra, and Weston
2015; Nallapati, Zhai, and Zhou 2016; Zhong et al. 2019),
and achieved promising result using the neural encoder-
decoder architecture. Although text summarization systems
have not been explored too much in other domains, such as
scientific papers, they still have broad application prospects.

Generating a good abstract for a scientific paper is a very
challenging task, even for a beginner researcher, since the
scientific papers are usually longer and full of complex con-
cepts and domain-specific items in specific fields. Cohan
et al. (2018) and Xiao and Carenini (2019) leveraged the pa-
per structure information to generate the abstracts for scien-
tific papers. However, their methods dedicate to solving the
problem of long document modeling and do not utilize the
information of references. As a matter of fact, researchers
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Figure 1: A small research community on the subject of
Weak Galerkin Finite Element Method. Green text indicates
the domain-specific terms shared in these papers, orange text
denotes different ways of writing the same sentences, blue
text represents the definition of Weak Galerkin Finite Ele-
ment Method (does not appear in the source paper).

usually write an abstract of a paper by referring some exam-
ples. Especially a large number of papers on the same topic
are often similar in content. Reasonable use of the informa-
tion of reference papers may help us solve the scientific pa-
pers summarization task. To generate better summary for a
scientific paper, Yasunaga et al. (2019) integrated the forma-
tion of the source paper and the papers which cite the source
papers. However, the citing papers appeared after the source
paper, so we tend to think that this task does not help a re-
search to draft an abstract when the paper has not been cited
yet.

In this paper, we highlight the importance of the citation
graph and believe that it can assist in generating high-quality
summaries. Figure 1 shows an example of a small research
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community consisting of the source paper and several refer-
ence papers. They are all about topic Weak Galerkin Finite
Element Method and are thus very similar in content, logic,
and writing style. For instance, many uncommon domain-
specific terms (green text) are shared in these papers, it is al-
most impossible for the model to understand the true mean-
ing of these concepts without sufficient descriptions, so nat-
urally, we should encourage the models to learn from the
reference papers. The same expression always has different
writing styles (orange text) in different papers, even some
academic definitions that do not appear in the original text
can be found in other papers (blue text), this relevant infor-
mation will undoubtedly help the model to better understand
the entire research community.

Motivated by the above observations, we augment the
task of scientific papers summarization with citation graph.
While generating the abstract of a source paper, the sum-
marization systems are able to refer to papers in the same
research community. Considering that all current large-scale
scientific summarization datasets do not provide citation re-
lationships between papers, we construct a scientific papers
summarization dataset Semantic Scholar Network (SSN)
which contains 141K papers and 661K citation relationships
extracted from the Semantic Scholar Open Research Corpus
(S2ORC) (Lo et al. 2020). Notably, our dataset is a huge con-
nected citation graph, and each paper has class labels denot-
ing its research field. We divide the enhanced summarization
task into 2 settings: (1) transductive: during training, mod-
els can access to all the nodes and edges in the whole dataset
including papers (excluding abstracts) in the test set. (2) in-
ductive: papers in the test set are from a totally new graph
which means all test nodes cannot be used during training.

Further, we propose a citation graph-based summarization
model (CGSUM). which incorporates the document and rel-
evant citation graph when generating summaries. For each
source paper, we obtain its corresponding research commu-
nity by sampling a subgraph from the whole citation graph.
We firstly encode the content of the source paper and utilize
a graph encoder to capture the information of the subgraph.
Finally, a decoder combines all the features outputted by the
two encoders to produce the final summary. Additionally, we
introduce a novel ROUGE credit method, which can instruct
the model how to write summaries with the help of other pa-
pers’ abstract in the same research community. Although our
model only uses BiLSTM and GNN structures, experimen-
tal results show that it achieves the competitive performance
when compared with the pretrained model. We summarize
our contributions as follows:

• We augment the task of scientific papers summarization
by introducing the citation graph.

• We construct a large-scale summarization dataset SSN. To
our best knowledge, this is the first large-scale scientific
papers summarization dataset with citation graph.

• We propose a citation graph-based summarization model
to solve the enhanced task of scientific papers summariza-
tion, which can incorporate the source paper information
and the features of the citation graph at the same time.

Related Work
Summarization with Graph Structures
Early approaches for extractive summarization, such as Tex-
tRank (Mihalcea and Tarau 2004), have taken advantage
of graph structures by building the connectivity graph with
inter-sentence cosine similarity. As for the neural systems
,Wang et al. (2020) construct a heterogeneous graph network
to model the relations between different semantic units. On
abstractive system, inspired by the great success of Graph
Attention Networks (GATs) (Veličković et al. 2017) in NLP,
Song et al. (2018) proposed the task of text generation from
graph and Koncel-Kedziorski et al. (2019) design a GATs-
based transformer encoder to generate summary with the
help of knowledge graphs extracted from scientific texts. For
the combination of text and graph, Fernandes, Allamanis,
and Brockschmidt (2018) incorporates the regular document
encoder with graph neural networks to make use of both the
input sequence and graph structure, and Zhu et al. (2020);
Huang, Wu, and Wang (2020) built a knowledge graph from
the input document and integrated it into the decoding pro-
cess. Instead of directly generating abstract from the graph,
our model uses the graph-enhanced encoder, viewing the ci-
tation graph as complementary information.

Scientific Papers Summarization
Automatic summarization for scientific papers has been
studied for decades. Previous work mainly focused on the
content of document (Luhn 1958; Cohan and Goharian
2018) and most of them are extractive (Teufel and Moens
2002; Xiao and Carenini 2019). For instance, Cohan et al.
(2018) propose a neural model under the sequence-to-
sequence framework with the discourse structure of scien-
tific papers. These methods focus on modeling long docu-
ments, but ignore the influence of the research community
it belongs to. Another direction is citation summarization
(Qazvinian and Radev 2008; Cohan and Goharian 2018; Ya-
sunaga et al. 2019), which can make use of the reference re-
lationship between papers. Citation summarization aims to
generate the summary of a source Paper according to the pa-
pers citing it. Although we can improve the quality of sum-
mary for a paper with its citation information, it cannot help
authors to draft the summary while writing paper. Different
to citation summarization, we generate the summary of the
source paper by utilizing its reference papers as background
knowledge. In our setting, the papers citing the source paper
are not visible during the process of writing a summary.

Semantic Scholar Network (SSN) Dataset
Many scientific summarization datasets have emerged in re-
cent years. The most commonly used scientific datasets,
arXiv and PubMed (Cohan et al. 2018), focus on long docu-
ment summarization without providing citation relationships
between papers, which undoubtedly ignores the characteris-
tics of the academic domain. Yasunaga et al. (2019) proposes
a relatively small dataset containing 1k papers based on The
ACL Anthology Network (ANN) (Radev et al. 2013), but
they generate summaries using only papers that cite the cur-
rent paper (i.e., citing papers), which is unreasonable. In
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Datasets Source
# Pairs Doc. Length Sum. Length

# SectionsTrain Val Test # Words # Sent. # Words # Sent.

CNN News 90,266 1,220 1,093 760.5 34.0 45.7 3.6 -
DailyMail News 196,961 12,148 10,397 653.3 29.3 54.7 3.9 -
ScisummNet Scientific Papers 1009 – – 4203.4 178.0 150.7 7.4 6.5
arXiv† Scientific Papers 215,913 6440 6436 4938.0 206.3 220.0 9.6 5.9
PubMed† Scientific Papers 119,924 6633 6658 3016.0 86.4 203.0 6.9 5.6
SSN (inductive) Scientific Papers 128,400 6123 6276 5072.3 290.6 165.1 6.4 10.8SSN (transductive) 128,299 6250 6250

Table 1: Dataset statistics. The datasets with † indicates that the reported data comes from Cohan et al. (2018).

view of the above, we construct a large-scale summarization
dataset, Semantic Scholar Network (SSN), consists of 141k
research papers extracted from Semantic Scholar Open Re-
search Corpus (S2ORC) (Lo et al. 2020). All the papers in
SSN form a large connected citation graph, allowing us to
make full use of citation relationships between papers.

Dataset Preprocessing Semantic Scholar Open Research
Corpus (Lo et al. 2020) contains 81.1M academic papers
from multiple research fields. We only extract papers with
full text LATEX parses (1.5M) which provides us more de-
tails about the paper (e.g. section names, boundaries of para-
graph/sections). We keep papers whose abstract length is be-
tween 50 and 1000, and the body length is between 1000 and
8000. Additionally, papers with less than 4 sections or do
not have an Introduction section are also filtered out because
they are likely to lose the discourse structure. A Breadth-first
search algorithm is applied to get a large connected citation
graph. To prevent the graph from being too sparse, we re-
cursively remove papers with only one 1-hop neighbour. We
also normalize inline formulas, equations, tables, figures and
citation markers with special tokens.

Statistics SSN has 140,799 nodes and 660,908 edges
where most papers come from the fields of mathematical,
physics and computer science. Statistics of our dataset and
other general datasets are shown in Table 1. CNN/DailyMail
(Hermann et al. 2015) is a widely used news dataset, others
belong to the scientific field. SSN has the longest text, which
brings difficulty to modeling. Meanwhile, it has the most
sections, showing that our dataset retains the most complete
paper structure possible. Besides, SSN is a connected huge
citation graph, indicating that SSN can be used to train some
auxiliary tasks such as node classification and link predic-
tion to help models better understand the research commu-
nity in the whole graph.

Method
In this section, we first define the task of scientific papers
summarization with citation graph, then describe our cita-
tion graph-based summarization model (CGSUM) in detail.

Problem Formalization
Existing document summarization methods usually con-
ceptualize this task as a sequence-to-sequence problem.
Given a dataset D = (d1, d2, . . . , dk), each document

di can be represented as a sequence of n words d =
(x1, x2, . . . , xn), the objective is to generate a target sum-
mary Y = (y1, y2, . . . , ym) by modeling the conditional dis-
tribution p(y1, y2, . . . , ym|x1, . . . , xn).

However, scientific papers have their own characteristics:
there are citation relationships between papers, and the con-
tent of these papers is logically closely related. Therefore,
we introduce the concept of citation graph to strengthen
summarization tasks in the scientific domain. We define a
citation graph G = (V,E) on the whole dataset, which con-
tains scientific papers and citation relationships. Each node
v ∈ V represents a scientific paper in the dataset, and each
edge e ∈ E indicates the citation relationship between two
papers. Notably, when generating the summary of a paper,
we cannot rely on the information of the papers that cites
this one (because they are later in chronological order), so
we extract a subgraph Gv for each node v to avoid introduc-
ing information that should not be used, the specific method
can be seen in Algorithm 1.

Algorithm 1 Citation Graph Construction

Input: Node v; Citation graph of the whole dataset G
Output: Citation graph Gv related to v

1: Initialize a Queue q and Gv with Node v
2: while q is not ∅ do
3: Dequeue Node u from front of q
4: for each Node w ∈ G cited by u do
5: if w 6∈ Gv then
6: Enqueue Node w onto q
7: Add Node w to Gv

8: end if
9: Add Edge that u cites w to Gv

10: end for
11: end while

Given the source paper v (w/o abstract) and the related
citation graph Gv (we only use the abstract of other nodes),
we need to generate a summary Y of v by modeling the
conditional distribution p(y1, y2, . . . , ym|x1, . . . , xn;Gv).

Citation Graph-Based Summarization Model
In this part, we illustrate our citation graph-based model
(CGSUM) as displayed in Figure 2. The key idea is not only
to encode the source document v, but also to capture the
features of the corresponding citation graph Gv to help us
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Figure 2: Overview of our Citation Graph-Based Model
(CGSUM). A denotes the source paper (w/o abstract). B, C,
D and E denote the reference papers. The body text of A
and the abstract of reference papers are fed into the docu-
ment encoder, and then used to initialize the node features
in the graph encoder. Neighbor extraction method will be
used to extract a more relevant subgraph. While decoding,
the decoder will pay attention to both the document and the
citation graph structure.

generate the summary. Our model consists of document en-
coder, graph encoder and decoder. In addition, we introduce
a novel ROUGE credit approach.

Document Encoder We employ a single-layer bidirec-
tional LSTM (BiLSTM) to convert the input document d
= (x1, x2, . . . , xn) to a sequence of hidden representations
H = BiLSTM(x1, . . . , xn). We initialize the source node
vi by pooling its hidden representations H. For the neighbor
nodes vj ∈ N (vi), whereN (vi) denotes the input neighbor-
hood of vi, we feed their abstract t to another BiLSTM and
obtain the initial representation hvj of node vj by aggregat-
ing the hidden representations of t with a pooling layer.

Neighborhood Extraction For each node v, it is too com-
putationally expensive to use the whole citation graph Gv ,
so it is necessary to sample an informative subgraph. Specif-
ically, we first extract a directed subgraph G′vi

consisting of
the source paper vi and its K-hop neighbors, and add self-
loops to G′vi

for information enhancement. Before feeding
G′vi

to the graph encoder,
we employ a neighborhood extraction method to further

extract T neighbors by their salience scores with source
node vi:

si,j = softmax(f([hvi
;hvj

]))

=
exp(f([hvi

;hvj
]))∑

vk∈G′
v
f([hvi ;hvk

])
, (1)

where vj ∈ G′vi
, si,j denotes the salience score between

vi and vj , and f is a 3-layers feed forward neural network.
We extract the most salient T vertices with argmax function
to construct the final citation graph G∗vi

. However, directly
sampling important nodes corrupts the training of parame-
ters in f . To overcome this problem, we follow Huang, Wu,

and Wang (2020) and view f as an information gate and
multiplies si,j to vj itself, hvj = si,jhvj .

Graph Encoder Given a sampled citation graph G∗v and
the initial nodes features Hv , we use 2-layers graph attention
networks (GAT) (Veličković et al. 2017) to update the rep-
resentation of each node. Besides, to avoid the gradient van-
ishing problem, we add residual connections between layers.
vi is represented by the aggregation of its neighbors:

h
′

vi
= hvi

+ ‖Nn=1

∑
vj∈N (vi)

αn
i,jW

n
vhvj

, (2)

αn
i,j = softmax(Wn

a [W
n
q hvi

;Wn
khvj

]), (3)

where ‖Nn=1 denotes concatenation ofN attention heads, and
αn
i,j is the normalized attention weight between hvi and hvj

computed by the n-th attention head, Wn
a ,W

n
k ,W

n
q ,W

n
v

are trainable parameters. Dropout (Hinton et al. 2012) with
probability 0.1 is applied in each layer.

Decoder Our decoder is a single-layer unidirectional
LSTM. At each step t, the decoder has a hidden state st. Pre-
vious works (See, Liu, and Manning 2017) employ an atten-
tion mechanism to compute the attention distribution over
the source words in the sequence-to-sequence structure, and
we extend it to the graph structure as:

evi,t = vT tanh(Wv
hhvi +Wv

sst + bv), (4)

avt = softmax(evt ), (5)

hv,∗
t =

∑
i

avi,th
v
i , (6)

where vT , Wv
h, Wv

s and bv are trainable weights. We com-
pute the attention distribution over the nodes in G∗v and ob-
tain a graph context vector hv,∗

t . Furthermore, on the basis of
introducing the features of the citation graph, we still need
to pay attention to the source document as:

ei,t = vT tanh(Whhi +Wsst +Wvh
v,∗
t + b), (7)

at = softmax(et), (8)

h∗t =
∑
i

ai,thi, (9)

where Wh, Ws and b are trainable parameters. hv,∗
t and h∗t

can be viewed as the aggregated representation of the cita-
tion graph and the source document respectively, so we con-
catenate them with the decoder hidden state st to produce
the vocabulary distribution Pvocab:

Pvocab = softmax(Wo(Wp[h
v,∗
t ;h∗t ; st] + bo). (10)

In addition, to overcome the OOV problem, we allow the de-
coder to copy words from the source document as proposed
by See, Liu, and Manning (2017). The generation proba-
bility pgen ∈ [0, 1] (i.e. the copying probability pcopy =
1− Pgen) for step t is calculated as:

qgen = σ(Wc[h
v,∗
t ;h∗t ; st;xt] + bc), (11)

where xt denotes the decoder input at time step t. Therefore,
the probability distribution over the extended vocabulary is:
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Pfinal = qgenPvocab + (1− qgen)
∑

i:wi=w

ai,t. (12)

Obviously, if w does not appear in the source document,∑
i:wi=w ai,t is equal to zero, and if w is an OOV word,

Pvocab is zero. The loss at time step t is the negative log
likelihood of the target word yt:

losst = −log(yt|v; θ), (13)

where v is the source document and θ are the parameters
of our model. We add an coverage loss to penalize repeat-
edly attending to the same word in the source document.
covlosst =

∑
i min(ai,t; ci,t), where ci,t =

∑t−1
t′=0

ai,t′ .
Finally the overall loss for the whole sequence is:

loss =
1

T

T∑
t=0

(losst + λ ∗ covlosst), (14)

where λ is the hyperparameter to reweight the coverage loss.

ROUGE Credit Intuitively, the information brought by
the citation graph is not only useful during training, but it
is also helpful for the model to generate summaries during
inference. Motivated by this, we propose a novel ROUGE
credit score in beam search algorithm to instruct our model
to write summaries with the help of nearby nodes’ abstracts.

Specifically, at the decoding step t, we first select the
neighbor nbrmax which has the most influence on the gen-
erated summary using argmax function over the attention
distribution avt on the graph G∗v . In the beam search process,
there are k candidate sequences C = (c1, . . . , ck) per time
step, then we calcaute the ROUGE credit score between the
abstract of nbrmax and ci as:

crediti = ROUGE(abst[nbrmax], ci) ∗ g(t) (15)

g(t) =

{
1 t < ls
exp(1− ls/t) t ≥ ls

(16)

where abst[nbrmax] represents the abstract of the selected
neighbor, g(t) is a weight function corresponding to the de-
coding step t and ls is a hyperparameter (if t ≥ ls the credit
score will take more weight). We design g(t) by simply
modifying the sentence brevity penalty function in BLEU
(Papineni et al. 2002), which makes the final generated sum-
mary neither bias towards the abstract of neighbor nodes, nor
focus on the words selected by the model on the vocabulary.
At last, the total score of the i-th candidate summary ci is
given by the sum of its average log likelihood and crediti.
In our experiments, we calculate this credit every 5 steps as
a trade-off to decoding time.

Experiments
Dataset
We evaluate our model on our Semantic Scholar Network
dataset. Details about our dataset is shown in Table 1. We
lowercase all tokens and tokenize sentence and word using

Figure 3: Different ways of splitting training, validation, test
sets from the whole graph. We omit the directionality of the
edges for simplification. The green, orange, cyan nodes rep-
resent papers from the training, validation, test set.

spaCy (Honnibal and Johnson 2015). As is shown in Figure
3, for SNN (transductive) we randomly choose 6,250/6250
papers from the whole dataset as test/validation sets and
the remaining 128,299 papers are classified as training set
which is the most commonly way to split the dataset. The
transductive division indicates that most neighbors of pa-
pers in test set are from the training set, but considering that
in real cases, the test papers may from a new graph which
has nothing to do with papers we used for training, thus we
introduce SNN (inductive), by splitting the whole citation
graph into three independent subgraphs – training, valida-
tion and test graphs with the breadth first search algorithm.
The training/validation/test graphs in inductive setting con-
tain 128,400/6,123/6,276 nodes and 603,737/17,221/14,515
edges. In both inductive and transducitve setting, the sum-
mary of papers in the test set and validation set are kept in-
visible during the training phase. Our inductive setting also
has the intention to test whether models trained in a large-
scale citation graph has the ability to transfer to another ci-
tation graph. Therefore, the inductive setting of our task is
thought more difficult.

Training Details and Parameters
We use hyperparameters suggested by See, Liu, and Man-
ning (2017) in the BiLSTM model. The word embeddings
layer is trained from scratch without using any pretrained
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language models and embeddings. We use mini-batches of
size 16 and we limit the input document length to 500 to-
kens. The input citation graph includes the source paper and
its K-hop neighbors (K = 1, 2), and we initialize the node
representation with body text of source papers and the ab-
stract of neighbors. We constrain the maximum number of
papers in an input graph to 64. We implement graph atten-
tion network with Deep Graph Library (Wang et al. 2019)
and the number of attention heads is set to 4. We use Ada-
grad optimizer with learning rate 0.15 and an initial accumu-
lator value of 0.1. We set the beam size b to 5 and ls to 75 in
the ROUGE credit, and the ROUGE (Lin 2004) score used
is the value of ROUGE-1 F1. We do not train the model with
coverage loss in the first epoch to help the model converge
faster, and we train our model for 10 epochs and do valida-
tion every 2000 steps. We select the best checkpoint based
on the ROUGE-L score on the validation set.

Baseline Methods
We provide the LEAD baseline which extracts the first L
(depending on the number of sentences in the reference sum-
mary) sentences from the source document and ORACLE as
an upper bound of extractive summarization systems. We
use a greedy algorithm following Nallapati, Zhai, and Zhou
(2016) to generate an oracle summary. Since we truncate the
document to 500 tokens,ORACLE in this paper is calculated
on the truncated datasets.

Besides, we implement the following extractive systems:
(1) TEXTRANK (Mihalcea and Tarau 2004): an unsuper-
vised extractive system based on the graph structure (2)
TransformerEXT: an extractive system based on transformer
encoders (3) BERTSUMEXT (Liu and Lapata 2019): an ex-
tractive summarization model with BERT. We further add
the following abstractive baseline models: (1) PTGEN+COV
(See, Liu, and Manning 2017): an abstractive summariza-
tion system with copy mechanism. (2) TransformerABS: an
abstractive summarization model based on transformer (3)
BERTSUMABS(Liu and Lapata 2019): an abstractive sum-
marization system built on BERT. We employ trigram block-
ing (Paulus, Xiong, and Socher 2017) to reduce redundancy
for both the baseline systems and our models.

Experimental Results
Reusult on SSN We evaluate summarization quality with
the standard ROUGE score (Lin 2004) where R-1 and R-2
represent informativeness and R-L represents fluency. Ta-
ble 2,3 show the results on our dataset. Several well-known
extractive and abstractive baselines as well as models that
make use of pretrained language model BERT (Devlin et al.
2018) using their open-sourced implementations are shown
in the second and third part. Besides, to better compare our
model with the baseline models, for each abstractive base-
line we give an additional Concat Nbr. Summ version whose
input is the concatenation of source document and the neigh-
bors’ abstracts separated by a special token [SEP] follow-
ing the general setting in multi-documents summarization.
In our experiments, we are surprised to find that Trans-
formerABS performs poorly on our dataset, but it will be
significantly improved if we further add copy mechanism.

Systems R-1 R-2 R-L

ORACLE *51.04* 23.34 *45.88 *
LEAD 28.29 5.99 24.84

Extractive
TEXTRANK 36.36 9.67 32.72
TransformerEXT 43.14 13.68 38.65
BERTSUMEXT 42.41 13.10 37.97
BERTSUMEXT (mp = 640) 44.28 14.67 39.77

Abstractive
PTGEN + COV 42.84 13.28 37.59

Concat Nbr. Summ 43.05 13.53 37.97
TransformerABS 37.78 9.59 34.21
TransformerABS + COPY 43.35 14.87 39.17
BERTSUMABS 41.22 13.31 37.22
BERTSUMABS (mp = 640) 43.73 15.05 39.46

Concat Nbr. Summ (mp=640) 43.45 14.89 39.27

Our Model
CGSUM + 1-hop Nbr. 44.36 14.69 39.43
CGSUM + 2-hop Nbr. 44.28 14.75 39.76

Table 2: Results on SSN (inductive). Concat Nbr. Summ de-
notes the input is a concatenation of source document and
neighbors’ summary, mp means the expanded size of po-
sition embedding in BERT. CGSUM denotes our Citation
Graph-Based Summarization Model.

Although BERT has achieved the state-of-the-art perfor-
mance in the News domain (Zhong et al. 2020), it has not
shown great advantages in the field of scientific papers. We
think the main reason here is that BERT has a length limit
of 512, but scientific papers are usually much longer than
this limit. To solve this issue, we break the constrain on
maximum length in BERT by adding more position embed-
dings which are initialized randomly and finetune them in
the training phrase, which brings remarkable improvement
for two BERT-based models (BERTSUMEXT and BERT-
SUMABS). In addition, all models have not significantly im-
proved after adding the content of the cited papers (i.e., Con-
cat Nbr. Summ), which shows that the content of the refer-
ence papers is not enough.

As can be seen from Table 2,3, in both inductive and trans-
ductive settings, CGSUM outperforms all the pretrained
models in terms of R-1 and R-L metrics. When compared
with BERTSUMABS (mp = 640), which is also an abstrac-
tive model, although our model uses a shorter input sequence
(500 vs 640) and a simpler encoder structure (1-layer BiL-
STM and 2-layers GAT vs 12-layers pretrained transform-
ers), it still outperforms BERTSUMABS (mp = 640). This
result fully illustrates a combination of the document in-
formation and the features of the citation graph structure
can greatly help the model better understand the relevant re-
search community, thereby naturally generating high-quality
abstracts. In inductive setting, CGSUM beats BERT by 0.63
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Systems R-1 R-2 R-L

ORACLE *50.12* 23.31 *45.29 *
LEAD 28.30 6.87 24.93

Extractive
TEXTRANK 40.81 12.81 36.47
TransformerEXT 41.45 13.02 37.20
BERTSUMEXT 41.68 13.31 37.42
BERTSUMEXT (mp = 640) 43.23 14.59 38.91

Abstractive
PTGEN + COV 39.46 12.06 35.72

Concat Nbr. Summ 40.12 12.58 35.94
TransformerABS 36.58 10.19 33.13
TransformerABS + COPY 40.83 14.71 36.93
BERTSUMABS 40.38 14.07 36.54
BERTSUMABS (mp = 640) 41.92 15.09 37.79

Concat Nbr. Summ (mp=640) 41.11 14.50 37.16

Our Model
CGSUM + 1-hop Nbr. 43.10 14.90 39.10
CGSUM + 2-hop Nbr. 43.45 14.71 38.89

Table 3: Results on SSN (transductive).

R-1 score and beats PTGEN + COV by 1.52 R-1 score while
CGSUM brings more significant improvements in transduc-
tive setting (beats BERT by 1.53 R-1 score and beats PT-
GEN + COV 3.99 R-1 score).

Degree of Source Paper We further explore the relation-
ship between model performance and the degree of the
source node. We divide our test set into six parts according
to the degree of the node. As is shown in Figure 4, there is no
obvious connection between the performance of PTGEN +
COV and the degree of the source paper. Notably, PTGEN +
COV can be viewed as our model removes the graph encoder,
so for the nodes with degree 0, the two models have simi-
lar performance. However, as the degree of nodes increases,
our model can gradually achieve better performance. This
dataset splitting experiment shows that our model is good
at handling papers with rich citation graph information, that
is to say, an informative and relevant research community is
very important for understanding a scientific paper. In induc-
tive setting the average degree of nodes davg = 2.3 in test set
is much smaller than that in transductive setting davg = 4.7.
This experiment also gives an explanation of why CGSUM
outperforms other baseline models without using citation
graph by a larger margin in the transductive setting.

Ablation Study To have a better understanding of the con-
tribution of each component in our proposed model, we
remove the neighborhood extraction, residual connection,
trigram blocking, rouge credit and GNN from the origin
model. As shown in Table 4, neighborhood extraction ob-
tains a certain performance improvement because it extracts
a more informative subgraph. Residual connection and tri-

[0] [1 2] (3, 4) (5, 6) (7, 8) (9, ∞)

31

32

33

degree of source nodes

R̃

PTGen+Cov
CGSum

Figure 4: Relationships between the degree of source paper
nodes (X-axis) and R̃ (the average of ROUGE-1, ROUGE-2
and ROUGE-L) of two models: CGSUM + 1-hop neighbors
and PTGEN + COV (inductive setting).

Model R-1 R-2 R-L
CGSUM 44.36 14.69 39.43

- Nbr. Extraction 44.23 14.63 39.29
- Residual Connection 44.25 14.41 38.95
- Trigram Blocking 43.48 14.49 38.92
- ROUGE Credit 43.81 14.49 38.70
- GNN Encoder 42.84 13.28 37.59

Table 4: Ablation study of the CGSUM. ’-’ means we remove
the module from the original CGSUM (inductive setting).

gram blocking have been proven to work well in previous
work, and they are also effective in our task. Besides, our
proposed ROUGE credit method significantly improve the
performance on R-1 and R-L because of the shared domain-
specific terms and the similar writing style among papers
in the same research community. Finally, if we remove the
GNN encoder, our model actually become PTGEN + COV.

Conclusion
In this paper, we augment the task of scientific papers sum-
marization with the citation graph. Specifically, summariza-
tion systems can not only use the document information of
the source paper, but also find the useful information from
the corresponding research community from citation graph
to generate the final abstract. Different to the previous work,
we aim to help researchers draft a paper abstract by utilizing
its references, rather than the papers citing it. We construct a
large-scale scientific summarization dataset which is a huge
connected citation graph with 141K nodes and 661K citation
edges. We also design a novel citation graph-based model
which incorporates the features of a paper and its references.
Experiments show the effectiveness of our proposed model
and the important role of citation graphs for scientific paper
summarization.
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