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Abstract

The recent success of deep learning techniques for abstrac-
tive summarization is predicated on the availability of large-
scale datasets. When summarizing reviews (e.g., for products
or movies), such training data is neither available nor can be
easily sourced, motivating the development of methods which
rely on synthetic datasets for supervised training. We show
that explicitly incorporating content planning in a summa-
rization model not only yields output of higher quality, but
also allows the creation of synthetic datasets which are more
natural, resembling real world document-summary pairs. Our
content plans take the form of aspect and sentiment distri-
butions which we induce from data without access to expen-
sive annotations. Synthetic datasets are created by sampling
pseudo-reviews from a Dirichlet distribution parametrized by
our content planner, while our model generates summaries
based on input reviews and induced content plans. Experi-
mental results on three domains show that our approach out-
performs competitive models in generating informative, co-
herent, and fluent summaries that capture opinion consensus.

Introduction
The large volume of online product reviews has led to the
proliferation of automatic methods for digesting their con-
tent in order to facilitate decision making. The fields of opin-
ion mining and sentiment analysis (Pang and Lee 2008) have
offered various solutions, ranging from sentiment classifi-
cation (Pang, Lee, and Vaithyanathan 2002), to aspect ex-
traction (Mukherjee and Liu 2012), and aspect-based sen-
timent analysis (Pontiki et al. 2016). Beyond extracting
surface-level information (e.g., sentiment labels from re-
views), effective summarization systems (Hu and Liu 2006)
are needed to succinctly convey opinions to users, e.g., to
condense multiple reviews for a given product and identify
which weaknesses and features to pay attention to.

Due to the absence of opinion summaries in review web-
sites and the difficulty of annotating them on a large scale,
most previous work has relied on extractive approaches (Ku,
Liang, and Chen 2006; Paul, Zhai, and Girju 2010; Carenini,
Cheung, and Pauls 2013; Angelidis and Lapata 2018), where
parts of the input reviews are copied and arranged onto a
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Input Reviews
1. Local dive bar experience! Authentic phoenix experience
squished behind the starbucks. Pros: Decent prices, $2 mystery
shots, clean bathroom ...
2. Cheap drinks, awesome bar staff, stiff pours ...
3. Cheap drinks, great happy hour (that’s ridiculously long and
cheap) ... I’ve only found great bartenders and patrons at this little
bar ...
4. It’s a local bar with no frills except pool table, bar, and friendly
people ... The sliding glass door with the little beach is what
makes this place awesome!!! ...
5. Bartender was friendly and made great shots, but the place
was full of regulars who made it impossible to have fun ...
6. Their Christmas decorations rival that of coach house but
without the Scottsdale crowd. You can find every type of person
hanging out here. The staff is friendly ...
7. ... reminds me of back home in the Mid West. Good times and
great spot to mingle and meet new people!
8. Lynn is the reason I continue to come back!! She is personable,
fun, and dedicated.

Opinion Summary
The drinks here are well priced, especially during happy hour.
There is a large variety of regulars from various backgrounds and
ages. Great place to meet new people. The staff are great they
provide a nice judgement free environment and they aren’t stingy
on the pours.

Figure 1: Yelp reviews about a local bar and corresponding
summary. Aspect-specific opinions are in color (e.g., drinks,
guests, staff), while less salient opinions are shown in italics.

summary. More recent methods (Chu and Liu 2019; Am-
playo and Lapata 2020; Bražinskas, Lapata, and Titov 2019)
focus on generating abstractive summaries which can be
more informative and less redundant compared to cut-and-
paste extracts. They consider an unsupervised learning set-
ting where there are only documents (product or business
reviews) available without corresponding summaries. An in-
tuitive solution to the lack of training data is to create syn-
thetic summary-review pairs (Amplayo and Lapata 2020;
Bražinskas, Lapata, and Titov 2019) by sampling a review
from a corpus of product reviews, and pretending it is a sum-
mary.

Although synthetic datasets enable the use of supervised
training and have been found to produce higher quality
summaries than autoencoder-based methods (Chu and Liu
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2019), they cannot, by definition, resemble real-world data.
Bražinskas, Lapata, and Titov (2019) rely on random sam-
pling to select the pseudo-summary which might have no
connection to the input it purports to summarize. Amplayo
and Lapata (2020) create multiple input reviews by adding
noise to the sampled summary. They generate syntactically
noisy versions or extract lexically similar reviews under the
unrealistic assumption that all reviews with overlapping vo-
cabulary will be semantically similar to the summary. As
shown in Table 1, real-world reviews discuss a variety of
opinions covering different aspects of the entity under con-
sideration (e.g., for a bar it might be the price of the drinks,
the stuff, the atmosphere of the place). Some of these as-
pects are salient, we expect to see them mentioned in the
summary and discussed in most reviews, while others will
be less salient and absent from the summary. There is also
variety among reviews: some will focus on several aspects,
others on a single one, and there will be some which will
discuss idiosyncratic details.

In this paper, we propose to incorporate content plan-
ning in unsupervised opinion summarization. The genera-
tion literature provides multiple examples of content plan-
ning components (Kukich 1983; McKeown 1985) for var-
ious domains and tasks including data-to-text generation
(Gehrmann et al. 2018; Puduppully, Dong, and Lapata
2019), argument generation (Hua and Wang 2019), and sum-
marization (Kan and McKeown 2002). Aside from guiding
generation towards more informative text, we argue that con-
tent plans can be usefully employed to reflect a natural vari-
ation of sampled reviews in creating a synthetic dataset. Our
content plans take the form of aspect and sentiment prob-
ability distributions which are induced from data without
access to expensive annotations. Using these as parameters
to a Dirichlet distribution, we create a synthetic dataset of
review-summary pairs, where the variation of aspect men-
tions among reviews can be controlled. We also propose an
opinion summarization model that uses these distributions
as a content plan to guide the generation of abstractive sum-
maries.

Experiments on three datasets (Wang and Ling 2016; Chu
and Liu 2019; Bražinskas, Lapata, and Titov 2019) repre-
senting different domains (movies, business, and product
reviews) and summarization requirements (short vs longer
summaries) show that our approach outperforms competi-
tive systems in terms of ROUGE, achieving state of the art
across the board. Human evaluation further confirms that the
summaries produced by our model capture salient opinions
as well as being coherent and fluent.

Related Work
Most previous work on unsupervised opinion summarization
has focused on extractive approaches (Ku, Liang, and Chen
2006; Paul, Zhai, and Girju 2010; Carenini, Cheung, and
Pauls 2013; Angelidis and Lapata 2018) which cluster opin-
ions of the same aspect or sentiment, and identify text that
represents each cluster. There have been relatively fewer at-
tempts to create abstractive summaries. Ganesan, Zhai, and
Han (2010) generate summaries from textual graphs while
other work (Carenini, Ng, and Pauls 2006; Di Fabbrizio,

Stent, and Gaizauskas 2014) employs a two-stage frame-
work that first selects salient text units and then generates
an abstractive summary based on templates.

The majority of eural summarization models (Rush,
Chopra, and Weston 2015; See, Liu, and Manning 2017)
make use of the very successful encoder-decoder archi-
tecture (Sutskever, Vinyals, and Le 2014), often enhanced
with attention (Bahdanau, Cho, and Bengio 2014) and copy
mechanisms (Vinyals, Fortunato, and Jaitly 2015) which
have been shown to encourage diversity and fluency in the
output. Unsupervised text generation methods (Freitag and
Roy 2018; Fevry and Phang 2018; Chu and Liu 2019) con-
ventionally make use of variational autoencoders (Kingma
and Welling 2014), while employing relatively simple de-
coders in order to mitigate posterior collapse (Kingma and
Welling 2014; Bowman et al. 2016). A more recent line of
work (Bražinskas, Lapata, and Titov 2019; Amplayo and
Lapata 2020) creates synthetic datasets in cases where gold
standard summaries are not available which in turn allow to
train models in a supervised setting and make use of of ef-
fective decoding techniques such as attention and copy. Our
method is in line with this work, but ultimately different in
its use of content planning to guide both summarization and
synthetic data creation.

Content plans have been successfully used to improve
generation performance in both traditional (Kukich 1983;
McKeown 1985) and neural-based systems (Gehrmann et al.
2018; Puduppully, Dong, and Lapata 2019). Content plans
are often discrete and designed with a specific task and do-
main in mind. Examples include a sequence of facts for data-
to-text generation (Gehrmann et al. 2018; Moryossef, Gold-
berg, and Dagan 2019), a list of Wikipedia key-phrases for
argument generation (Hua and Wang 2019), and entity men-
tions and their clusters in news summarization (Amplayo,
Lim, and Hwang 2018; Sharma et al. 2019). Our content
plans are neither discrete nor domain-specific. They take the
form of aspect and sentiment distributions, and serve the
dual purpose of creating more naturalistic datasets for model
training and guiding the decoder towards more informative
summaries.

Problem Formulation
We assume access to a collection of reviews about a specific
entity (e.g., a movie, product, business). These reviews have
ratings, which suggest the overall sentiment of the reviews
and can be either binary (e.g., positive or negative) or on
a scale (e.g., from 1 to 5). We further assume that reviews
typically focus on certain aspects of the entity, which are
features subject to user opinions (e.g., the price and image
quality of a television, the acting and plot of a movie). Fi-
nally, we do not assume access to gold-standard summaries,
since in most domains these do not exist.

Let X = {xi} denote the set of reviews about an entity.
The goal of opinion summarization is to generate a sum-
mary y that covers salient opinions mentioned in the major-
ity of the reviews. For each review, we first induce aspect
and sentiment probability distributions p(a) and p(s). We
do this with a content plan induction model which learns
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Figure 2: Model architecture of our content plan induction
model. The dotted line indicates that a reverse gradient func-
tion is applied.

to reconstruct the review from aspect and sentiment embed-
dings. Distributions p(a) and p(s) are then used to create
a synthetic dataset D = {X,y} of review-summary pairs.
We make use of the Dirichlet distribution parameterized
with p(a) and p(s) for sampling, which ensures that the re-
views are naturally varied and the summary is representative
the opinions found in reviews. Finally, we generate opinion
summary y using a summarization model, which is condi-
tioned on the input reviews X, but also guided by distribu-
tions p(a) and p(s), which we view as a content plan.

Content Plan Induction
Our content plan induction model is illustrated in Figure 2. It
induces probability distributions p(a) and p(s) from review
x by learning aspect and sentiment embeddings, and recon-
structing the encoding of x through these embeddings. It is
similar to neural topic models for aspect extraction (He et al.
2017; Angelidis and Lapata 2018), but also learns sentiment
representations.

We encode review x = {w1, ..., wN} using a neural BiL-
STM (Hochreiter and Schmidhuber 1997) followed by a
mean pooling operation. The output encoding is split into
aspect- and sentiment-specific document encodings, ha and
hs, respectively, which are used in softmax classifiers to ob-
tain distributions p(a) and p(s) (see Figure 2):

{hi} = BiLSTM({wi}) (1)

ha, hs =
∑

i
hi/N (2)

p(a) = softmax(Waha + ba) (3)
p(s) = softmax(Wshs + bs) (4)

where N is the number of review tokens, and Wa and Ws

are weight matrices.
We learn aspect and sentiment embedding matrices A and

S, via reconstructing the review. We obtain reconstructions
da and ds by weight-summing embeddings using p(a) and

p(s):

da =
∑

i
Ai ∗ p(ai) (5)

ds =
∑

i
Si ∗ p(si) (6)

The model is trained using two different objectives.
Firstly, a contrastive max-margin objective function is used
to reconstruct the original encodings ha and hs with da
and ds, respectively. For each review x, we randomly sam-
ple m reviews as negative samples and obtain encodings
{n(i)a , n

(i)
s } for 1 ≤ i ≤ m. We formulate the objective

function as a hinge loss Lrecon that maximizes the inner
product between da and ds and the original encodings and
minimizes the inner product between da and ds and the neg-
ative samples. We additionally ensure diversity among as-
pect/sentiment embeddings in memory (He et al. 2017) by
adding a regularization term Rrecon to encourage unique-
ness:

Lrecon =
∑

i
max(0, 1− daha + dan

(i)
a )

+
∑

i
max(0, 1− dshs + dsn

(i)
s ) (7)

Rrecon = ‖AA> − I‖+ ‖SS> − I‖ (8)

where I is the identity matrix. Rrecon minimizes the dot
product between two different embeddings in memory, en-
couraging orthogonality.

We also ensure that the aspect embedding matrix A does
not include information regarding sentiment, and vice versa,
by adding a disentanglement loss Ldisen. This is important
since we want to use aspect information to plan the summary
content without bias towards a certain sentiment. To distin-
guish sentiment information, we leverage review ratings ŝ
as sentiment labels and employ a cross-entropy loss with
respect to sentiment distribution p(s). We also predict the
same review ratings ŝ given aspect-specific document en-
coding ha as input. For this, we use an adversarial classifier
with a reverse gradient function (Ganin et al. 2016) which
reverses the sign of the gradient during backpropagation.
This objective learns the opposite of classifying and thus re-
moves sentiment information from aspect embeddings A.
We use the following (adversarial) cross-entropy objective
as our disentanglement loss:

p(s)adv = softmax(GradRev(Wadvha + badv))

Ldisen = − log p(ŝ)− log p(ŝ)adv (9)

The overall training loss is the linear addition of the recon-
struction and disentanglement losses, and the regularization
term mentioned above (λ is a hyperparameter controlling the
regularization):

Linduce = Lrecon + Ldisen + λRrecon (10)

After training, we obtain probability distributions p(a)
and p(s) for each review, and use them to create a synthetic
dataset and train a summarization model.
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Synthetic Dataset Creation
To create synthetic dataset D = {X,y}, we first sample a
review from the corpus and pretend it is summary y. Next,
we sample a set of reviews X conditioned on y and pretend
they serve as the input which led to summary y. We impose a
few (stylistic) constraints on the selection of candidate sum-
maries to ensure that they resemble actual summaries. We
discuss these in our experimental setup.

Review samples are created such that they follow the vari-
ation of aspect and sentiment mentions in the sampled sum-
mary. We use Dirichlet distribution, the conjugate prior of
the multinomial distribution, to sample N pairs of aspect
and sentiment distributions. Given summary y and its distri-
butions p(a) and p(s), the ith pair of aspect and sentiment
distributions {(pi(a)pi(s))}, 1 ≤ i ≤ N is sampled as:

pi(a) ∼ Dirichlet(αa ∗ p(a)) (11)
pi(s) ∼ Dirichlet(αs ∗ p(s)) (12)

where αa and αs are constants which control the variance of
the distributions sampled from the Dirichlet. When α values
are small, p(a) and p(s) will look more different from the
distribution of the summary, and when α values are larger,
the sampled distributions will look more similar to the sum-
mary. We provide samples with varying α values in the Ap-
pendix. Sampling from the Dirichlet ensures that the aver-
age of the sampled distribution equals that of the summary
us allowing to control how the synthetic dataset is created
modulating how aspect and sentiment are represented.

Finally, for each sampled pair (pi(a), pi(s)), we run a
nearest neighbor search over the corpus to find the review xi

with the most similar pair of distributions. We use Hellinger
(1909) distance to quantify the similarity between two dis-
tributions, i.e.. sim(p, q) = ‖√p − √q‖2/

√
2 (we take the

average of the similarity scores between aspect and senti-
ment distributions). This results to an instance within dataset
D, where X = {x1, ..., xN} is the set of reviews for sum-
mary y. We repeat this process multiple times to obtain a
large-scale training dataset.

Opinion Summarization
We use the synthetic dataset D to train our summarization
model which we call PLANSUM and illustrate in Figure 3.
A fusion module aggregates token-level encodings in input
reviews X to reduce the number of tokens. The fused encod-
ings are then passed to a decoder that uses the mean aspect
and sentiment distributions as a content plan to generate out-
put summary y. We do not employ an encoder in our model,
but rather reuse the encodings from the content plan induc-
tion model, which improves memory-efficiency in compari-
son to related architectures (Chu and Liu 2019; Bražinskas,
Lapata, and Titov 2019; Amplayo and Lapata 2020). At test
time, the same model is used to summarize actual reviews.

Mean and Injective Fusion For each review xi ∈ X

with tokens {w(i)
j }, we obtain token-level encodings {h(i)j }

and probability distributions p(i)(a) and p(i)(s), using Equa-
tion (1). We then aggregate these encodings and distributions
to collectively represent the set of input reviews.

It is trivial to aggregate aspect and sentiment distributions
since the synthetic dataset is by construction such that their
average equals to the summary. We thus take their mean:

p(a) =
∑

i
p(i)(a)/N (13)

p(s) =
∑

i
p(i)(s)/N (14)

It is critical to fuse token embeddings as the number of in-
put tokens can be prohibitively large causing out-of-memory
issues. We could fuse token embeddings by aggregating over
the same word, especially since multiple reviews are highly
redundant. However, simple aggregation methods such as
mean and max pooling may be all too effective at eliminat-
ing redundancy since they cannot retain information regard-
ing token frequency. This would be problematic for our task,
redundancy is an important feature of opinion summariza-
tion, and repetition can indicate which aspects are consid-
ered important. To mitigate this, we borrow a fusion method
from graph neural networks (Xu et al. 2019) that uses an in-
jective function, to effectively discriminate representations
of the same token but with different levels of redundancy:

hk = MLP(ek +
∑

(i,j):w
(i)
j =wk

h
(i)
j ) (15)

where ek is an embedding for word wk in the vocabulary.

Decoder with Content Planning Our decoder is an
LSTM equipped with attention (Bahdanau, Cho, and Ben-
gio 2014) and copy (Vinyals, Fortunato, and Jaitly 2015)
mechanisms, where the aggregated token embeddings {hk}
are used as keys. Additionally, at each timestep, the decoder
makes use of the aggregated probability distributions p(a)
and p(s) as a content plan. This guides the model towards
generating correct aspect and sentiment information. Specif-
ically, we use embedding matrices A and S from the content
plan induction model to obtain aspect and sentiment encod-
ings da and ds, using Equations (5) and (6). We combine
these encodings with the output token yt at timestep t:

y′t = f(da, ds, yt) (16)

st = LSTM(y′t, st) (17)

p(yt+1) = ATTENDCOPY(y′t, st, {hk}) (18)

where f(·) is a linear function.

Training and Inference We use a maximum likelihood
loss to optimize the probability distribution based on sum-
mary y = {yt}. We also use an LM-based label smoothing
method, which instead of the uniform distribution (Szegedy
et al. 2016) uses predictions from BERT (Devlin et al. 2019)
as a prior distribution:

ŷt = (1− δ) ∗ yt + δ ∗ BERT(y−t) (19)

Lgen = −
∑

t
ŷt log p(yt) (20)

where δ is the label smoothing parameter.
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Figure 3: Model architecture of PLANSUM. The content plan is constructed as the average of the aspect and sentiment prob-
ability distributions induced by the content plan induction model. It is then passed to the decoder, along with the aggregated
token encodings to generate the summary.

Experimental Setup
Datasets
We performed experiments on three opinion summarization
benchmarks. These include the Rotten Tomatoes dataset1
(RT; Wang and Ling 2016) which contains a large set of
reviews for various movies written by critics. Each set of
reviews has a gold-standard opinion summary written by
an editor. However, we do not use ground truth summaries
for training, to simulate our unsupervised setting. Our sec-
ond dataset is Yelp2 (Chu and Liu 2019) which includes a
large training corpus of reviews for businesses without gold-
standard summaries, as well as development and test sets
where summaries were generated by Amazon Mechanical
Turk (AMT) crowdworkers. Finally, the Amazon dataset3
(Bražinskas, Lapata, and Titov 2019) contains product re-
views for four Amazon categories: Electronics, Clothing,
Shoes and Jewelry, Home and Kitchen, and Health and Per-
sonal Care. The development and test partitions come with
three gold-standard reference summaries produced by AMT
annotators. All datasets include review ratings which we
used as sentiment labels: Rotten Tomatoes has binary labels,
while Yelp and Amazon have a 1–5 scale.

To create synthetic training data, we sampled candidate
summaries using the following constraints: (1) there must
be no non-alphanumeric symbols aside from punctuation,
(2) there must be no first-person singular pronouns (not used
in Yelp/Amazon), and (3) the number of tokens must be be-
tween 50–90 (20–50 for RT). We also made sure that sam-
pled reviews and candidate summary discuss the same entity.
After applying these constraints we obtained 100k (Yelp),
25k (RT), and 90k (Amazon) review-summary pairs. Statis-
tics of these datasets are reported in Table 1. As can be
seen, RT contains the largest number of input reviews but
the shortest summaries (22–35 tokens). While Amazon and

1http://www.ccs.neu.edu/home/luwang/data.html
2https://github.com/sosuperic/MeanSum
3https://github.com/ixlan/Copycat-abstractive-Amazon-

product-summaries

Yelp Train* Dev Test
#summary 100k 100 100
#reviews 8.0 8.0 8.0
#tokens/summary 66.0 70.9 67.3
#tokens/review 65.7 70.3 67.8
corpus size 2,320,800
Rotten Tomatoes Train* Dev Test
#summary 25k 536 737
#reviews 72.3 98.0 100.3
#tokens/summary 25.8 23.6 23.8
#tokens/review 22.9 23.5 23.6
corpus size 245,848
Amazon Train* Dev Test
#summary 90k 28×3 32×3
#reviews 8.0 8.0 8.0
#tokens/summary 59.8 60.5 62.5
#tokens/review 55.8 56.0 56.0
corpus size 1,175,191

Table 1: Dataset statistics; Train* column refers to the syn-
thetic data we created. Amazon contains three reference
summaries (× 3) per instance.

Yelp have a smaller number of input reviews but longer sum-
maries (66–70.9 and 62.5–59.8 tokens, respectively).

Training Configuration
Across models, we set all hidden dimensions to 256, the
dropout rate to 0.1, and batch size to 16. We used the sub-
word tokenizer of BERT (Devlin et al. 2019), which has a
30k token vocabulary trained using WordPiece (Wu et al.
2016). For RT, we follow Wang and Ling (2016) and add a
generic label for movie titles during training which we re-
place with the original title during inference. We used the
Adam optimizer (Kingma and Ba 2015) with a learning rate
of 3e− 4, l2 constraint of 3, and warmup of 8,000 steps. We
also used dropout (Srivastava et al. 2014) after every non-
linear function. For each dataset, we additionally tuned the
number of aspects, regularization parameter λ, Dirichlet pa-
rameters αa and αs, label smoothing parameter δ, and beam
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Yelp RT Amazon
Model R1 R2 RL R1 R2 RL R1 R2 RL

LEXRANK 25.50 2.64 13.37 14.88 1.94 10.50 28.74 5.47 16.75
W2VCENT 24.61 2.85 13.81 13.93 2.10 10.81 28.73 4.97 17.45
SNCENT 25.05 3.09 14.56 15.90 2.01 11.74 30.45 5.40 17.73
BERTCENT 26.67 3.19 14.67 17.65 2.78 12.78 30.67 5.21 17.76
OPINOSIS 25.15 2.61 13.54 14.98 3.07 12.19 28.42 4.57 15.50
MEANSUM 28.86 3.66 15.91 15.79 1.94 12.26 29.20 4.70 18.15
DENOISESUM 30.14 4.99 17.65 21.26 4.61 16.27 — — —
COPYCAT 29.47 5.26 18.09 — — — 31.97 5.81 20.16
PLANSUM 34.79∗ 7.01∗ 19.74∗ 21.77∗ 6.18 16.98∗ 32.87∗ 6.12∗ 19.05

Table 2: Automatic evaluation on Yelp, RT, and Amazon datasets. Extractive/Abstractive models shown in first/second block.
Best systems shown in bold and 2nd best systems are underlined; asterisk (*) means there is a significant difference between
best and 2nd best systems (based on paired bootstrap resampling; p < 0.05).

search size on the development set. We performed early
stopping based on the token-level accuracy of the model,
again on the development set. Our model was trained on a
single GeForce GTX 1080Ti GPU and is implemented using
PyTorch.4 A more detailed model configuration is described
in the Appendix.

Comparison Systems
We compared PLANSUM to several previously proposed ap-
proaches. Extractive systems include LEXRANK (Erkan and
Radev 2004), a PageRank-like algorithm that selects the
most salient sentences from the input, and several variants
of a centroid-based (Radev et al. 2004) baseline which se-
lects as summary the review closest to the centroid of a
group. Specifically, we present results with different input
representations, such as in-domain word2vec (Mikolov et al.
2013) embeddings (W2VCENT; Rossiello, Basile, and Se-
meraro 2017), encodings from Sentiment Neuron (Radford,
Józefowicz, and Sutskever 2017), an LSTM-based language
model trained on a large review corpus (SNCENT; Amplayo
and Lapata 2020), and encodings from BERT (Devlin et al.
2019), a large transformer-based language model trained us-
ing huge amounts of data (BERTCENT).

Abstractive comparison systems include OPINOSIS
(Ganesan, Zhai, and Han 2010), a graph-based method that
uses token-level redundancy to generate summaries, MEAN-
SUM (Chu and Liu 2019), an autoencoder that generates
summaries by reconstructing the mean of review encod-
ings, DENOISESUM (Amplayo and Lapata 2020), a denois-
ing model that treats non-salient information as noise and re-
moves it to generate a summary, and COPYCAT (Bražinskas,
Lapata, and Titov 2019), a hierarchical variational autoen-
coder which learns a latent code of the summary.

Results
Automatic Evaluation We evaluated the quality of opin-
ion summaries using F1 ROUGE (Lin and Hovy 2003). Un-
igram and bigram overlap (ROUGE-1 and ROUGE-2) are a
proxy for assessing informativeness while the longest com-
mon subsequence (ROUGE-L) measures fluency.

4Our code can be downloaded from https://github.com/
rktamplayo/PlanSum.

Model Yelp RT Amazon
PLANSUM 19.74 16.98 19.05

No disentangling 18.83 16.09 18.52
No regularization 19.00 16.85 18.92
Random sampling 19.22 16.61 18.70
Similarity sampling 19.38 15.06 18.31
No content plan 19.03 16.56 18.28
Mean token fusion 18.72 16.76 18.57
Uniform label prior 18.80 16.77 18.94

Table 3: PLANSUM with less expressive plan induction (sec-
ond block), using alternative review sampling methods (third
block), and without some modules (fourth block). See Ap-
pendix for more detailed comparisons.

Our results are summarized in Table 2. Among extractive
models, BERTCENT performs best, indicating that represen-
tations from large transformer-based language models can
be used as a simple method to produce good extractive sum-
maries. Extractive models, however, are consistently worse
than neural-based abstractive models. Amongst the latter,
PLANSUM performs best across datasets and metrics save
in terms of ROUGE-L on Amazon. The slight better perfor-
mance of COPYCAT suggests that the use of a VAE objective
may also be beneficial for our model, however we leave this
to future work. Especially on Yelp, we observe a large im-
provement, with an increase of 5.32, 1.75, and 1.65 points in
ROUGE-1/2/L over the best comparison systems. Our unsu-
pervised model is comparable to the best supervised model
(Amplayo and Lapata 2019), performing 0.58 points better
on ROUGE-1. We show examples of system output for our
model and comparison systems in the Appendix.

We present in Table 3 various ablation studies on the three
datasets, which assess the contribution of different model
components. Our experiments confirm that aspect and sen-
timent disentanglement and embedding regularization in the
content plan induction module improve performance. More-
over, our dataset creation method is better than random or
similarity sampling. This is especially the case on Rotten
Tomatoes, where there is an 1.92 decrease in ROUGE-L.
Rotten Tomatoes differs from Amazon and Yelp in that the
input reviews are multiple (in the excess of 50) and thus
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PLANSUM
This is a great place to hang out with friends. The staff is very
friendly and helpful. They have a lot of different beers to choose
from and the beer selection is great. I’m not a big fan of beers but
this place has some good selections. If you’re in the mood for a
beer and a fun atmosphere, this will be the place for you.

Random Sampling
This is a great place to hang out with friends and family. The beer
selection is great, and the atmosphere is very nice. I’ve been here
a few times and have never had a bad experience. It’s a fun place
for a group of friends or groups.

Similarity Sampling
This is a great place to go if you’re in the area. It’s a cool place
for a night out, but it is well worth it. The atmosphere is great and
the staff is always friendly. I’m not sure if I will go back.

No Plan
This is a great place to hang out with friends. The staff is very
friendly and the beer selection is great. I’ve had a couple of beers
and they have a good selection of beer and beer. It’s a little pricey
but it is worth the wait.

Figure 4: Yelp summaries generated by PLANSUM and its
variants. Aspects also mentioned in the gold summary (not
shown to save space) are in color, other aspects are italicized.

contains more variety which our content planning approach
manages to capture and reproduce in generating the syn-
thetic data. Finally, we show that the use of the content plan,
injective fusion module, and the LM-based label smoothing
all increase generation performance.

In Figure 4 we show how content planning modulates
summary output. We present a summary produced by PLAN-
SUM and variants without a content plan during synthetic
data creation (see Random and Similarity Sampling) and in
the summarization model (No Plan). Summaries without any
planning whatsoever either miss out on salient aspects, or
focus on aspects that do not reach consensus (i.e., aspect
mentions absent from the summary).

Human Evaluation We also conducted a judgment elic-
itation study using the Amazon Mechanical Turk crowd-
sourcing platform. We assessed the quality of system sum-
maries using Best-Worst Scaling (Louviere, Flynn, and Mar-
ley 2015). Specifically, we asked participants to select the
best and worst among system summaries taking into account
how much they deviated from given input reviews in terms
of four criteria. The first two criteria assess informativeness
and ask crowdworkers to select a summary based on whether
it mentions the majority of aspects discussed in the origi-
nal reviews and agrees with their overall sentiment. We also
evaluate summaries in terms of coherence (i.e., is the sum-
mary easy to read and does it follow a natural ordering of
facts?), and grammaticality (i.e., is the summary fluent?).
We randomly selected 30 instances from the test set. For
Rotten Tomatoes, we filtered out instances where the num-
ber of input reviews exceeded 30 so that participants could
read the reviews in a timely fashion. We collected three judg-
ments for each comparison. The order of summaries was
randomized per participant. A rating per system was com-
puted as the percentage of times it was chosen as best minus
the percentage of times it was selected as worst.

Yelp Asp Sen Coh Gam
BERTCENT −9.0 −1.5 −2.9 −7.4
DENOISESUM −11.3 −11.1 −6.5 −10.6
COPYCAT −5.8 −15.0 −15.8 −10.0
PLANSUM 3.9 6.9 5.7 7.0
GOLD 22.2 20.7 19.4 20.9
Rotten Tomatoes Asp Sen Coh Gam

BERTCENT −8.4 −12.2 −6.9 −4.0�∗

DENOISESUM −31.1 −6.9�∗ −25.1 −17.3
COPYCAT — — — −10.0
PLANSUM 10.7 1.3 2.2 −2.2
GOLD 28.9 20.4 29.8 23.6
Amazon Asp Sen Coh Gam

BERTCENT −10.7 −3.1�∗ −7.1 −9.1�∗

DENOISESUM — — — —
COPYCAT −9.8 −18.9 −10.2 −12.22
PLANSUM 0.0 −6.4 7.1 −1.8
GOLD 20.4 28.4 10.2 23.1

Table 4: Best-worst scaling: aspect/sentiment-based in-
formativeness (Asp/Sen), coherence (Coh), grammaticality
(Gram). All differences between PLANSUM and other sys-
tems are significant, except those with asterisk (�*), using a
one-way ANOVA with posthoc Tukey HSD tests (p < 0.05).

We compared summaries produced by the BERTCENT ex-
tractive baseline, our model PLANSUM, and two competi-
tive unsupervised abstractive systems, DENOISESUM (Am-
playo and Lapata 2020) and COPYCAT (Bražinskas, Lapata,
and Titov 2019). We also included human-authored sum-
maries as an upper bound. The ratings are reported in Table
4. Overall, the gold summaries were consistently rated the
highest on all criteria. Among the system summaries, PLAN-
SUM was rated the best in terms of all criteria, except on
sentiment-based informativeness for Amazon, where BERT-
CENT was given the highest rating. BERTCENT surprisingly
was rated higher than the other abstractive systems. We in-
spected the summaries produced by these systems and found
that COPYCAT summaries are more positive-oriented and
DENOISESUM summaries contain more grammatical errors,
as also reflected in the ratings. We posit that these errors
are possibly due to the use of random sampling and noising
functions, respectively, when creating the synthetic dataset.
We show examples of generated summaries in the Appendix.

Conclusions
In this work we considered the use of aspect and senti-
ment distributions as a content plan for unsupervised opin-
ion summarization which we argued leads to higher quality
summaries and allows for the creation of naturalistic syn-
thetic datasets. Extensive automatic and human-based eval-
uation showed that our model outperforms competitive sys-
tems on three benchmarks with varying characteristics. In
the future, we plan to explore personalization in opinion
summarization, where the content plan can be used to con-
trol generation towards more aspect- or sentiment-specific
information. We also plan to apply the techniques in this pa-
per to domains where documents are longer.
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Task 5: Aspect Based Sentiment Analysis. In (SemEval),
19–30. San Diego, California: Association for Computa-
tional Linguistics. doi:10.18653/v1/S16-1002.

Puduppully, R.; Dong, L.; and Lapata, M. 2019. Data-to-
Text Generation with Content Selection and Planning. In
AAAI, 6908–6915. doi:10.1609/aaai.v33i01.33016908.

Radev, D. R.; Jing, H.; Styś, M.; and Tam, D. 2004.
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