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Abstract

Recent progress in cross-lingual relation and event extraction
use graph convolutional networks (GCNs) with universal de-
pendency parses to learn language-agnostic sentence repre-
sentations such that models trained on one language can be
applied to other languages. However, GCNs struggle to model
words with long-range dependencies or are not directly con-
nected in the dependency tree. To address these challenges,
we propose to utilize the self-attention mechanism where we
explicitly fuse structural information to learn the dependen-
cies between words with different syntactic distances. We in-
troduce GATE, a Graph Attention Transformer Encoder, and
test its cross-lingual transferability on relation and event ex-
traction tasks. We perform experiments on the ACE05 dataset
that includes three typologically different languages: English,
Chinese, and Arabic. The evaluation results show that GATE
outperforms three recently proposed methods by a large mar-
gin. Our detailed analysis reveals that due to the reliance on
syntactic dependencies, GATE produces robust representa-
tions that facilitate transfer across languages.

1 Introduction
Relation and event extraction are two challenging informa-
tion extraction (IE) tasks; wherein a model learns to identify
semantic relationships between entities and events in nar-
ratives. They provide useful information for many natural
language processing (NLP) applications such as knowledge
graph completion (Lin et al. 2015) and question answering
(Chen et al. 2019). Figure 1 gives an example of relation
and event extraction tasks. Recent advances in cross-lingual
transfer learning approaches for relation and event extraction
learns a universal encoder that produces language-agnostic
contextualized representations so the model learned on one
language can easily transfer to others. Recent works (Huang
et al. 2018; Subburathinam et al. 2019) suggested embed-
ding universal dependency structure into contextual repre-
sentations improves cross-lingual transfer for IE.

There are a couple of advantages of leveraging depen-
dency structures. First, the syntactic distance between two
words1 in a sentence is typically smaller than the sequen-
tial distance. For example, in the sentence A fire in a

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The shortest path in the dependency graph structure.

Figure 1: A relation (red dashed) between two entities and
an event of type Attack (triggered by “firing”) including two
arguments and their role labels (blue) are highlighted.

Bangladeshi garment factory has left at least 37 people dead
and 100 hospitalized, the sequential and syntactic distance
between “fire” and “hospitalized” is 15 and 4, respectively.
Therefore, encoding syntax structure helps capture long-
range dependencies (Liu, Luo, and Huang 2018). Second,
languages have different word order, e.g., adjectives precede
or follow nouns as (“red apple”) in English or (“pomme
rouge”) in French. Thus, processing sentences sequentially
suffers from the word order difference issue (Ahmad et al.
2019a), while modeling dependency structures can mitigate
the problem in cross-lingual transfer (Liu et al. 2019).

A common way to leverage dependency structures for
cross-lingual NLP tasks is using universal dependency
parses.2 A large pool of recent works in IE (Liu, Luo, and
Huang 2018; Zhang, Qi, and Manning 2018; Subburathi-
nam et al. 2019; Fu, Li, and Ma 2019; Sun et al. 2019;
Liu et al. 2019) employed Graph Convolutional Networks
(GCNs) (Kipf and Welling 2017) to learn sentence represen-
tations based on their universal dependency parses, where a
k-layers GCN aggregates information of words that are k
hop away. Such a way of embedding structure may hinder
cross-lingual transfer when the source and target languages
have different path length distributions among words (see
Table 1). Presumably, a two-layer GCN would work well on
English but may not transfer well to Arabic.

Moreover, GCNs have shown to perform poorly in mod-
eling long-distance dependencies or disconnected words in
the dependency tree (Zhang, Li, and Song 2019; Tang et al.
2020). In contrast, the self-attention mechanism (Vaswani
et al. 2017) is capable of capturing long-range dependencies.
Consequently, a few recent studies proposed dependency-

2https://universaldependencies.org/
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aware self-attention and found effective for machine trans-
lation (Deguchi, Tamura, and Ninomiya 2019; Bugliarello
and Okazaki 2020). The key idea is to allow attention be-
tween connected words in the dependency tree and gradu-
ally aggregate information across layers. However, IE tasks
are relatively low-resource (the number of annotated docu-
ments available for training is small), and thus stacking more
layers is not feasible. Besides, our preliminary analysis indi-
cates that syntactic distance between entities could charac-
terize certain relation and event types.3 Hence, we propose
to allow attention between all words but use the pairwise
syntactic distances to weigh the attention.

We introduce a Graph Attention Transformer Encoder
(GATE) that utilizes self-attention (Vaswani et al. 2017) to
learn structured contextual representations. On one hand,
GATE enjoys the capability of capturing long-range depen-
dencies, which is crucial for languages with longer sen-
tences, e.g., Arabic.4 On the other hand, GATE is agnos-
tic to language word order as it uses syntactic distance to
model pairwise relationship between words. This charac-
teristic makes GATE suitable to transfer across typologi-
cally diverse languages, e.g., English to Arabic. One crucial
property of GATE is that it allows information propagation
among different heads in the multi-head attention structure
based on syntactic distances, which allows to learn the cor-
relation between different mention types and target labels.

We conduct experiments on cross-lingual transfer among
English, Chinese, and Arabic languages using the ACE 2005
benchmark (Walker et al. 2006). The experimental results
demonstrate that GATE outperforms three recently proposed
relation and event extraction methods by a significant mar-
gin.5 We perform a thorough ablation study and analysis,
which shows that GATE is less sensitive to source lan-
guage’s characteristics (e.g., word order, sentence structure)
and thus excels in the cross-lingual transfer.

2 Task Description
In this paper, we focus on sentence-level relation extraction
(Subburathinam et al. 2019; Ni and Florian 2019) and event
extraction (Subburathinam et al. 2019; Liu et al. 2019) tasks.
Below, we first introduce the basic concepts, the notations,
as well as define the problem and the scope of the work.

Relation Extraction is the task of identifying the relation
type of an ordered pair of entity mentions. Formally, given a
pair of entity mentions from a sentence s - (es, eo; s) where
es and eo denoted as the subject and object entities respec-
tively, the relation extraction (RE) task is defined as predict-
ing the relation r ∈ R∪{None} between the entity mentions,
whereR is a pre-defined set of relation types. In the example

3In ACE 2005 dataset, the relation type PHYS:Located ex-
ists among {PER, ORG, LOC, FAC, GPE} entities. The aver-
age syntactic distance in English and Arabic sentences among PER
and any of the {LOC, FAC, GPE} entities are approx. 2.8 and
4.2, while the distance between PER and ORG is 3.3 and 1.5.

4After tokenization, on average, ACE 2005 English and Arabic
sentences have approximately 30 and 210 words, respectively.

5Code available at https://github.com/wasiahmad/GATE

provided in Figure 1, there is a PHYS:Located relation
between the entity mentions “Terrorists” and “hotel”.
Event Extraction can be decomposed into two sub-tasks,
Event Detection and Event Argument Role Labeling. Event
detection refers to the task of identifying event triggers (the
words or phrases that express event occurrences) and their
types. In the example shown in Figure 1, the word “firing”
triggers the Attack event.

Event argument role labeling (EARL) is defined as pre-
dicting whether words or phrases (arguments) participate in
events and their roles. Formally, given an event trigger et
and a mention ea (an entity, time expression, or value) from
a sentence s, the argument role labeling refers to predicting
the mention’s role r ∈ R∪{None}, whereR is a pre-defined
set of role labels. In Figure 1, the “Terrorists” and “hotel” en-
tities are the arguments of the Attack event and they have
the Attacker and Place role labels, respectively.

In this work, we focus on the EARL task; we assume
event mentions (triggers) of the input sentence are provided.
Zero-Short Cross-Lingual Transfer refers to the setting,
where there is no labeled examples available for the target
language. We train neural relation extraction and event ar-
gument role labeling models on one (single-source) or mul-
tiple (multi-source) source languages and then deploy the
models in target languages. The overall cross-lingual trans-
fer approach consists of four steps:

1. Convert the input sentence into a language-universal
tree structure using an off-the-shelf universal dependency
parser, e.g., UDPipe6 (Straka and Straková 2017).

2. Embed the words in the sentence into a shared seman-
tic space across languages. We use off-the-shelf multi-
lingual contextual encoders (Devlin et al. 2019; Conneau
et al. 2020) to form the word representations. To enrich
the word representations, we concatenate them with uni-
versal part-of-speech (POS) tag, dependency relation, and
entity type embeddings (Subburathinam et al. 2019). We
collectively refer them as language-universal features.

3. Based on the word representations, we encode the input
sentence using the proposed GATE architecture that lever-
ages the syntactic depth and distance information. Note
that this step is the main focus of this work.

4. A pair of classifier predicts the target relation and argu-
ment role labels based on the encoded representations.

3 Approach
Our proposed approach GATE revises the multi-head at-
tention architecture in Transformer Encoder (Vaswani et al.
2017) to model syntactic information while encoding a se-
quence of input vectors (represent the words in a sentence)
into contextualized representations. We first review the stan-
dard multi-head attention mechanism (§3.1). Then, we in-
troduce our proposed method GATE (§3.2). Finally, we de-
scribe how we perform relation extraction (§3.3) and event
argument role labeling (§3.4) tasks.

6http://ufal.mff.cuni.cz/udpipe
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3.1 Transformer Encoder
Unlike recent works (Zhang, Qi, and Manning 2018; Sub-
burathinam et al. 2019) that use GCNs (Kipf and Welling
2017) to encode the input sequences into contextualized rep-
resentations, we propose to employ Transformer encoder as
it excels in capturing long-range dependencies. First, the se-
quence of input word vectors, x = [x1, . . . , x|x|] where xi ∈
Rd are packed into a matrixH0 = [x1, . . . , x|x|]. Then anL-
layer Transformer Encoder H l = Transformerl(H

l−1),
l ∈ [1, L] takes H0 as input and generates different levels of
latent representations H l = [hl1, . . . , h

l
|x|], recursively. Typ-

ically the latent representations generated by the last layer
(L-th layer) are used as the contextual representations of the
input words. To aggregate the output vectors of the previ-
ous layer, multiple (nh) self-attention heads are employed
in each Transformer layer. For the l-th Transformer layer,
the output of the previous layer H l−1 ∈ R|x|×dmodel is
first linearly projected to queries Q, keys K, and values
V using parameter matrices WQ

l ,W
K
l ∈ Rdmodel×dk and

WV
l ∈ Rdmodel×dv , respectively.

Ql = H l−1WQ
l ,Kl = H l−1WK

l , Vl = H l−1WV
l .

The output of a self-attention head Al is computed as:

Al = softmax

(
QKT

√
dk

+M

)
Vl, (1)

where the matrix M ∈ R|x|×|x| determines whether a pair
of tokens can attend each other.

Mij =

{
0, allow to attend
−∞, prevent from attending

(2)

The matrix M is deduced as a mask. By default, the ma-
trix M is a zero-matrix. In the next section, we discuss how
we manipulate the mask matrix M to incorporate syntactic
depth and distance information in sentence representations.

3.2 Graph Attention Transformer Encoder
The self-attention as described in §3.1 learns how much at-
tention to put on words in a text sequence when encoding
a word at a given position. In this work, we revise the self-
attention mechanism such that it takes into account the syn-
tactic structure and distances when a token attends to all
the other tokens. The key idea is to manipulate the mask
matrix to impose the graph structure and retrofit the atten-
tion weights based on pairwise syntactic distances. We use
the universal dependency parse of a sentence and compute
the syntactic (shortest path) distances between every pair of
words. We illustrate an example in Figure 2.

We denote distance matrixD ∈ R|x|×|x| whereDij repre-
sents the syntactic distance between words at position i and
j in the input sequence. If we want to allow tokens to attend
their adjacent tokens (that are 1 hop away) at each layer, then
we can set the mask matrix as follows.

Mij =

{
0, Dij = 1

−∞, otherwise

We generalize this notion to model a distance based atten-
tion; allowing tokens to attend tokens that are within dis-

Figure 2: Distance matrix showing the shortest path dis-
tances between all pairs of words. The dependency arc di-
rection is ignored while computing pairwise distances. The
diagonal value is set to 1, indicating a self-loop. If we set
the values in white cells (with value > 1) to 0, the distance
matrix becomes an adjacency matrix.

tance δ (hyper-parameter).

Mij =

{
0, Dij ≤ δ
−∞, otherwise

(3)

During our preliminary analysis, we observed that syn-
tactic distances between entity mentions or event mentions
often correlate with the target label. For example, if an ORG
entity mention appears closer to a PER entity than a LOC en-
tity, then the {PER, ORG} entity pair is more likely to have
the PHYS:Located relation. We hypothesize that model-
ing syntactic distance between words can help to identify
complex semantic structure such as events and entity rela-
tions. Hence we revise the attention head Al (defined in Eq.
(1)) computation as follows.

Al = F

(
softmax

(
QKT

√
dk

+M

))
Vl. (4)

Here, softmax produces an attention matrix P ∈ R|x|×|x|

where Pi denotes the attentions that i-th token pays to the all
the tokens in the sentence, and F is a function that modifies
those attention weights. We can treat F as a parameterized
function that can be learned based on distances. However,
we adopt a simple formulation of F such that GATE pays
more attention to tokens that are closer and less attention
to tokens that are faraway in the parse tree. We define the
(i, j)-th element of the attention matrix produced by F as:

F (P )ij =
Pij

ZiDij
, (5)

where Zi =
∑

j
Pij

Dij
is the normalization factor and Dij

is the distance between i-th and j-th token. We found this
formulation of F effective for the IE tasks.
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3.3 Relation Extractor
Relation Extractor predicts the relationship label (or None)
for each mention pair in a sentence. For an input sen-
tence s, GATE produces contextualized word representa-
tions hl1, . . . , h

l
|x| where hli ∈ Rdmodel . As different sen-

tences and entity mentions may have different lengths, we
perform max-pooling over their contextual representations
to obtain fixed-length vectors. Suppose for a pair of entity
mentions es = [hlbs, . . . , h

l
es] and eo = [hlbo, . . . , h

l
eo], we

obtain single vector representations ês and êo by performing
max-pooling. Following Zhang, Qi, and Manning (2018);
Subburathinam et al. (2019), we also obtain a vector repre-
sentation for the sentence, ŝ by applying max-pooling over
[hl1, . . . , h

l
|x|] and concatenate the three vectors. Then the

concatenation of the three vectors [ês; êo; ŝ] are fed to a lin-
ear classifier followed by a Softmax layer to predict the re-
lation type between entity mentions es and eo as follows.

Or = softmax(W T
r [ês; êo; ŝ] + br),

where Wr ∈ R3dmodel×r and br ∈ Rr are parameters, and
r is the total number of relation types. The probability of
t-th relation type is denoted as P (rt|s, es, eo), which corre-
sponds to the t-th element of Or. To train the relation ex-
tractor, we adopt the cross-entropy loss.

Lr = −
N∑
s=1

N∑
o=1

log(P (yrso|s, es, eo)),

where N is the number of entity mentions in the input sen-
tence s and yrso denotes the ground truth relation type be-
tween entity mentions es and eo.

3.4 Event Argument Role Labeler
Event argument role labeler predicts the argument men-
tions (or None for non-argument mentions) of an event
mention and assigns a role label to each argument from a
pre-defined set of labels. To label an argument candidate
ea = [hlba, . . . , h

l
ea] for an event trigger et = [hlbt, . . . , h

l
et]

in sentence s = [hl1, . . . , h
l
|x|], we apply max-pooling to

form vectors êa, êt, and ŝ respectively, which is same as
that for relation extraction. Then we concatenate the vectors
([êt; êa; ŝ]) and pass it through a linear classifier and Soft-
max layer to predict the role label as follows.

Oa = softmax(W T
a [êt; êa; ŝ] + ba),

where Wa ∈ R3dmodel×r and ba ∈ Rr are parameters, and r
is the total number of argument role label types. We optimize
the role labeler by minimizing the cross-entropy loss.

4 Experiment Setup
Dataset We conduct experiments based on the Automatic
Content Extraction (ACE) 2005 corpus (Walker et al. 2006)
that includes manual annotation of relation and event men-
tions (with their arguments) in three languages: English
(En), Chinese (Zh), and Arabic (Ar). We present the data
statistics in Appendix. ACE defines an ontology that in-
cludes 7 entity types, 18 relation subtypes, and 33 event
subtypes. We add a class label None to denote that two en-

Sequential Syntactic
En Zh Ar En Zh Ar

Relation Mention 4.8 3.9 25.8 2.2 2.6 5.1
Event Mention & Arg. 9.8 21.7 58.1 3.1 4.6 12.3

Table 1: Average sequential and syntactic (shortest path)
distance between relation mentions and event mentions and
their candidate arguments in ACE05 dataset. Distances are
computed by ignoring the order of mentions.

tity mentions or a pair of an event mention and an argument
candidate under consideration do not have a relationship be-
long to the target ontology. We use the same dataset split as
Subburathinam et al. (2019) and follow their preprocessing
steps. We refer the readers to Subburathinam et al. (2019)
for the dataset preprocessing details.

Evaluation Criteria Following the previous works (Ji and
Grishman 2008; Li, Ji, and Huang 2013; Li and Ji 2014;
Subburathinam et al. 2019), we set the evaluation criteria
as, (1) a relation mention is correct if its predicted type and
the head offsets of the two associated entity mentions are
correct, and (2) an event argument role label is correct if the
event type, offsets, and argument role label match any of the
reference argument mentions.

Baseline Models To compare GATE on relation and event
argument role labeling tasks, we chose three recently pro-
posed approaches as baselines. The source code of the base-
lines are not publicly available at the time this research is
conducted. Therefore, we reimplemented them.
• CL Trans GCN (Liu et al. 2019) is a context-dependent
lexical mapping approach where each word in a source lan-
guage sentence is mapped to its best-suited translation in
the target language. We use multilingual word embeddings
(Joulin et al. 2018) as the continuous representations of to-
kens along with the language-universal features embeddings
including part-of-speech (POS) tag embedding, dependency
relation label embedding, and entity type embedding.7 Since
this model focuses on the target language, we train this base-
line for each combination of source and target languages.
• CL GCN (Subburathinam et al. 2019) uses GCN (Kipf
and Welling 2017) to learn structured common space repre-
sentation. To embed the tokens in an input sentence, we use
multilingual contextual representations (Devlin et al. 2019;
Conneau et al. 2020) and the language-universal feature em-
beddings. We train this baseline on the source languages and
directly evaluate on the target languages.
• CL RNN (Ni and Florian 2019) uses a bidirectional Long
Short-Term Memory (LSTM) type recurrnet neural net-
works (Hochreiter and Schmidhuber 1997) to learn contex-
tual representation. We feed language-universal features for
words in a sentence, constructed in the same way as Subbu-
rathinam et al. (2019). We train and evaluate this baseline in
the same way as CL GCN.

In addition to the above three baseline methods, we com-
pare GATE with the following two encoding methods.

7Due to the design principle of Liu et al. (2019), we cannot use
multilingual contextual encoders in CL Trans GCN.
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Model

Event Argument Role Labeling Relation Extraction
En En Zh Zh Ar Ar En En Zh Zh Ar Ar
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Zh Ar En Ar En Zh Zh Ar En Ar En Zh
CL Trans GCN 41.8 55.6 41.2 52.9 39.6 40.8 56.7 65.3 65.9 59.7 59.6 46.3
CL GCN 51.9 50.4 53.7 51.5 50.3 51.9 49.4 58.3 65.0 55.0 56.7 42.4
CL RNN 60.4 53.9 55.7 52.5 50.7 50.9 53.7 63.9 70.9 57.6 67.1 55.7
Transformer 61.5 55.0 58.0 57.7 54.3 57.0 57.1 63.4 69.6 60.6 67.0 52.6
Transformer RPR 62.3 60.8 57.3 66.3 57.5 59.8 58.0 59.9 70.0 55.6 66.5 56.5
GATE (this work) 63.2 68.5 59.3 69.2 53.9 57.8 55.1 66.8 71.5 61.2 69.0 54.3

Table 2: Single-source transfer results (F-score % on the test set) using perfect event triggers and entity mentions. The language
on top and bottom of ⇓ denotes the source and target languages, respectively.

Model
{En, Zh} {En, Ar} {Zh, Ar}
⇓ ⇓ ⇓
Ar Zh En

Event Argument Role Labeling
CL Trans GCN 57.0 44.5 44.8
CL GCN 58.9 56.2 57.9
CL RNN 53.5 62.5 60.8
Transformer 59.5 62.0 60.7
Transformer RPR 71.1 68.4 62.2
GATE (this work) 73.9 65.3 61.3
Relation Extraction
CL Trans GCN 66.8 54.4 69.5
CL GCN 64.0 46.6 65.8
CL RNN 66.5 60.5 73.0
Transformer 68.3 59.3 73.7
Transformer RPR 65.0 62.3 73.8
GATE (this work) 67.0 57.9 74.1

Table 3: Multi-source transfer results (F-score % on the test
set) using perfect event triggers and entity mentions. The
language on top and bottom of ⇓ denotes the source and
target languages, respectively.

• Transformer (Vaswani et al. 2017) uses multi-head self-
attention mechanism and is the base structure of our pro-
posed model, GATE. Note that GATE has the same number
of parameters as Transformer since GATE does not intro-
duce any new parameter while modeling the pairwise syn-
tactic distance into the self-attention mechanism. Therefore,
we credit the GATE’s improvements over the Transformer
to its distance-based attention modeling strategy.

• Transformer RPR (Shaw, Uszkoreit, and Vaswani 2018)
uses relative position representations to encode the structure
of the input sequences. This method uses the pairwise se-
quential distances while GATE uses pairwise syntactic dis-
tances to model attentions between tokens.

Implementation Details To embed words into vector rep-
resentations, we use multilingual BERT (M-BERT) (De-
vlin et al. 2019). Note that we do not fine-tune M-BERT,
but only use it as a feature extractor. We use the univer-
sal part-of-speech (POS) tags, dependency relation labels,
and seven entity types defined by ACE: person, organi-
zation, geo-political entity, location, facility, weapon, and
vehicle. We embed these language-universal features into

fixed-length vectors and concatenate them with M-BERT
vectors to form the input word representations. We set the
model size (dmodel), number of encoder layers (L), and at-
tention heads (nh) in multi-head to 512, 1, and 8 respec-
tively. We tune the distance threshold δ (as shown in Eq.
(3)) in [1, 2, 4, 8,∞] for each attention head on each source
language (more details are provided in the supplementary).

We implement all the baselines and our approach based on
the implementation of Zhang, Qi, and Manning (2018) and
OpenNMT (Klein et al. 2017). We used transformers8

to extract M-BERT and XLM-R features. We provide a de-
tailed description of the dataset, hyper-parameters, and train-
ing of the baselines and our approach in the supplementary.

5 Results and Analysis
We compare GATE with five baseline approaches on event
argument role labeling (EARL) and relation extraction (RE)
tasks, and the results are presented in Table 2 and 3.

Single-source transfer In the single-source transfer set-
ting, all the models are individually trained on one source
language, e.g., English and directly evaluated on the other
two languages (target), e.g., Chinese and Arabic. Table 2
shows that GATE outperforms all the baselines in four out of
six transfer directions on both tasks. CL RNN surprisingly
outperforms CL GCN in most settings, although CL RNN
uses a BiLSTM that is not suitable to transfer across syn-
tactically different languages (Ahmad et al. 2019a). We hy-
pothesize the reason being GCNs cannot capture long-range
dependencies, which is crucial for the two tasks. In com-
parison, by modeling distance-based pairwise relationships
among words, GATE excels in cross-lingual transfer.

A comparison between Transformer and GATE demon-
strates the effectiveness of syntactic distance-based self-
attention over the standard mechanism. From Table 2, we
see GATE outperforms Transformer with an average im-
provement of 4.7% and 1.3% in EARL and RE tasks,
respectively. Due to implicitly modeling graph structure,
Transformer RPR performs effectively. However, GATE
achieves an average improvement of 1.3% and 1.9% in
EARL and RE tasks over Transformer RPR. Overall, the
significant performance improvements achieved by GATE
corroborate our hypothesis that syntactic distance-based at-
tention helps in the cross-lingual transfer.

8https://github.com/huggingface/transformers
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Model EARL RE
Chinese Arabic Chinese Arabic

Wang et al. (2019)
Absolute 61.2 53.5 57.8 65.2
Relative 55.3 47.1 58.1 66.4
GATE 63.2 68.5 55.1 66.8

Table 4: GATE vs. Wang et al. (2019) results (F-score %) on
event argument role labeling (EARL) and relation extraction
(RE); using English as source and Chinese, Arabic as the tar-
get languages, respectively. To limit the maximum relative
position, the clipping distance is set to 10 and 5 for EARL
and RE tasks, respectively.

Multi-source transfer In the multi-source cross-lingual
transfer, the models are trained on a pair of languages:
{English, Chinese}, {English, Arabic}, and {Chinese, Ara-
bic}. Hence, the models observe more examples during
training, and as a result, the cross-lingual transfer perfor-
mance improves compared to the single-source transfer set-
ting. In Table 3, we see GATE outperforms the previous
three IE approaches in multi-source transfer settings, except
on RE for the source:{English, Arabic} and target: Chinese
language setting. On the other hand, GATE performs com-
petitively to Transformer and Transformer RPR baselines.
Due to observing more training examples, Transformer and
Transformer RPR perform more effectively in this set-
ting. The overall result indicates that GATE more efficiently
learns transferable representations for the IE tasks.

Encoding dependency structure GATE encodes the de-
pendency structure of sentences by guiding the attention
mechanism in self-attention networks (SANs). However, an
alternative way to encode the sentence structure is through
positional encoding for SANs. Conceptually, the key differ-
ence is the modeling of syntactic distances to capture fine-
grained relations among tokens. Hence, we compare these
two notions of encoding the dependency structure to empha-
size the promise of modeling syntactic distances.

To this end, we compare the GATE with Wang et al.
(2019) that proposed structural position encoding using the
dependency structure of sentences. Results are presented in
Table 4. We see that Wang et al. (2019) performs well on
RE but poorly on EARL, especially on the Arabic language.
While GATE directly uses syntactic distances between to-
kens to guide the self-attention mechanism, Wang et al.
(2019) learns parameters to encode structural positions that
can become sensitive to the source language. For example,
the average shortest path distance between event mentions
and their candidate arguments in English and Arabic is 3.1
and 12.3, respectively (see Table 1). As a result, a model
trained in English may learn only to attend closer tokens,
thus fails to generalize on Arabic.

Moreover, we anticipate that different order of subject
and verb in English and Arabic9 causes Wang et al. (2019)
to transfer poorly on the EARL task (as event triggers are

9According to WALS (Dryer and Haspelmath 2013), the order
of subject (S), object (O), and verb (V) for English, Chinese and
Arabic is SVO, SVO, and VSO.

Model EARL RE
English Chinese∗ English Chinese∗

CL GCN 51.5 56.3 46.9 50.7
CL RNN 55.6 59.3 56.8 62.0
GATE 63.8 64.2 58.8 57.0

Table 5: Event argument role labeling (EARL) and relation
extraction (RE) results (F-score %); using Chinese as the
source and English as the target language. ∗ indicates the
English examples are translated into Chinese using Google
Cloud Translate.

Figure 3: Models trained on the Chinese language perform
on event argument role labeling in English and their paral-
lel Chinese sentences. The parallel sentences have the same
meaning but a different structure. To quantify the structural
difference between two parallel sentences, we compute the
tree edit distances.

mostly verbs). To verify our anticipation, we modify the
relative structural position encoding (Wang et al. 2019) by
dropping the directional information (Ahmad et al. 2019a),
and observed a performance increase from 47.1 to 52.2 for
English to Arabic language transfer. In comparison, GATE is
order-agnostic as it models syntactic distance; hence, it has a
better transferability across typologically diverse languages.

Sensitivity towards source language Intuitively, an RE
or EARL model would transfer well on target languages if
the model is less sensitive towards the source language char-
acteristics (e.g., word order, grammar structure). To mea-
sure sensitivity towards the source language, we evaluate the
model performance on the target language and their paral-
lel (translated) source language sentences. We hypothesize
that if a model performs significantly well on the translated
source language sentences, then the model is more sensi-
tive towards the source language and may not be ideal for
cross-lingual transfer. To test the models on this hypothesis,
we translate all the ACE05 English test set examples into
Chinese using Google Cloud Translate.10 We train
GATE and two baselines on the Chinese and evaluate them
on both English (test set) examples and their Chinese trans-
lations. To quantify the difference between the dependency

10Details are provided in the supplementary.
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Word features EARL RE
Chinese Arabic Chinese Arabic

Multi-WE 35.9 43.7 41.0 54.9
M-BERT 57.1 54.8 55.1 66.8
XLM-R 51.8 61.7 51.4 68.1

Table 6: Contribution of multilingual word embeddings
(Multi-WE) (Joulin et al. 2018), M-BERT (Devlin et al.
2019), and XLM-R (Conneau et al. 2020) as a source of
word features; using English as source and Chinese, Arabic
as the target languages, respectively.

Input features EARL RE
Chinese Arabic Chinese Arabic

M-BERT 52.5 47.4 44.0 49.7
+ POS tag 49.3 47.5 44.1 47.0
+ Dep. label 49.7 51.0 48.6 47.0
+ Entity type 57.8 60.2 56.3 63.0

Table 7: Ablation on the use of language-universal features
(part-of-speech (POS) tag, dependency relation label, and
entity type) in GATE (F-score (%); using English as source
and Chinese, Arabic as the target languages, respectively.

structure of an English and its Chinese translation sentences,
we compute edit distance between two tree structures using
the APTED11 algorithm (Pawlik and Augsten 2015, 2016).

The results are presented in Table 5. We see that CL GCN
and CL RNN have much higher accuracy on the translated
(Chinese) sentences than the target language (English) sen-
tences. On the other hand, GATE makes a roughly similar
number of correct predictions when the target and translated
sentences are given as input. Figure 3 illustrates how the
models perform when the structural distance between target
sentences and their translation increases. The results suggest
that GATE performs substantially better than the baselines
when the target language sentences are structurally different
from the source language. The overall findings signal that
GATE is less sensitive to source language features, and we
credit this to the modeling of distance-based syntactic rela-
tionships between words. We acknowledge that there might
be other factors associated with a model’s language sensitiv-
ity. However, we leave the detailed analysis for measuring a
model’s sensitivity towards languages as future work.

Ablation study We perform a detailed ablation study on
language-universal features and sources of word features to
examine their individual impact on cross-lingual transfer.
The results are presented in Table 6 and 7. We observed that
M-BERT and XLM-R produced word features performed
better in Chinese and Arabic, respectively, while they are
comparable in English. On average M-BERT performs bet-
ter, and thus we chose it as the word feature extractor in
all our experiments. Table 7 shows that part-of-speech and
dependency relation embedding has a limited contribution.
This is perhaps due to the tokenization errors, as pointed
out by Subburathinam et al. (2019). However, the use of
language-universal features is useful, particularly when we

11https://pypi.org/project/apted/

have minimal training data. We provide more analysis and
results in the supplementary.

6 Related Work
Relation and event extraction has drawn significant atten-
tion from the natural language processing (NLP) commu-
nity. Most of the approaches developed in past several years
are based on supervised machine learning, using either sym-
bolic features (Ahn 2006; Ji and Grishman 2008; Liao and
Grishman 2010; Hong et al. 2011; Li, Ji, and Huang 2013;
Li and Ji 2014) or distributional features (Liao and Grishman
2011; Nguyen, Cho, and Grishman 2016; Miwa and Bansal
2016; Liu et al. 2018; Zhang et al. 2018; Lu and Nguyen
2018; Chen et al. 2015; Nguyen and Grishman 2015; Zeng
et al. 2014; Peng et al. 2017; Nguyen and Grishman 2018;
Zhang, Qi, and Manning 2018; Subburathinam et al. 2019;
Liu et al. 2019; Huang, Yang, and Peng 2020) from a large
number of annotations. Joint learning or inference (Bekoulis
et al. 2018; Li et al. 2014; Zhang, Ji, and Sil 2019; Liu, Luo,
and Huang 2018; Nguyen, Cho, and Grishman 2016; Yang
and Mitchell 2016; Han, Ning, and Peng 2019; Han, Zhou,
and Peng 2020) are also among the noteworthy techniques.

Most previous works on cross-lingual transfer for rela-
tion and event extraction are based on annotation projection
(Kim et al. 2010a; Kim and Lee 2012), bilingual dictionaries
(Hsi et al. 2016; Ni and Florian 2019), parallel data (Chen
and Ji 2009; Kim et al. 2010b; Qian et al. 2014) or machine
translation (Zhu et al. 2014; Faruqui and Kumar 2015; Zou
et al. 2018). Learning common patterns across languages is
also explored (Lin, Liu, and Sun 2017; Wang et al. 2018;
Liu et al. 2018). In contrast to these approaches, Subburathi-
nam et al. (2019); Liu et al. (2019) proposed to use graph
convolutional networks (GCNs) (Kipf and Welling 2017)
to learn multi-lingual structured representations. However,
GCNs struggle to model long-range dependencies or dis-
connected words in the dependency tree. To overcome the
limitation, we use the syntactic distances to weigh the atten-
tions while learning contextualized representations via the
multi-head attention mechanism (Vaswani et al. 2017).

Moreover, our proposed syntax driven distance-based at-
tention modeling helps to mitigate the word order difference
issue (Ahmad et al. 2019a) that hinders cross-lingual trans-
fer. Prior works studied dependency structure modeling (Liu
et al. 2019), source reordering (Rasooli and Collins 2019),
adversarial training (Ahmad et al. 2019b), constrained infer-
ence (Meng, Peng, and Chang 2019) to tackle word order
differences across typologically different languages.

7 Conclusion
In this paper, we proposed to model fine-grained syntac-
tic structural information based on the dependency parse of
a sentence. We developed a Graph Attention Transformer
Encoder (GATE) to generate structured contextual represen-
tations. Extensive experiments on three languages demon-
strates the effectiveness of GATE in cross-lingual relation
and event extraction. In the future, we want to explore other
sources of language-universal information to improve struc-
tured representation learning.
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