
Improving Maximum k-Plex Solver via Second-Order Reduction and Graph
Color Bounding

Yi Zhou1, Shan Hu 1, Mingyu Xiao 1, Zhang-Hua Fu 2,3∗

1University of Electronic Science and Technology of China,
2Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China,

3Institute of Robotics and Intelligent Manufacturing, The Chinese University of Hong Kong, Shenzhen, China
zhou.yi@uestc.edu.cn, hu.shan@std.uestc.edu.cn, myxiao@gmail.com, fuzhanghua@cuhk.edu.cn

Abstract

In a graph, a k-plex is a vertex set in which every vertex
is not adjacent to at most k vertices of this set. The maxi-
mum k-plex problem, which asks for the largest k-plex from
the given graph, is a key primitive in a variety of real-world
applications like community detection and so on. In the pa-
per, we develop an exact algorithm, Maplex, for solving this
problem in real world graphs practically. Based on the ex-
isting first-order and the novel second-order reduction rules,
we design a powerful preprocessing method which efficiently
removes redundant vertices and edges for Maplex. Also, the
graph color heuristic is widely used for overestimating the
maximum clique of a graph. For the first time, we general-
ize this technique for bounding the size of maximum k-plex
in Maplex. Experiments are carried out to compare our algo-
rithm with other state-of-the-art solvers on a wide range of
publicly available graphs. Maplex outperforms all other al-
gorithms on large real world graphs and is competitive with
existing solvers on artificial dense graphs. Finally, we shed
light on the effectiveness of each key component of Maplex.

Introduction
A clique of a graph is a set of vertices that are pairwise con-
nected. The maximum clique problem (MCP), which is to
obtain the largest clique from the given graph, is a funda-
mental NP-hard problem. Applications of MCP algorithm
include coding theory, computer vision and multi-agent sys-
tems (Wu and Hao 2015; Tošić and Agha 2004). However,
for many other applications such as complex network anal-
ysis, where dense, not necessarily fully connected structures
are of particular interest, the clique model is over-restrictive
(Pattillo, Youssef, and Butenko 2012). Hence, the k-plex is
proposed as a relaxed form of clique (Seidman and Foster
1978). A k-plex is a vertex set that is nearly a clique but
each vertex of the k-plex is allowed to have k missing adja-
cent vertices in this vertex set, k being a positive integer. As
a basic problem of the k-plex model, the Maximum k-PLEX
problem (MPLEX) asks for the largest k-plex from the given
graph. Algorithms for the MPLEX are also important tools
in the analysis of complex networks (Pattillo, Youssef, and
Butenko 2013), especially in the community detection prob-

∗Corresponding author.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lem (Conte et al. 2018; Zhou et al. 2020; Zhu, Chen, and
Zeng 2020).

It is clear that MPLEX is equal to MCP when k = 1
and thus an NP-hard problem. Indeed, for any k > 1, M-
PLEX is still NP-hard (Lewis and Yannakakis 1980; Bala-
sundaram, Butenko, and Hicks 2011). So far, it is known that
MPLEX can be solved in time O(γn) where n is the num-
ber of vertices in the given graph and γ is a value related to
k but always slightly smaller than 2 (Xiao et al. 2017). Un-
less P=NP, there cannot be any polynomial time algorithm
that approximates the maximum k-plex within a factor bet-
ter than O(nε), for any ε > 0 (Lund and Yannakakis 1993).

Despite the fact that MPLEX is theoretically challenging,
there exists a considerable number of algorithms for solv-
ing MPLEX practically. In the literature, we mainly distin-
guish two types of algorithms for MPLEX, the heuristic al-
gorithms and exact algorithms. The heuristic algorithms are
able to quickly provide a lower bound, but cannot guaran-
tee the optimality of their solutions. Representative heuristic
approaches for MPLEX mainly use stochastic local search
(Zhou and Hao 2017; Chen et al. 2020) or the GRASP
method (Miao and Balasundaram 2017). Exact algorithms,
in contrary, ensure the optimality of their solution. Existing
exact algorithms for MPLEX include integer programming
methods (Balasundaram, Butenko, and Hicks 2011), branch-
and-bound algorithms (McClosky and Hicks 2012; Moser,
Niedermeier, and Sorge 2012; Xiao et al. 2017; Gao et al.
2018; Wu et al. 2019) and Russian Doll Search (Trukhanov
et al. 2013; Shirokikh 2013; Gschwind, Irnich, and Podlinski
2018).

In the paper, we investigate MPLEX by developing a new
practical solver, Maplex. Maplex is an exact algorithm which
is time-efficient and scalable for the ubiquitous large re-
al world graphs. Compared with the existing exact solvers,
Maplex has two notable features.

First, due to the sheer sizes of real world graphs, it is
computationally expensive to directly manipulate them in
memory. Hence, existing algorithms like (Trukhanov et al.
2013; Zhou and Hao 2017; Gschwind, Irnich, and Podlinski
2018) used Peel to reduce the graph in preprocessing. Peel
is a linear-time algorithm which reduces low-degree vertices
without missing the optimality. However, in many cases, the
graphs after using Peel are still too large to fit the memory,
e.g., the facebook network socfb-A-anon has around 390144

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12453

vertices after Peel when k = 2. In this paper, we intro-
duce a stronger preprocessing procedure based on the new
second-order reduction rule for Maplex. Our preprocessing
can remove not only low-degree vertices but also unneces-
sary edges in an alternative manner. For graph socfb-A-anon
with k = 2 , the number of vertices can degrades to on-
ly 2155 by using this new approach. It is worth mentioning
that Gao et al. (2018) introduced another strong inference
algorithm for preprocessing the input graph. We show that
our preprocessing reduces the input graph into roughly the
same level of scale as their method, but runs 4x to 10x faster.

In order to obtain the optimal solution after preprocess-
ing, we use a branch-and-bound algorithm to search in the
remaining graph. For the first time, we apply the graph color
heuristic for upper-bounding in the branch-and-bound. The
Graph Color Problem (GCP) for a given graph G asks for
the minimum number of colors necessary to color the ver-
tices of G such that no two adjacent vertices share the same
color. It is known that the number of colors of G is an up-
per bound of the size of maximum 1-plex ofG and the graph
color heuristics are used in some successful MCP algorithm-
s like (Li and Quan 2010; Tomita and Seki 2003). Inspired
by this, we build connections between GCP and MPLEX for
any k ≥ 1 and borrow the successful graph color heuristic in
MCP algorithms for bounding the maximum k-plex. We em-
pirically demonstrate that the branch-and-bound with graph
color based bounding strategy runs suitably well.

The remainder of the paper is organized as follows. We
introduce some necessary notations and backgrounds in
the next section. Then, we present the general framework
of Maplex. Afterwards, we elaborate the key techniques
of Maplex including the reduction rules and the bounding
methods. We also show some implementation details. Last-
ly, we empirically investigate the behaviour of Maplex and
compare it with the best known algorithms on different types
of benchmark graphs.

Preliminary
Let G = (V,E) be a given graph with vertex set V and edge
setE. For a vertex v ∈ V ,NG(v) denotes the set of adjacent
vertices of v in G. For two vertices u, v of G, ∆G(u, v) de-
notes the set of common adjacent vertices of v and u in G,
i.e., ∆G(u, v) = NG(u) ∩NG(v).

A vertex set C ⊆ V is a clique if the vertices of C are
pairwise adjacent in G. A triangle is a clique of size 3. In
contrary, a vertex set I ⊆ V is an independent set if any two
vertices of I are not adjacent in G. A vertex set P ⊆ V is a
k-plex if for any vertex v ∈ P , |NG(v) ∩ P | ≥ |P | − k, k
being a positive integer. So, a 1-plex of G is also a clique of
G.

As mentioned, the maximum k-plex problem (MPLEX)
asks for a largest k-plex in the given graph. Note that a k-
plex is maximal in G if it is not a subset of any other k-plex
in G.

An important property of k-plex is the hereditary prop-
erty, which says that if a vertex set P is a k-plex, then any
subset of P is also a k-plex. The hereditary property implies
that a k-plex P is maximal if no other vertex can be added
to P to form a larger k-plex.

General Framework
We show the framework of Maplex in Alg. 1. In general,
Maplex consists of three parts, a fast heuristic search, a pre-
processing component and a branch-and-bound search.

Heuristic Search As shown in line 3 of Alg. 1, heuristic
algorithm HeuristicSolution(G, k) provides a lower bound,
lb, for the input graph G and value k. Note that the solu-
tion set, i.e., the best-known k-plex, is recorded whenever
lb updates though we do not explicitly point it out in the
algorithm. In (Trukhanov et al. 2013; Gschwind, Irnich, and
Podlinski 2018), the maximum clique size of the input graph
is simply used as the lower bound solution. In (Gao et al.
2018), the heuristic algorithm is extended from the MCP al-
gorithm in (Jiang, Li, and Manya 2017). In Maplex, we use
a problem-specific heuristic which finds the longest suffix
of the so-called degeneracy ordering that is a k-plex. This
heuristic runs in time O(m + lb2n) where n and m repre-
sent the number of vertices and edges, respectively. Detailed
procedure is described in the supplementary material.

Preprocessing After obtaining a solution of size lb, we
are only interested in finding out the solution of size larger
than lb, if it exists. Hence, we preprocess the input graph-
s by removing the vertices and edges that do not belong
to the solutions, as shown in line 4 of Alg. 1. The step is
critical for future exact search because the cost of visiting
a smaller graph is much cheaper than visiting the massive
graph. Sometimes, the preprocessing directly reduces the in-
put graph into an empty graph, indicating that lb is the al-
ready the optimal size. For the rest of the paper, let us call
the graph after preprocessing a kernel graph.

Branch-and-bound In line 5 of Alg. 1, we use branch-
and-bound to find the best solution in the kernel graph.
The branch-and-bound search is essentially a depth-first
tree search algorithm which recursively calls subroutine
BranchBound(G, k, P,C) to solve the following subprob-
lem.

Given a graph G = (V,E), a growing k-plex P ⊆ V
and a candidate set C ⊆ V (P and C are disjoint), find the
largest k-plex which is a superset of P from G[P ∪ C].

BranchBound(G, k, P,C) first updates lb if the growing
k-plex is larger than the current lb value, as in lines 8-9 of
Alg. 1. In line 10, BranchBound(G, k, P,C) estimates an
upper bound of the current subproblem. If the upper bound
is not larger than lb, the search of the current subproblem
is discarded. Otherwise, BranchBound(G, k, P,C) consid-
ers every possibility of moving a vertex u ∈ C to P . In line
14, BranchBound(G, k, P,C) removes unfruitful candidate
vertices which have no possibility of being a member of a
solution that is better than lb.

In the following, we introduce new preprocessing and
bounding techniques for Maplex.

Stronger Reduction Rules for Preprocessing
In this section, we study the key reduction rules that are used
for the preprocessing. Notably, we propose a new second-
order reduction rule which substantially improves the pre-
processing.

12454

Algorithm 1: The algorithmic framework of Maplex
1 Maplex(G, k)
2 begin
3 lb← HeuristicSolution(G, k)
4 G′ ← Preporcessing(G, k, lb)
5 BranchBound(G′, k, ∅, V (G′)) . V (G′) is

the vertex set of G′

6 BranchBound(G, k, P,C)
7 begin
8 if |P | > lb then
9 lb← |P |

10 if UpperBound(G, k, P,C) ≤ lb then
11 return
12 while C is not empty do
13 Pick and remove a branching vertex u from C
14 C ′ ← Reducing unfruitful vertices from C
15 BranchBound(G, k, P ∪ {u}, C ′)

First-order reduction

Proposition 1 (First-order reduction). Given a graph G =
(V,E), a vertex v ∈ V . If |NG(v)| ≤ lb− k, then v is not in
a k-plex larger than lb.

A widely used preprocessing procedure named Peel is
based on the first-order reduction rule. Peel recursively re-
moves vertices with degree at most lb − k until there is
no such vertex in the remaining graph. Peel is effective be-
cause most vertices in real world graphs have low degrees
by power-law distribution. Meanwhile, Peel can be imple-
mented in linear time O(m) where m represents the number
of edges of the original graph. Due to the simplicity and ef-
fectiveness, Peel is used in solving MPLEX in (Trukhanov
et al. 2013; Gschwind, Irnich, and Podlinski 2018; Zhou and
Hao 2017; Chen et al. 2020).

Second-order reduction

Proposition 2 (Second-order reduction). Given a graph
G = (V,E), two vertices u, v ∈ V . If (u, v) ∈ E and
|∆G(u, v)| ≤ lb − 2k, then u, v are not in a k-plex larg-
er than lb at the same time. If (u, v) /∈ E and |∆G(u, v)| ≤
lb − 2k + 2, then u, v are not in a k-plex larger than lb at
the same time.

Proof. Assume that (u, v) ∈ E satisfies |∆G(u, v)| ≤ lb −
2k but both u, v belong to a k-plex S where |S| > lb. By
the definition of k-plex, there are at most k − 1 vertices that
are not adjacent to u (or v) in S \ {u, v}. Hence, there are
at most 2k− 2 vertices in S that do not belong to ∆G(u, v),
i.e., |S| − 2 − |∆G(u, v) ∩ S| ≤ 2k − 2, indicating that
|∆G(u, v)∩S| ≥ |S|− 2k > lb− 2k, which contradicts the
assumption that |∆G(u, v)| ≤ lb−2k. Likewise, we can also
obtain a contradiction for the second case where (u, v) /∈ E
and |∆G(u, v)| ≤ lb− 2k + 2.

Algorithm 2: The preprocessing in Maplex
1 Preprocess(G = (V,E), k, lb) begin
2 Let q be an empty queue
3 Push vertices v ∈ V that |NG(v)| ≤ lb− k into q
4 while true do
5 while q is not empty do
6 Pop a vertex v from q
7 Remove v and its incident edges from G
8 for u ∈ NG(v) and NG(u) ≤ lb− k do
9 Push u into q

10 Listing triangles in G by compact-forward
algorithm in (Latapy 2008), counting
|∆G(u, v)| for each edge (u, v) ∈ E

11 for (u, v) ∈ E(G) do
12 if |∆G(u, v)| ≤ lb− 2k then
13 Remove (u, v) from G
14 if |NG(u)| ≤ lb− k then
15 Push u into q
16 if |NG(v)| ≤ lb− k then
17 Push v into q

18 if q is empty then
19 Break

20 return G

An enhanced preprocessing With both first- and second-
order reduction rules, we enhance Peel by jointly removing
extra vertices and edges.

The idea is straightforward. First, we remove vertices of
degree at most lb−k, the same as in Peel. When there are no
such vertex, we identify edges (u, v) such that |∆G(u, v)| ≤
lb−2k and remove them. Whenever an edge (u, v) has been
removed from G, |NG(u)| and |NG(v)| are also decreased
by one, making v or u possibly removable again. Hence, the
preprocessing procedure alternatively removes vertices by
the first-order reduction rule and edges by the second-order
reduction rule until there is no reducible vertex and edge.

Alg. 2 implements this idea. Because |∆G(u, v)| is e-
qual to the number of triangles that involve edge (u, v),
we compute |∆G(u, v)| for all edges by listing all the tri-
angles in the graph, as shown in line 10. The problem of
listing all the triangles without repetition is called Triangle
Listing Problem, which is well-studied. We choose the opti-
mized compact-forward triangle listing algorithm proposed
in (Latapy 2008). The time complexity of triangle listing is
O(m1.5), so the whole running time of our Preprocessing is
O(lm1.5) where l is the number of out-most loop. Normally
l� n.

Other higher-order reduction rules It is possible to
jointly consider even more vertices at the same time. For
example, three vertices in a triangle are not in a k-plex larg-
er than lb simultaneously if their common adjacent vertices
are no more than lb − 3k. However, higher-order reduction

12455

rules are not easy to be used in an efficient manner. Another
preprocessing technique by Gao et al. (2018) used the so-
phisticate subgraph reduction rule. We are not aware of the
worst-case running time of their approach, but as shown in
the experiments, our method removes approximately similar
number as their preprocessing but runs much faster.

The Bounding Techniques
The bounding techniques overestimate an upper bound of
the optimal solution in G[P ∪C] and prune the search if the
upper bound is not larger than the lower bound. We study a
new graph color based bounding technique for MPLEX.

Graph color bound A coloring of a graph G is a partition
of the vertex set such that each vertex set in the partition is
an independent set in G. The number of independent sets in
a coloring is the upper bound of the maximum clique size of
G. We generalize this bound to MPLEX.

Proposition 3. Given a graph G = (V,E), if V can be
partitioned into c disjoint independent sets I1, ..., Ic, then∑c
i=1 min{|Ii|, k} is the upper bound of the size of maxi-

mum k-plex in G, a.k.a. color-bound.

We leave the proofs of Prop. 3 and all the remaining
propositions in the supplementary material.

The problem of finding the minimum color-bound is NP-
hard (it is equal to GCP when k = 1). In our algorithm,
we borrow the fast constructive heuristic coloring procedure
from the celebrated MCP algorithm in (Tomita and Sek-
i 2003). The heuristic asks for an initial order of the vertices
in the graph. As P must be a subset of the solution, we only
need to color the vertices of C. So, let us assume the given
order of C is v1, ..., vq where q is the size of C. In the first
round, a first independent set I1 = {v1} is initialized. In the
jth round where j starts from 2, the heuristic puts vj into the
first independent set such that vj is not adjacent to any vertex
in the set. If such an independent set does not exist, a new in-
dependent set is opened and v is inserted in it. When all ver-
tices of C are partitioned, the color-bound plus |P | is the up-
per bound for the subproblem of BranchBound(G, k, P, C).

Lookahead by color-bound The partition of C after
graph color heuristic also provides information for the next
subproblem in which a branching vertex u ∈ C is moved to
P .

Proposition 4. Given a subproblem with a growing k-plex
P , a candidate set C, assume I = {I1, ..., Ic} is a coloring
of C. For any vertex u ∈ C, the size of k-plex S that u ∈
S and P ⊂ S is bounded by ubu =

∑c
i=1,u/∈Ii min(|Ii ∩

NG(u)|, k) + (k − |P \NG(u)|) + |P |.
Prop. 4 suggests a way of evaluating the upper bound for

the next subproblem where a branching vertex u is taken
from C to P . If ubu ≤ lb, the next subproblem has no
promising solutions. Given a color partition of C, the com-
putation of ubu can be finished in O(|C|) time.

Other bounding techniques We remark on other popu-
lar bounding techniques. The core number of G, denoted by

Algorithm 3: The branch-and-bound algorithm in
Maplex

1 BranchBound(G, k, P,C)
2 begin
3 Partition vertices of C into I1, ..., Ic by greedy

coloring heuristic (Tomita and Seki 2003). Note that
C is an ordered list.

4 ub←
∑c
j=1 min(|Ij |, k) + |P | . Computing

color-bound
5 if ub ≤ lb then
6 return
7 Re-sort vertices in C by their color numbers in I in

an increasing order, vertices of the same color
number preserve their original relative order

8 while C is not empty do
9 Remove the last vertex u from C

10 ubu =
∑c
i=1,u/∈Ii min(|Ii ∩NG(u)|, k) + (k −

|P \NG(u)|) + |P | . lookahead
11 if ubu ≤ lb then
12 Continue
13 C ′ ← Reducing unfruitful vertices from C,

keeping the order of C unchanged
14 BranchBound(G, k, P ∪ {u}, C ′)

c(G), is the largest k such that every vertex of the graph is
in the maximal subgraph whose minimum degree is at least
k. Clearly, c(G) + k is an upper bound of the maximum k-
plex in G. However, our preprocessing ensures that the core
number of a kernel graph is at least lb− k.

The linear program (LP) of MPLEX is studied in (Bal-
asundaram, Butenko, and Hicks 2011). The LP relaxation
often leads to tight upper bound but the computation cost of
the LP formulation is too heavy. In the MCP algorithm in
(Li and Quan 2010), SAT reasoning is used to tighten the
graph color bound for MCP. However, it is not known how
to efficiently extend this technique to MPLEX with k > 2.

Implementation Details
Finally, we give a more detailed description of our branch-
and-bound in Alg. 3. There are a number of data structures
and implementation details that are important for an efficient
implementation of the branch-and-bound.

Vertex ordering and branching heuristic In the input of
Alg. 3, the candidate set C is an ordered list as asked by
the graph color heuristic in line 3. When BranchBound is
called by Maplex initially, the vertices of C are ordered by
non-increasing degrees so that the graph color heuristic us-
es this order to partition the vertices of C at the root node.
For a color partition I1, · · · , Ic and a vertex v ∈ C, let us
call the index of the independent set Ii where v belongs the
color number of v. When a new partition of C is produced
by the heuristic, the vertices of C are reordered so that ver-
tices of smaller color number precede these of larger color
number, while vertices of the same color number preserve

12456

their original relative order. The last vertex of C, which is a
vertex of maximum color number in C, is always selected as
branching vertex.

Bitset encoding San Segundo et al. (2011) introduce the
bitset data structure to encoding the vertex set. For example,
the intersecting between NG(v) and an independent set Ii,
i.e., NG(v) ∩ Ii, is frequently used in graph color heuris-
tic. By encoding the NG(v) and Ii as bit sets, the operation
becomes a simple “and” operation between the two bitsets.

Reducing unfruitful vertices The second-order reduction
can be also used to reduce unfruitful candidate vertices
in branch-and-bound. In BranchBound(G, k, P, C), after a
branching vertex u ∈ C moves to P (as in line 14 of Alg.
1), we screen out the unfruitful vertices v ∈ C if (u, v) ∈ E
and |∆G(u, v) ∩ (P ∪ C)| ≤ lb − 2k, or (u, v) /∈ E but
|∆G(u, v) ∩ (P ∪ C)| ≤ lb− 2k + 2.

Experiments
In this section, we carry out experiments to evaluate the pro-
posed algorithm. The codes are written in C++ and com-
piled by g++ with optimization option ‘-O3’ 1. All the ex-
periments are conducted on a cluster running CentOS oper-
ating system in intel-E5-2695 (2.1GHz, 36 cores) with 8G
memory.

For the purpose of comparison, we use three recent base-
line algorithms, BS (Xiao et al. 2017), BnBk(Gao et al.
2018) and RDS (Gschwind, Irnich, and Podlinski 2018).
These algorithms are more efficient than other older solvers
like IPBC (Balasundaram, Butenko, and Hicks 2011), Os-
terPlex (McClosky and Hicks 2012) and GuidedBranching
(Moser, Niedermeier, and Sorge 2012) as reported in the lit-
erature. The codes of BS and BnBk are provided by their
authors and RDS is a fine-tuned open source version in
https://github.com/zhelih/rds-serial.

We mainly test k values in range 2 to 5, the same as in the
existing literature. We set the cut off time as 1800s (half an
hour) for each algorithm and each instance. As we will show
lastly, the running time of solving an instance with k larger
than 5 is often prohibitively long.

Real World Graphs
Graphs from Network Repository We first test all the
undirected and simple real world graphs in the Network
Repository (Rossi and Ahmed 2015) which are also used in
(Gao et al. 2018). This set includes 139 biological networks,
collaboration networks, Facebook networks, infrastructure
networks and so on.

In Fig. 2, we show the number of solved instances with-
in different time frames for k = 2, 3, 4 and 5. In terms of
the number of solvable instances in different time frames,
we see a clear dominance among the four algorithms, i.e.,
Maplex>BnBk>BS>RDS. Indeed, setting a time limit of

1The code and supplementary documents can be downloaded
from https://github.com/ini111/Maplex.git

Figure 1: The experimental results of three preprocessing
techniques. Due to space limit, we only list 13 “hard graph-
s” which are graphs that cannot be solved by Maplex with-
in 20s when k = 2. #vtx and #edge represent the number
of vertices and edges after using the preprocessing, respec-
tively. time is the running time of using the preprocessing
technique. 0.00 means that the time is less than 0.005. N\A
indicates that the result cannot be obtained due to memory
failure or time out. speedup is the speedup of second-reduct
over subgraph-reduct.

12457

Figure 2: Experimental results of real world graphs.

1800s for each instance, Maplex solves a total of 17 more
instances that BnBk.

The influence of preprocessing We compare different
preprocessing techniques in Fig. 1, including Peel (denot-
ed by peel-reduct), the preprocessing in Maplex (denoted
by second-reduct) and the subgraph-reduction used in BnBk
(denoted by subgraph-reduct). The initial lower bounds of
peel-reduct and second-reduct are obtained via our heuris-
tic while peel-reduct has its own heuristic for obtaining a
lower bound. From the figure, peel-reduct is the fastest but
the second-reduct and subgraph-reduct can remove much
more vertices and edges than peel-reduct. For large graph-
s like soc-pokec and socfb-A-anon, the numbers of ver-
tices after using second-reduct are reduced by two orders of
magnitude, comparing with that only using peel-reduct. The
subgraph-reduct and second-reduct remove roughly equal
number of vertices in these graphs. However, the second-
reduct is more time-efficient than subgraph-reduct. General-
ly, a speed up of 4x-10x is often observed in the figure.

The influence of color-bound We continue to study the
influences brought by our bounding technique. We set up a
tailored version of Maplex, namely Maplex-NoCol, which
removes the color-bound as well as the lookahead compo-
nents. We then compare Maplex, Maplex-NoCol and the
baseline algorithms in Fig. 3. In order to eliminate the im-
pact of different preprocessing strategies, we use the kernel
graphs which are provided by our preprocessing as the input
of these algorithms.

Comparing between Maplex with Maplex-NoCol, we see
that color-bound and lookahead techniques can reduce the
branching nodes by up to an order of magnitude and thus,
improve the time-efficiency. Comparing with the other base-
line algorithms, Maplex is still the best-performing algorith-
m generally. Indeed, the baseline algorithms require even
more computational time than Maplex when using the orig-
inal graph as input.

Erdös collaboration graphs A Erdös graph ERDOS-x-
y represents the collaborate networks of authors who have
Erdös numbers2 at most y as of year x. We test 6 such graph-
s that are also used in (Xiao et al. 2017), i.e., ERDOS-97-
1, ERDOS-97-2, ERDOS-98-1, ERDOS-98-2, ERDOS-99-

2The Erdös number of an author is the length of the shortest
path between Paul Erdös and the author in the collaboration net-
works

Figure 3: The experimental results of Maplex, Maplex-
NoCol, BnBk, BS and RDS. The input graphs for each al-
gorithm are pruned by our preprocessing method. opt indi-
cates the optimal value. nodes refers to the number of re-
cursive calls made by branch-and-bound algorithm. The in-
stance that neither of these algorithms obtains the optimal
solution is omitted.

12458

Figure 4: Experimental results of clique graphs for k = 2, 3, 4 and 5.

Figure 5: Experimental results for random graphs with edge probability ranging from 0.05 to 0.3 and n = 100 or 200.

1 and ERDOS-99-2 for k = 2, ..., 5. The numbers of vertices
and edges range from 472 to 6100 and 1314 to 9939, respec-
tively. As a result, Maplex and BnBk solve each of these test
cases in less than 0.005s, BS spends a bit more time than
Maplex and BnBk, but still less than 0.1s. However, RDS
cannot solve all the graphs when k = 3, 4 and 5 in 1800s.

SNAP and partition graphs We also test the 43 real
world graphs in (Trukhanov et al. 2013; Gschwind, Irnich,
and Podlinski 2018) which are extracted from SNAP bench-
mark set (Leskovec and Krevl 2014) and 10th DIMACS
challenge. However, we notice that Maplex still outperforms
the others. Interested readers can refer to the complete report
of our experiments.

Artificial Graphs
Clique graph We present experimental results for the
clique graph from the Second DIMACS Implementation
Challenge3. The graphs in this set are extremely dense. Al-
most all graphs of this set have a diameter only 2 (except
the “c-fat” group). Indeed, all preprocessing methods fail to
prune one vertex of these graphs. In Fig. 4, we show the
number of solved instances against different time frames.
There is no dominant algorithm among all k values. RD-
S outperforms others for k = 2 and 3. It is conjectured
that the strategies of RDS are naturally suitable for solv-
ing dense clique graphs and small ks. BS performs well
for k = 5 which may result from its multiple branching s-
trategies. Maplex is still competitive but it is believed that
Maplex is most suitable for dealing with sparse large real
world graphs.

3http://networkrepository.com/dimacs.php

Random graphs A random graph G(n, prob) consists of
n vertices and random edges which are generated with prob-
ability prob ∈ [0, 1]. Concretely, for each pair of vertices in
G(n, prob), there is an edge between them with an unified
probability prob. We generate random graphs to test the be-
haviour of Maplex with respect to different edge probability
prob and ks.

In Fig. 5, we show the changes of running times and sizes
of optimal solutions as the edge probability increases from
0.05 to 0.3 and n = 100 or 200. As n changes from 100 to
200, the size of maximum k-plex changes mildly. Lastly, as
we mentioned, the algorithm cannot find the solution even
for these small graphs with 200 vertices when k becomes
larger than 5.

Conclusion

In the paper, we proposed new strategies for solving MPLEX
efficiently in real world graphs. We applied new reduction
rules to enhance the preprocess procedure which enjoys low-
er computational cost but powerfully shrinks the input graph
into a very smaller kernel graph. For the first time, we used
the graph color heuristic to obtain a tight upper bound for
the exact branch-and-bound.

In the experiments, the final algorithm, Maplex, outper-
forms the state-of-the-art solvers like BnBk, BS and RDS
on real-world graphs and keeps competitive on dense artifi-
cial graphs.

It is believed that the work not only provides new insight-
s to the fundamental MPLEX problem but also paves the
road of utilizing the k-plex model in real world graph min-
ing tasks.

12459

Acknowledgments
The work is supported by Natural Science Foundation
of China (No. 61802049 and No. 61972070), Shenzhen
Science and Technology Innovation Commission (No. J-
CYJ20180508162601910), Shenzhen Institute of Artificial
Intelligence and Robotics for Society (No. 2019-INT003)
and Sub Project of Independent Scientific Research Project
(No. ZZKY-ZX-03-02-04).

References
Balasundaram, B.; Butenko, S.; and Hicks, I. V. 2011.
Clique relaxations in social network analysis: The maximum
k-plex problem. Operations Research 59(1): 133–142.

Chen, P.; Wan, H.; Cai, S.; Li, J.; and Chen, H. 2020. Lo-
cal Search with Dynamic-Threshold Configuration Check-
ing and Incremental Neighborhood Updating for Maximum
k-plex Problem. In AAAI, 2343–2350.

Conte, A.; De Matteis, T.; De Sensi, D.; Grossi, R.; Marino,
A.; and Versari, L. 2018. D2K: Scalable Community Detec-
tion in Massive Networks via Small-Diameter k-Plexes. In
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 1272–
1281. ACM.

Gao, J.; Chen, J.; Yin, M.; Chen, R.; and Wang, Y. 2018. An
Exact Algorithm for Maximum k-Plexes in Massive Graphs.
In IJCAI, 1449–1455.

Gschwind, T.; Irnich, S.; and Podlinski, I. 2018. Maximum
weight relaxed cliques and Russian doll search revisited.
Discrete Applied Mathematics 234: 131–138.

Jiang, H.; Li, C.-M.; and Manya, F. 2017. An Exact Al-
gorithm for the Maximum Weight Clique Problem in Large
Graphs. In AAAI, 830–838.

Latapy, M. 2008. Main-memory triangle computations for
very large (sparse (power-law)) graphs. Theoretical Com-
puter Science 407(1-3): 458–473.

Leskovec, J.; and Krevl, A. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/
data.

Lewis, J. M.; and Yannakakis, M. 1980. The node-deletion
problem for hereditary properties is NP-complete. Journal
of Computer and System Sciences 20(2): 219–230.

Li, C. M.; and Quan, Z. 2010. An efficient branch-and-
bound algorithm based on maxsat for the maximum clique
problem. In AAAI, volume 10, 128–133.

Lund, C.; and Yannakakis, M. 1993. The approximation
of maximum subgraph problems. In International Collo-
quium on Automata, Languages, and Programming, 40–51.
Springer.

McClosky, B.; and Hicks, I. V. 2012. Combinatorial algo-
rithms for the maximum k-plex problem. Journal of Combi-
natorial Optimization 23(1): 29–49.

Miao, Z.; and Balasundaram, B. 2017. Approaches for find-
ing cohesive subgroups in large-scale social networks via
maximum k-plex detection. Networks 69(4): 388–407.

Moser, H.; Niedermeier, R.; and Sorge, M. 2012. Exact com-
binatorial algorithms and experiments for finding maximum
k-plexes. Journal of Combinatorial Optimization 24(3):
347–373.
Pattillo, J.; Youssef, N.; and Butenko, S. 2012. Clique re-
laxation models in social network analysis. In Handbook of
Optimization in Complex Networks, 143–162. Springer.
Pattillo, J.; Youssef, N.; and Butenko, S. 2013. On clique
relaxation models in network analysis. European Journal of
Operational Research 226(1): 9–18.
Rossi, R. A.; and Ahmed, N. K. 2015. The Network Data
Repository with Interactive Graph Analytics and Visualiza-
tion. In AAAI. URL http://networkrepository.com.
San Segundo, P.; Rodrı́guez-Losada, D.; and Jiménez, A.
2011. An exact bit-parallel algorithm for the maximum
clique problem. Computers & Operations Research 38(2):
571–581.
Seidman, S. B.; and Foster, B. L. 1978. A graph-theoretic
generalization of the clique concept. Journal of Mathemati-
cal Sociology 6(1): 139–154.
Shirokikh, O. A. 2013. Degree-based Clique Relaxation-
s: Theoretical Bounds, Computational Issues, and Applica-
tions. Ph.D. thesis, University of Florida.
Tomita, E.; and Seki, T. 2003. An efficient branch-and-
bound algorithm for finding a maximum clique. In Interna-
tional Conference on Discrete Mathematics and Theoretical
Computer Science, 278–289. Springer.
Tošić, P. T.; and Agha, G. A. 2004. Maximal clique based
distributed coalition formation for task allocation in large-
scale multi-agent systems. In International Workshop on
Massively Multiagent Systems, 104–120. Springer.
Trukhanov, S.; Balasubramaniam, C.; Balasundaram, B.;
and Butenko, S. 2013. Algorithms for detecting optimal
hereditary structures in graphs, with application to clique
relaxations. Computational Optimization and Application-
s 56(1): 113–130.
Wu, K.; Gao, J.; Chen, R.; and Cui, X. 2019. Vertex Se-
lection Heuristics in Branch-and-Bound Algorithms for the
Maximum k-Plex Problem. International Journal on Artifi-
cial Intelligence Tools 28(05): 1950015.
Wu, Q.; and Hao, J.-K. 2015. A review on algorithms for
maximum clique problems. European Journal of Opera-
tional Research 242(3): 693–709.
Xiao, M.; Lin, W.; Dai, Y.; and Zeng, Y. 2017. A fast al-
gorithm to compute maximum k-plexes in social network
analysis. In AAAI, 919–925.
Zhou, Y.; and Hao, J.-K. 2017. Frequency-driven tabu search
for the maximum s-plex problem. Computers & Operations
Research 86: 65–78.
Zhou, Y.; Xu, J.; Guo, Z.; Xiao, M.; and Jin, Y. 2020. Enu-
merating Maximal k-Plexes with Worst-Case Time Guaran-
tee. In AAAI, 2442–2449.
Zhu, J.; Chen, B.; and Zeng, Y. 2020. Community detec-
tion based on modularity and k-plexes. Information Sciences
513: 127–142.

12460

