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Abstract

Propositional model counting, or #SAT, is the problem of
computing the number of satisfying assignments of a Boolean
formula. Many problems from different application areas, in-
cluding many discrete probabilistic inference problems, can be
translated into model counting problems to be solved by #SAT
solvers. Exact #SAT solvers, however, are often not scalable
to industrial size instances. In this paper, we present Neuro#,
an approach for learning branching heuristics to improve the
performance of exact #SAT solvers on instances from a given
family of problems. We experimentally show that our method
reduces the step count on similarly distributed held-out in-
stances and generalizes to much larger instances from the
same problem family. It is able to achieve these results on a
number of different problem families having very different
structures. In addition to step count improvements, Neuro#
can also achieve orders of magnitude wall-clock speedups
over the vanilla solver on larger instances in some problem
families, despite the runtime overhead of querying the model.

1 Introduction
Propositional model counting is the problem of counting the
number of satisfying solutions to a Boolean formula (Gomes,
Sabharwal, and Selman 2009). When the Boolean formula
is expressed in conjunctive normal form (CNF), this prob-
lem is known as the #SAT problem. #SAT is a #P-complete
problem, and by Toda’s theorem (Toda 1991) any problem
in the polynomial-time hierarchy (PH) can be solved by a
polynomial number of calls to a #SAT oracle. This means
that effective #SAT solvers, if they could be developed, have
the potential to help solve problems whose complexity lies
beyond NP, from a range of applications. The tremendous
practical successes achieved by encoding problems to SAT
and using modern SAT solvers (Marques-Silva 2018) demon-
strate the potential of such an approach.

Modern exact #SAT solvers are based on the DPLL algo-
rithm (Davis, Logemann, and Loveland 1962) and have been
successfully applied to solve certain problems, e.g., infer-
ence in Bayes Nets (Bacchus, Dalmao, and Pitassi 2003b; Li,
Poupart, and van Beek 2011; Sang, Beame, and Kautz 2005b;
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Domshlak and Hoffmann 2007) and bounded-length proba-
bilistic planning (Domshlak and Hoffmann 2006); however,
many applications remain out of reach of current solvers. For
example, in problems such as inference in Markov Chains,
which have a temporal structure, exact model counters are
still generally inferior to earlier methods such as Binary De-
cision Diagrams (BDDs). In this paper we show that machine
learning methods can be used to greatly enhance the perfor-
mance of exact #SAT solvers.

In particular, we learn problem family specific branching
heuristics for the 2012 version of the DPLL-based #SAT
solver SharpSAT (Thurley 2006) which uses a state-of-the-
art search procedure. We cast the problem as a Markov De-
cision Process (MDP) in which the task is to select the best
literal to branch on next. We use a Graph Neural Network
(GNN) (Scarselli et al. 2009) to represent the particular com-
ponent of the residual formula the solver is currently working
on. The model is trained end-to-end via Evolution Strategies
(ES), with the objective of minimizing the mean number of
branching decisions required to solve instances from a given
distribution of problems. In other words, given a training set
of instances drawn from a problem distribution, the aim is
to automatically tailor the solver’s branching decisions for
better performance on unseen problems of that distribution.

We found that our technique, which we call Neuro#, can
generalize not only to unseen problem instances of similar
size but also to much larger instances than those seen at
training time. Furthermore, despite Neuro#’s considerable
runtime overhead from querying the learnt model, on some
problem domains Neuro# can achieve orders-of-magnitude
improvements in the solver’s wall-clock runtime. This is quite
remarkable in the context of prior related work (Yolcu and
Póczos 2019; Selsam and Bjørner 2019; Balcan et al. 2018;
Gasse et al. 2019; Khalil et al. 2016; Hansknecht, Joormann,
and Stiller 2018; Lederman et al. 2020), where using ML
to improve combinatorial solvers has at best yielded modest
wall-clock time improvements (less than a factor of two),
and positions this line of research as a viable path towards
improving the practicality of exact model counters.1

1Our code and the extended version of the paper (with the ap-
pendix) are available at: github.com/NeuroSharp.
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1.1 Related Work
The first successful application of machine learning to propo-
sitional satisfiability solvers was the portfolio-based SAT
solver SATZilla (Xu et al. 2008). Equipped with a set of
standard SAT solvers, a classifier was trained offline to map
a given SAT instance to the solver best suited to solve it.

Recent work has been directed along two paths: heuristic
improvement (Selsam and Bjørner 2019; Kurin et al. 2019;
Lederman et al. 2020; Yolcu and Póczos 2019), and purely
ML-based solvers (Selsam et al. 2019; Amizadeh, Matu-
sevych, and Weimer 2019). In the former, a model is trained
to replace a heuristic in a standard solver, thus the model is
embedded as a module within the solver’s framework and
guides the search process. In the latter, the aim is to train a
model that acts as a stand-alone “neural” solver. These neural
solvers are inherently stochastic and often incomplete, mean-
ing that they can only provide an estimate of the satisfiability
of a given instance. This is often undesirable in applications
of SAT solvers where an exact answer is required, e.g., in
formal verification. In terms of functionality, our work is
analogous to the first group, in that we aim at improving the
branching heuristics of a standard solver. More concretely,
our work is similar to (Yolcu and Póczos 2019), who used
Reinforcement Learning (RL) and GNNs to learn variable
selection heuristics for the local search-based SAT solver
WalkSAT (Selman, Kautz, and Cohen 1993). Local search
cannot be used to solve exact #SAT, and empirically (Yolcu
and Póczos 2019) obtained only modest improvements on
much smaller problems. Our method is also related to (Le-
derman et al. 2020) and (Gasse et al. 2019), where similar
techniques were used in solving quantified Boolean formulas
and mixed integer programs, respectively.

Recently, Abboud, Ceylan, and Lukasiewicz (2020) trained
GNNs as a stand-alone approximate solver for Weighted DNF
Model Counting (#DNF). However, approximating #DNF is
a much easier problem: it has a fully polynomial randomized
approximation scheme (Karp, Luby, and Madras 1989). So
the generalization to larger problem instances demonstrated
in that paper is not comparable to the scaling on exact #SAT
our approach achieves.

2 Background
#SAT A propositional Boolean formula consists of a set
of propositional (true/false) variables composed by applying
the standard operators “and” (∧), “or” (∨) and “not” (¬). A
literal is any variable v or its negation ¬v. A clause is a
disjunction of literals

∨n
i=1 li. A clause is a unit clause if

it contains only one literal. Finally, a Boolean formula is in
Conjunctive Normal Form (CNF) if it is a conjunction of
clauses. We denote the set of literals and clauses of a CNF
formula φ by L(φ) and C(φ), respectively. We assume that
all formulas are in CNF.

A truth assignment for any formula φ is a mapping of its
variables to {0, 1} (false/true). Thus there are 2n different
truth assignments when φ has n variables. A truth assignment
π satisfies a literal ` when ` is the variable v and π(v) = 1 or
when ` = ¬v and π(v) = 0. It satisfies a clause when at least
one of its literals is satisfied. A CNF formula φ is satisfied

when all of its clauses are satisfied under π in which case we
call π a satisfying assignment for φ.

The #SAT problem for φ is to compute the number of
satisfying assignments. If ` is a unit clause of φ then all
of φ’s satisfying assignments must make ` true. If another
clause c′ = ¬` ∨ `′ is in φ, then every satisfying assignment
must also make `′ true since ¬` ∈ c′ must be false. This
process of finding all literals whose truth value is forced by
unit clauses is called Unit Propagation (UP) and is used in all
SAT and #SAT solvers. Such solvers traverse the search tree
by employing a branching heuristic. This heuristic selects
an unforced variable and branches on it by setting it to true
or false. When a literal ` is set to true the formula φ can be
reduced by finding all forced literals using UP (this includes
`), removing all clauses containing a true literal, and finally
removing all false literals from all clauses. The resulting
formula is denoted by UP(φ, `).

Two sets of clauses are called disjoint if they share no vari-
ables. A component C ⊂ C(φ) is a subset of φ’s clauses that
is disjoint from its complement C(φ)− C. A formula φ can
be efficiently broken up into a maximal number of disjoint
components C1, . . . , Ck. Although most formulas initially
consist of only one component, as variables are set by branch-
ing decisions and clauses are removed, the reduced formulas
will often break up into multiple components. Components
are important for improving the efficiency of #SAT solving
as each component can be solved separately and their counts
multiplied: COUNT(φ) =

∏k
i=1 COUNT(Ci). In contrast,

solving the formula as a monolith takes 2Θ(n) where n is
the number of variables in the input formula, and so is not
efficient for large n.

A formula φ or component Ci can be represented by a
literal-clause incidence graph (LIG). This graph contains a
node for every clause and every literal of φ (i.e., v and ¬v
for every variable v of φ). An edge connects a clause node
nc and a literal node n` if and only if ` ∈ c. Note that if Ci
is a component of φ, then Ci’s LIG will be a disconnected
sub-graph of φ’s LIG (Figure 1).

Both exact (Thurley 2006; Sang et al. 2004; Oztok and
Darwiche 2015), approximate (Chakraborty et al. 2014; Meel
and Akshay 2020), and probabilistically correct (Sharma et al.
2019) model counters have been developed. In this paper, we
focus on exact model counting using the SharpSAT solver
(Thurley 2006). SharpSAT and other modern exact #SAT
solvers are based on DPLL (Davis, Logemann, and Love-
land 1962) augmented with clause learning and component
caching (Bacchus, Dalmao, and Pitassi 2003a, 2009). A sim-
plified version of the algorithm with the clause learning parts
omitted is given in Algorithm 1.

The #DPLLCACHE algorithm works on one component
at a time. If that component’s model count has already been
cached it returns the cached value. Otherwise it selects a
literal to branch on (line 4) and computes the model count
under each value of this literal by calling COUNTSIDE(). The
sum of these two counts is the model count of the passed
component φ, and so is stored in the cache (line 7). The
COUNTSIDE function first unit propagates the input literal.
If an empty clause is found, then the current formula φ` is
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Figure 1: An example Literal-Clause Incidence Graph (LIG)
for formula: (x1 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ x5).

Algorithm 1 Component Caching DPLL
1: function #DPLLCACHE(φ)
2: if INCACHE(φ) then
3: return CACHELOOKUP(φ)
4: Pick a literal ` ∈ L(φ)
5: #` = COUNTSIDE(φ, `)
6: #¬` = COUNTSIDE(φ, ¬`)
7: ADDTOCACHE(φ, #` + #¬`)
8: return #` + #¬`

9: function COUNTSIDE(φ, `)
10: φ` = UP(φ, `)
11: if φ` contains an empty clause then
12: return 0
13: if φ` contains no clauses then
14: k = # of unset variables
15: return 2k

16: K = FINDCOMPONENTS(φ`)
17: return

∏
κ∈K #DPLLCACHE(κ)

unsatisfiable and has zero models. Otherwise, φ` is divided
into its sub-components which are independently solved and
the product of their model counts is returned. Critical to the
performance of the algorithm is the choice of which literal
from the current formula φ to branch on. This choice affects
the efficiency of clause learning and the effectiveness of com-
ponent generation and caching lookup success. SharpSAT
uses the VSADS heuristic (Sang, Beame, and Kautz 2005a)
which is a linear combination of a heuristic aimed at making
clause learning effective (VSIDS) and a count of the number
of times a variable appears in the current formula.

Graph Neural Networks Graph Neural Networks (GNNs)
are a class of neural networks used for representation learning
over graphs (Gori, Monfardini, and Scarselli 2005; Scarselli
et al. 2009). Utilizing a neighbourhood aggregation (or mes-
sage passing) scheme, GNNs map the nodes of the input
graph to a vector space. Let G = (V,E) be an undirected
graph with node feature vectors h(0)

v for each node v ∈ V .
GNNs use the graph structure and the node features to learn
an embedding vector hv for every node. This is done through
iterative applications of a neighbourhood aggregation func-
tion. In each iteration k, the embedding of a node h(k)

v is
updated by aggregating the embeddings of its neighbours
from iteration k − 1 and passing the result through a nonlin-

ear aggregation function A parameterized by W (k):

h(k)
v = A

(
h(k−1)
v ,

∑
u∈N (v)

h(k−1)
u ;W (k)

)
, (1)

where N (v) = {u|u ∈ V ∧ (v, u) ∈ E}. After K iterations,
h

(K)
v is extracted as the final node embedding hv for node v.

Through this scheme, v’s node embedding at step k incorpo-
rates the structural information of all its k-hop neighbours.

Evolution Strategies Evolution Strategies (ES) are a class
of zeroth order black-box optimization algorithms (Beyer
and Schwefel 2002; Wierstra et al. 2014). Inspired by natural
evolution, a population of parameter vectors (genomes) is
perturbed (mutated) at every iteration, giving birth to a new
generation. The resulting offspring are then evaluated by a
predefined fitness function. Those offspring with higher fit-
ness score will be selected for producing the next generation.

We adopt a version of ES that has shown to achieve great
success in the standard RL benchmarks (Salimans et al. 2017):
Let f : Θ → R denote the fitness function for a param-
eter space Θ, e.g., in an RL environment, f computes the
stochastic episodic reward of a policy πθ. To produce the new
generation of parameters of size n, (Salimans et al. 2017)
uses an additive Gaussian noise with standard deviation σ
to perturb the current generation: θ(i)

t+1 = θt + σε(i), where
ε(i) ∼ N (0, I). We then evaluate every new generation with
fitness function f(θ

(i)
t+1) for all i ∈ [1, . . . , n]. The update

rule of the parameter is as follows,

θt+1 = θt + η∇θEθ∼N (θt,σ2I)[f(θ)]

≈ θt + η
1

nσ

n∑
i

f(θ
(i)
t+1)ε(i),

where η is the learning rate. The update rule is intuitive: each
perturbation ε(i) is weighted by the fitness of the correspond-
ing offspring θ(i)

t+1. We follow the rank-normalization and
mirror sampling techniques of (Salimans et al. 2017) to scale
the reward function and reduce the variance of the gradient,
respectively.

3 Method
We formalize the problem of learning the branching heuristic
for #DPLLCACHE as a Markov Decision Process (MDP). In
our setting, the environment is SharpSAT, which is deter-
ministic except for the initial state, where an instance (CNF
formula) is chosen randomly from a given distribution. A
time step t is equivalent to an invocation of the branching
heuristic by the solver (Algorithm 1: line 4). At time step t
the agent observes state st, consisting of the component φt
that the solver is operating on, and performs an action from
the action space At = {l|l ∈ L(φt)}. The objective function
is to reduce the number of decisions the solver makes, while
solving the counting problem. In detail, the reward function
is defined by:

R(s) =

1
if s is a terminal state with “instance
solved” status

−rpenalty otherwise
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If not finished, episodes are aborted after a predefined max
number of steps, without receiving the termination reward.

Training with Evolution Strategies With the objective de-
fined, we observe that for our task, the potential action space
as well as the horizon of the episode can be quite large (up to
20,000 and 1,000, respectively). As Vemula, Sun, and Bagnell
(2019) show, the exploration complexity of an action-space
exploration RL algorithm (e.g, Q-Learning, Policy Gradient)
increases with the size of the action space and the problem
horizon. On the other hand, a parameter-space exploration
algorithm like ES is independent of these two factors. There-
fore, we choose to use a version of ES proposed by Salimans
et al. (2017) for optimizing our agent.

SharpSAT Components as GNNs As the task for the neu-
ral network agent is to pick a literal l from the component
φ, we opt for a LIG representation of the component (see
Section 2) and we use GNNs to compute a literal selection
heuristic based on that representation. In detail, given the LIG
G = (V,E) of a component φ, we denote the set of clause
nodes as C ⊂ V , and the set of literal nodes as L ⊂ V ,
V = C ∪ L. The initial vector representation is denoted by
h

(0)
c for each clause c ∈ C and h(0)

l for each literal l ∈ L,
both of which are learnable model parameters. We run the
following message passing steps iteratively:

- Literal to Clause (L2C):

h(k+1)
c = A

(
h(k)
c ,
∑
l∈c

[h
(k)
l , h

(k)

l̄
];W

(k)
C

)
, ∀c ∈ C,

- Clause to Literal (C2L):

h
(k+1)
l = A

(
h

(k)
l ,

∑
c,l∈c

h(k)
c ;W

(k)
L

)
, ∀l ∈ L,

where A is a nonlinear aggregation function, parameterized
by W (k)

C for clause aggregation and W (k)
L for literal aggrega-

tion at the kth iteration. Following Selsam et al. (2019); Led-
erman et al. (2020), to ensure negation invariance (i.e. that the
graph representation is invariant under literal negation), we
concatenate the literal representations corresponding to the
same variable h(k)

l , h
(k)

l̄
when running L2C message passing.

After K iterations, we obtain a d-dimensional vector repre-
sentation for every literal in the graph. We pass each repre-
sentation through a policy network, a Multi-Layer Perceptron
(MLP), to obtain a score, and we choose the literal with the
highest score. Recently, Xu et al. (2019) developed a GNN
architecture named Graph Isomorphism Network (GIN), and
proved that it achieves maximum expressiveness among the
class of GNNs. We hence choose GIN for the parameteriza-
tion ofA. Specifically,A(x, y;W ) = MLP((1+ε)x+y;W ),
where ε is a hyperparameter.

Sequential Semantics Many problems, such as dynami-
cal systems and bounded model checking, are iterative in
nature, with a distinct temporal dimension to them. In the
original problem domain, there is often a state that is evolved

through time via repeated applications of a state transition
function. A structured CNF encoding of such problems usu-
ally maps every state st to a set of variables, and adds sets of
clauses to represent the dynamical constraints between every
transition (st, st+1). Normally, all temporal information is
lost in reduction to CNF. However, with a learning-based
approach, the time-step feature from the original problem can
be readily incorporated as an additional input to the network,
effectively annotating each variable with its time-step. In our
experiments, we represented time by appending to each lit-
eral embedding a scalar value (representing the normalized
time-step t) before passing it through the output MLP. We
perform an ablation study to investigate the impact of this
additional feature in Section 5.

Engineering Trade-offs and Constraints Directly train-
ing on challenging #SAT instances of enormous size is
computationally infeasible. We tackle this issue by train-
ing Neuro# on small instances of a problem (fast rollouts)
and relying on generalization to solve the more challenging
instances from the same problem domain. Thus the main re-
quirement is the availability of the generative process that lets
us sample problems with desired level of difficulty. Access
to such generative process is not an unreasonable assumption
in industry and research.

Although reducing the number of branching steps is
itself interesting, to beat SharpSAT in wall-clock time,
Neuro#’s lead needs to be wide enough to justify the im-
posed overhead of querying the GNN. Since the time-per-
step ratio is relatively constant, for the method to be effective
it is desirable that the step count reduction be superlinear,
meaning it becomes more effective compared to the vanilla
heuristic the larger the problem becomes.

4 Data Generation
Our goal was to evaluate our method on more structured and
much larger instances than the small random instances typi-
cally used in other related works (Yolcu and Póczos 2019; Sel-
sam et al. 2019; Kurin et al. 2019). To that end, we searched
SAT and planning benchmarks for problems whose genera-
tive processes were publicly available or feasible to imple-
ment. To test the versatility of our method, we made sure
that these problems cover a diverse set of domains: sudoku,
blocked n-queens, cell (combinatorial); sha-1 preimage at-
tack (cryptography); island, grid wrld (planning), bv expr,
it expr (circuits). For brevity, we explain two of the problems
that we will use in later sections to discuss the behaviour of
our trained model and provide a more detailed description of
the other datasets and their generation process in Appendix B:

• cell(R,n, r): Elementary (i.e., one-dimensional, binary)
Cellular Automata are simple systems of computation
where the cells of an n-bit binary state vector are pro-
gressed through time by repeated applications of a rule R
(seen as a function on the state space). Figure 2a shows the
evolution grid of rules 9, 35 and 49 for 20 iterations.
Reversing Elementary Cellular Automata: Given a ran-
domly sampled state T , compute the number of initial
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(a) (b) (c) (d)

Figure 2: Contrary to SharpSAT, Neuro# branches earlier
on variables of the bottom rows. (a) Evolution of a bit-vector
through repeated applications of Cellular Automata rules.
The result of applying the rule at each iteration is placed un-
der the previous bit-vector, creating a two-dimensional, top-
down representation of the system’s evolution; (b) The initial
formula simplification on a single formula. Yellow indicates
the regions of the formula that this process prunes; (c & d)
Variable selection ordering by SharpSAT and Neuro# av-
eraged over the entire dataset. Lighter colours show that the
corresponding variable is selected earlier on average.

states I that would lead to that terminal state T in r ap-
plications of R, i.e.,

∣∣{I : Rr(I) = T}
∣∣. The entire r-

step evolution grid is encoded by mapping each cell to
a Boolean variable (n × r in total). The clauses impose
the constraints between cells of consecutive rows as given
by R. The variables corresponding to T (last row of the
evolution grid) are assigned as unit clauses. This problem
was taken from SATCOMP 2018 (Heule, Järvisalo, and
Suda 2018).

• grid wrld(s, t): This bounded horizon planning problem
from (Vazquez-Chanlatte et al. 2018; Vazquez-Chanlatte,
Rabe, and Seshia 2019) is based on encoding a grid world
with different types of squares (e.g., lava, water, recharge),
and a formal specification such as “Do not recharge while
wet” or “avoid lava”. We randomly sample a grid world
of size s and a starting position I for an agent. We encode
to CNF the problem of counting the number of trajectories
of length t beginning from I that always avoid lava.

5 Experiments
To evaluate our method, we designed experiments to answer
the following questions: 1) I.I.D. Generalization: Can a
model trained on instances from a given distribution general-
ize to unseen instances of the same distribution? 2) Upward
Generalization: Can a model trained on small instances gen-
eralize to larger ones? 3) Wall-Clock Improvement: Can
the model improve the runtime substantially? 4) Interpreta-
tion: Does the sequence of actions taken by the model exhibit
any discernible pattern at the problem level? Our baseline

Dataset # vars # clauses
Rand

om
Shar

pSAT
Neur

o#

sudoku(9, 25) 182 3k 338 220 195(1.1x)
n-queens(10, 20) 100 1.5k 981 466 261(1.7x)
sha-1(28) 3k 13.5k 2,911 52 24(2.1x)
island(2, 5) 1k 34k 155 86 30(1.8x)
cell(9, 20, 20) 210 1k 957 370 184(2.0x)
cell(35, 128, 110) 6k 25k 867 353 198(1.8x)
cell(49, 128, 110) 6k 25k 843 338 206(1.6x)
grid wrld(10, 5) 329 967 220 195 66(3.0x)
bv expr(5, 4, 8) 90 220 1,316 328 205(1.6x)
it expr(2, 2) 82 264 772 412 266(1.5x)

Table 1: Neuro# generalizes to unseen i.i.d. test problems
often with a large margin compared to SharpSAT.

Dataset # vars # clauses
Rand

om
Shar

pSAT
Neur

o#

sudoku(16, 105) 1k 31k 7,654 2,373 2,300 (1.03x)
n-queens(12, 20) 144 2.6k 31,728 12,372 6,272 (1.9x)
sha-1(40) 5k 25k 15k 387 83 (4.6x)
island(2, 8) 1.5k 73.5k 1,335 193 46 (4.1x)
cell(9, 40, 40) 820 4k 39,000 53,349 42,325(1.2x)
cell(35, 192, 128) 12k 49k 36,186 21,166 1,668 (12.5x)
cell(35, 256, 200) 25k 102k 41,589 26,460 2,625 (10x)
cell(35, 348, 280) 48k 195k 54,113 33,820 2,938 (11.5x)
cell(49, 192, 128) 12k 49k 35,957 24,992 1,829 (13.6x)
cell(49, 256, 200) 25k 102k 47,341 30,817 2,276 (13.5x)
cell(49, 348, 280) 48k 195k 53,779 37,345 2,671 (13.9x)
grid wrld(10, 10) 740 2k 22,054 13,661 367 (37x)
grid wrld(10, 12) 2k 6k 100k≤ 93,093 1,320 (71x)
grid wrld(10, 14) 2k 7k 100k≤ 100k≤ 2,234 (–)
grid wrld(12, 14) 2k 8k 100k≤ 100k≤ 2,782 (–)
bv expr(7, 4, 12) 187 474 35,229 5,865 2,139 (2.7x)
it expr(2, 4) 162 510 51,375 7,894 2,635 (3x)

Table 2: Neuro# generalizes to much larger problems than
what it was trained on, sometimes achieving orders of magni-
tude improvements over SharpSAT.

in all comparisons is SharpSAT’s heuristic. Also, to make
sure that our model’s improvements are not trivially attain-
able without training we tested a Random policy that simply
chooses a literal uniformly at random. We also studied the
impact of the trained model on a variety of solver-specific
quality metrics (e.g., cache-hit rate, . . . ), the results of which
are in Appendix D.

The grid wrld, being a problem of an iterative nature
(i.e., steps in the planning problem), was a natural candi-
date for testing our hypothesis regarding the effect of adding
the “time” feature of Section 3, so we report the results for
grid wrld with that feature included and later in this section
we perform an ablation study on that feature.

Experimental Setup For each dataset, we sampled 1,800
instances for training and 200 for testing. We trained for
1000 ES iterations. At each iteration, we sampled 8 formulas
and 48 perturbations (σ = 0.02). With mirror sampling,
we obtained in total 96 = 48 × 2 perturbations. For each
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Figure 3: Neuro# generalizes well to larger problems. Com-
pare the robustness of Neuro# vs. SharpSAT as the prob-
lem sizes increase. Solid and dashed lines correspond to
SharpSAT and Neuro#, respectively. All episodes are
capped at 100k steps.

perturbation, we ran the agent on the 8 formulas (in parallel),
to a total of 768 = 96 × 8 episodes per parameter update.
All episodes, unless otherwise mentioned, were capped at
1k steps during training and 100k during testing. The agent
received a negative reward of rpenalty = 10−4 at each step.
We used the Adam optimizer (Kingma and Ba 2015) with
default hyperparameters, a learning rate of η = 0.01 and a
weight decay of 0.005.

GNN messages were implemented by an MLP with ReLU
non-linearity. The size of literal and clause embeddings
were 32 and the dimensionality of C2L (resp. L2C) mes-
sages was 32 × 32 × 32 (resp. 64 × 32 × 32). We used
T = 2 message passing iterations and final literal embed-
dings were passed through the MLP policy network of dimen-
sions 32× 256× 64× 1 to get the final score. When using
the extra “time” feature, the first dimension of the decision
layer was 33 instead of 32. The initial (T = 0) embeddings
of both literals and clauses were trainable model parameters.

5.1 Results
I.I.D. Generalization Table 1 summarizes the results of
the i.i.d. generalization over the problem domains of Sec-
tion 4. We report the average number of branching steps on
the test set. Neuro# outperformed the baseline across all
datasets. Most notably, on grid wrld, it reduced the num-
ber of branching steps by a factor of 3.0 and on cell, by an
average factor of 1.8 over the three cellular rules.

Upward Generalization We created instances of larger
sizes (up to an order of magnitude more clauses and vari-
ables) for each of the datasets in Section 4. We took the
models trained from the previous i.i.d. setting and directly

(a) cell(49, 256, 200) (b) grid wrld(10, 12)

Figure 4: Cactus plots comparing Neuro# to SharpSAT on
cell and grid wrld. Lower and to the right is better: for any
point t on the y axis, the plot shows the number of benchmark
problems that are individually solvable by the solver, within
t steps (top) and seconds (bottom).

evaluated on these larger instances without further training.
The evaluation results in Table 2 show that Neuro# general-
ized to the larger instances across all datasets and in almost
all of them achieved substantial gains compared to the base-
line as we increased the instance sizes. Figure 3 shows this
effect for multiple sizes of cell(49) and grid wrld by plotting
the percentage of the problems solved within a number of
steps. The superlinear gaps get more pronounced once we
remove the cap of 105 steps, i.e., let the episodes run to com-
pletion. In that case, on grid wrld(10, 12), Neuro# took an
average of 1,320 branching decisions, whereas SharpSAT
took 809,408 (613x improvement).

Wall-Clock Improvement Given the scale of improve-
ments on the upward generalization benchmark, in partic-
ular cell(49) and grid wrld, we measured the runtime of
Neuro# vs. SharpSAT on those datasets (Figure 4). On
both problems we observe that as Neuro# widens the gap in
the number of steps, it manages to beat SharpSAT in wall-
clock. Note that the query overhead could still be greatly
reduced in our implementation through GPU utilization, load-
ing the model in the solver’s code in C++ instead of making
out-of-process calls to Python, etc.

5.2 Model Interpretation
Formal analysis of the learned policy and its performance im-
provements is difficult, however we can form some high-level
conjectures regarding the behaviour of Neuro# by how well
it decomposes the problem. Here we look at cell. The reason
is that this problem has a straightforward encoding that di-
rectly relates the CNF representation to an easy-to-visualize
evolution grid that coincides with the standard representation
of Elementary Cellular Automata. The natural way to decom-
pose this problem is to start from the known state T (bottom
row) and to “guess” the preimage, row by row from the bot-
tom up through variable assignment. Different preimages can
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Figure 5: Full-sized variable selection heatmap on dataset
cell(35, 348, 280). We show the 99th percentile for each row
of the heatmap in the last column.

be computed independently upwards, and indeed, this is how
a human would approach the problem. Heat maps in Figure 2
(c & d) depict the behaviour under SharpSAT and Neuro#
respectively. The heat map aligns with the evolution grid,
with the terminal state T at the bottom. The hotter coloured
cells indicate that, on average, the corresponding variable is
branched on earlier by the policy. The cooler colours show
that the variable is often selected later or not at all, meaning
that its value is often inferred through UP either initially or
after some variable assignments. That is why the bottom row
T and adjacent rows are completely dark, because they are
simplified by the solver before any branching happens. We
show the effect of this early simplification on a single for-
mula per dataset in Figure 2 (b). Notice that in cell(35&49)
the simplification shatters the problem space into few small
components (dark triangles), while in cell(9) which is a more
challenging problem, it only chips away a small region of
the problem space, leaving it as a single component. Regard-
less of this, as conjectured, we can see a clear trend with
Neuro# focusing more on branching early on variables of
the bottom rows in cell(9) and in a less pronounced way in
cell(35&49). Moreover, as more clearly seen in the heatmap
for the larger problem in Figure 5, Neuro# actually branches
early according to the pattern of the rule.

5.3 Ablation Study
We tested the degree to which the “time” feature contributed
to the upward generalization performance of grid wrld. We
compared three architectures with SharpSAT as the base-
line: 1. GNN: The standard architecture proposed in Section 3,
2. GNN+Time: Same as GNN but with the variable embed-
dings augmented with the “time” feature and 3. Time: Where
no variable embedding is computed and only the “time” fea-
ture is fed into the policy network. As depicted in Figure 6, we
discovered that “time” is responsible for most of the improve-
ment over SharpSAT. This fact is encouraging, because
it demonstrates the potential gains that could be achieved
by simply utilizing problem-level data, such as “time”, that
otherwise would have been lost during the CNF encoding.

5.4 Discussions
We observed varying degrees of success on different problem
families. This raises the question of what traits make a prob-
lem more amenable for improvement via Neuro#. One of
the main contributing factors is the model’s ability to observe
similar components many times during training. In other

Figure 6: Ablation study on the impact of the “time” feature
on upward generalization on grid wrld(10, 12).

words, if a problem gets shattered into smaller components
either by the initial simplification (e.g., UP) or after a few
variable assignments, there is a high chance that the model
fits to such distribution of components. If larger problems
of the same domain also break down into similar compo-
nent structures, then Neuro# can generalize well on them.
This explains why sequential problems like grid wrld benefit
from our method, as they are naturally decomposable into
similar iterations and addition of the “time” feature demar-
cates the boundaries between iterations even more clearer.

Recently (Bliem and Järvisalo 2019) showed branching ac-
cording to the centrality scores of variable nodes of the CNF
graph leads to significant performance improvements. We
obtained their centrality enhanced version of SharpSAT and
compared it with Neuro# trained on specific problem fam-
ily. We found that, although centrality enhanced SharpSAT,
Neuro# retained its orders of magnitude superiority over it.
This indicates that whatever structure Neuro# is exploiting
from the graph, it is not exclusively centrality. Also we com-
pared the performance of Neuro# against the state-of-the-art
probabilistic model counter GANAK (Sharma et al. 2019).
Note that this solver performs the easier task of providing a
model count that is only probably correct within a given er-
ror tolerance. Thus to make the comparison more fair we set
the error tolerance of GANAK to a small value of 10−3 and
observed that its performance was again inferior to Neuro#.
An interesting future direction would be to investigate if our
method could also be used to customize GANAK’s heuristics.
Appendix C includes cactus plots for every problem in our
dataset along with comparison to both centrality and GANAK.

6 Conclusion
We studied the feasibility of enhancing the branching heuris-
tic in propositional model counting via learning. We used
solver’s branching steps as a measure of its performance
and trained our model to minimize that measure. We demon-
strated experimentally that the resulting model not only is
capable of generalizing to the unseen instances from the same
problem distribution, but also maintains its lead relative to
SharpSAT on larger problems. For certain problems, this
lead widens to a degree that the trained model achieves wall-
clock time improvement over the standard heuristic, in spite
of the imposed runtime overhead of querying the model. This
is an exciting first step and it positions this line of research as
a potential path towards building better model counters and
thus broadening their application horizon.
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