
Policy-Guided Heuristic Search with Guarantees

Laurent Orseau,1 Levi H. S. Lelis2

1DeepMind, UK
2Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada

lorseau@google.com, levi.lelis@ualberta.ca

Abstract

The use of a policy and a heuristic function for guiding search
can be quite effective in adversarial problems, as demonstrated
by AlphaGo and its successors, which are based on the PUCT
search algorithm. While PUCT can also be used to solve single-
agent deterministic problems, it lacks guarantees on its search
effort and it can be computationally inefficient in practice.
Combining the A* algorithm with a learned heuristic function
tends to work better in these domains, but A* and its variants
do not use a policy. Moreover, the purpose of using A* is
to find solutions of minimum cost, while we seek instead to
minimize the search loss (e.g., the number of search steps).
LevinTS is guided by a policy and provides guarantees on
the number of search steps that relate to the quality of the
policy, but it does not make use of a heuristic function. In this
work we introduce Policy-guided Heuristic Search (PHS), a
novel search algorithm that uses both a heuristic function and
a policy and has theoretical guarantees on the search loss that
relates to both the quality of the heuristic and of the policy.
We show empirically on the sliding-tile puzzle, Sokoban, and
a puzzle from the commercial game ‘The Witness’ that PHS
enables the rapid learning of both a policy and a heuristic func-
tion and compares favorably with A*, Weighted A*, Greedy
Best-First Search, LevinTS, and PUCT in terms of number of
problems solved and search time in all three domains tested.

1 Introduction
In this work1 we are interested in tackling single-agent de-
terministic problems. This class of problems includes nu-
merous real-world applications such as robotics, planning
and pathfinding, computational biology (Edelkamp, Schroedl,
and Koenig 2010), protein design (Allouche et al. 2019), and
program synthesis (Cropper and Dumancic 2020).

AlphaGo (Silver et al. 2017), and descendants such as
MuZero (Schrittwieser et al. 2020) combine a learned value
function with a learned policy in the PUCT search algo-
rithm (Rosin 2011; Kocsis and Szepesvári 2006), which is
a Monte-Carlo tree search algorithm (Chang et al. 2005;
Coulom 2007), to tackle stochastic and adversarial games
with complete information, and also a few single-agent
games. The policy guides the search locally by favoring the

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1An extended version of this paper can be found at http://arxiv.
org/abs/2103.11505.

most promising children of a node, whereas the value func-
tion ranks paths globally, thus complementing each other.
PUCT, based on UCT (Kocsis and Szepesvári 2006) and
PUCB (Rosin 2011), is indeed designed for adversarial and
stochastic games such as Go and Chess, and UCT and PUCB
come with a guarantee that the value function converges to
the true value function in the limit of exploration—however
this guarantee may not hold when replacing actual rewards
with an estimated value, as is done in the mentioned works.

Although these algorithms perform impressively well for
some adversarial games, it is not clear whether the level of
generality of PUCT makes it the best fit for difficult deter-
ministic single-agent problems where a planning capability is
necessary, such as the PSPACE-hard Sokoban problem (Cul-
berson 1999). The more recent algorithm MuZero (Schrit-
twieser et al. 2020) adapts AlphaZero to single-agent Atari
games, but these games are mostly reactive and MuZero
performs poorly on games that require more planning like
Montezuma’s Revenge—although this may arguably pertain
to MuZero needing to learn a model of the environment.

In the context of single-agent search the value function is
known as a heuristic function and it estimates the cost-to-go
from a given state to a solution state. McAleer et al. (2019)
used MCTS to learn a heuristic function—but not a policy—
to tackle the Rubik’s cube, but later replaced MCTS entirely
with weighted A* (Pohl 1970; Ebendt and Drechsler 2009),
which is a variant of the A* algorithm (Hart, Nilsson, and
Raphael 1968) that trades off solution quality for search time.
They observe that “MCTS has relatively long runtimes and
often produces solutions many moves longer than the length
of a shortest path” (Agostinelli et al. 2019), and tackle a few
more problems such as the sliding tile puzzle and Sokoban.

Levin Tree Search (LevinTS) (Orseau et al. 2018) uses a
learned policy to guide its search in single-agent problems
and comes with an upper bound on the number of search
steps that accounts for the quality of the policy.

In this work we combine the policy-guided search of the
LevinTS algorithm with the heuristic-guided search of A* in
an algorithm we call Policy-guided Heuristic Search (PHS).
PHS retains the upper bound of LevinTS—we also prove an
almost matching lower bound—but we extend this guarantee
to the use of a heuristic function, showing that an accurate
heuristic can greatly reduce the number of search steps.

We compare our algorithm with several policy-guided and

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12382

heuristic search algorithms when learning is interleaved with
search in the Bootstrap process (Jabbari Arfaee, Zilles, and
Holte 2011): LevinTS uses a policy; A*, Weighted A* (WA*)
and Greedy Best-First Search (GBFS) (Doran, Michie, and
Kendall 1966) all use a heuristic, and PUCT uses both like
PHS. We evaluate these algorithms on the 5×5 sliding-tile
puzzle, Sokoban (Boxoban), and on a puzzle from the game
‘The Witness’. Our results show that PHS performs well on
all three domains tested, while every other algorithm tested
performs poorly in at least one of these domains.

2 Notation and Background
Search algorithms solve single-agent problems by searching
in the tree that defines the problem. Let N be the set of all
nodes that can be part of such a tree. The root of the tree is
denoted n0 ∈ N . For any node n ∈ N , its set of children is
C(n), its single parent is par(n) (the root has no parent), its
set of ancestors including n itself is anc∗(n), and its set of
descendants including n itself is desc∗(n); its depth is d(n)
(d(n0) = 0) and also define d0(n) = d(n) + 1.

We say that a node is expanded when a search algorithm
generates the set of children of the node. All search algo-
rithms we consider are constrained to expand the root first
and, subsequently, a node n can be expanded only if its parent
par(n) has already been expanded.

A problem is defined by a root node n0, a non-negative
loss function ` : N → [0,∞], a set of solution nodes
NG ⊆ desc∗(n0), and a state function defined below.
There is a predicate is_solution(n) available to the
search algorithms to test whether n ∈ NG , but it can be
used on n only after par(n) has been expanded (i.e., n must
have been generated). The loss `(n) is incurred by the al-
gorithm when expanding the node n. For simplicity of the
formalism, we assume that a node which is tested positive
with is_solution is implicitly expanded—thus incur-
ring a loss—but has no children. The path loss g(n) of a
node n is the sum of the losses from the root to n, that is
g(n) =

∑
n′∈anc∗(n) `(n

′). For example, if the loss is one
for any expanded node n, then g(n) = d0(n). We assume
that no infinite path has finite path loss. For any search algo-
rithm S, the search loss L(S, n) is the sum of the individual
losses `(n′) for all nodes n′ that have been expanded by the
algorithm S, up to and including n, and L(S, n) = ∞ if n
is never expanded. For example, if the loss `(n) is the time
needed to expand node n, then L(S, n) corresponds to the
computation time of the whole search when reaching n.

A policy π : N → [0, 1] is defined recursively for
a child n′ of a node n: π(n′) = π(n)π(n′|n) where
the conditional probability π(n′|n) ∈ [0, 1] is such that∑
n′∈C(n) π(n′|n) ≤ 1, and π(n0) = 1. Therefore, π(n) =∏
n′∈anc∗(n)\{n0} π(n′|par(n′)).
Let S ⊆ N be a set of ‘canonical nodes’. The function

state : N → S associates a node to a state (a canoni-
cal node), with the constraints that `(n) = `(state(n)),
is_solution(n) = is_solution(state(n)) and
{state(n′) : n′ ∈ C(n)} = C(state(n)). Search al-
gorithms may use the state function to avoid expanding
nodes with the same states.

2.1 Background
The Best-First Search (BFS) search algorithm (Pearl 1984)
(see Algorithm 1) expands nodes by increasing value, starting
from the root and always expanding children only if their
parent has been expanded already. It does not expand nodes
whose states have been visited before, and returns the first
solution node it expands.

The A* search algorithm (Hart, Nilsson, and Raphael
1968) uses both the function g and a heuristic function
h : N → [0,∞]. It uses BFS with the evaluation func-
tion f(n) = g(n) + h(n). If the heuristic h is admissible,
i.e., g(n) + h(n) is a lower bound on the cost of the least-g-
cost solution node below n, then A* is guaranteed2 to return
a solution with minimal g-cost. Weighted A* (Ebendt and
Drechsler 2009) is a variant of A* that uses the evaluation
function fw(n) = g(n) +w ·h(n) and has the guarantee that
the first solution found has a g-cost no more than a factor w
of the minimum cost solution if h is admissible and w ≥ 1.

LevinTS (Orseau et al. 2018) also uses the BFS algo-
rithm, but with the evaluation function fπ = d0(n)/π(n)
for a given policy π. LevinTS is guaranteed to expand no
more than d0(n∗)/π(n∗) nodes until the first solution n∗ is
found, that is, with `(·) = 1 for all nodes, L(LevinTS, n∗) ≤
d0(n∗)/π(n∗). Since d0(n∗) is fixed, it shows that the better
the policy π, the shorter the search time. Theorem 4 provides
an almost-matching lower bound.

The PUCT algorithm (Silver et al. 2016) is not based on
BFS, but on UCT (Kocsis and Szepesvári 2006), which learns
a value function from rewards, and on PUCB (Rosin 2011),
which additionally uses a policy prior. Both ingredients are
used to determine which node to expand next. The PUCT
formula depends on the current number of node expansions
performed during search. This dependency prevents the algo-
rithm from being able to use a priority queue which requires
the node values to not change over time. Hence each time the
algorithm performs a single node expansion, it has to go back
to the root to potentially take a different path for the next
expansion. In some cases, this additional cost can lead to a
quadratic increase of the computation time compared to the
number of node expansions. Although this search strategy
can be effective in stochastic and adversarial environments, it
is often wasteful for deterministic single-agent problems. The
original UCT algorithm (Kocsis and Szepesvári 2006) has
regret-style guarantees, but as noted by Orseau et al. (2018),
these guarantees are rarely meaningful in deterministic single-
agent problems where rewards are often 0 until a solution is
found; moreover, these guarantees do not hold for modern
implementations that replace the rewards and the rollouts
with a learned value function.

2.2 Definition of the Search Problem
Our overarching objective is to design algorithms that,
when given a set of unknown tasks, solve all of them as
quickly as possible while starting with little to no knowl-
edge about the tasks. That is, for K tasks, we want to de-
vise an algorithm S that minimizes the total search loss

2Technically, this requires either that re-expansions are per-
formed or that the heuristic is consistent.

12383

∑
k∈[K] minn∗∈NGk

Lk(S, n∗). Observe that this departs
from the more traditional objective of finding solutions of
minimum path loss for all tasks, that is, of minimizing∑
k∈[K] g(n∗k) where n∗k is the solution node found by the

algorithm for task k. Hence, we do not require the solutions
encountered by the search algorithms to be path-cost optimal.

To this end we embed our algorithms into the Bootstrap
process (Jabbari Arfaee, Zilles, and Holte 2011), which itera-
tively runs a search algorithm with a bound on the number
of node expansions (or running time) on a set of training
tasks. The problems solved in a given iteration are used to up-
date the parameters of a model encoding a heuristic function
and/or a policy. The process is then repeated with the newly
trained model, possibly after increasing the budget. This pro-
cess does not use or generate a curriculum, but assumes that
there are problems of varying difficulties.

Algorithm 1 The Policy-guided Heuristic Search algorithm
(PHS), based on the Best-First Search algorithm (BFS). (Re-
expansions are not performed.)

def PHS(n0): return BFS(n0, ϕ)

def BFS(n0, evaluate):
q = priority_queue(order_by=evaluate)
q.insert(n0)
visited_states = {}
while q is not empty:
n = q.extract_min() # node of min value
s = state(n)
if s in visited_states:
continue # pruning

visited_states += {s}
incur_loss `(n)
if is_solution(n):
return n

Node expansion
for n′ in children(n):
q.insert(n′, evaluate(n′))

return False

3 Policy-guided Heuristic Search
For all our theoretical results, we assume that ∀n ∈ N :
state(n)=n to avoid having to deal with re-expansions.

We generalize LevinTS first by considering arbitrary non-
negative losses `(n) rather than enforcing `(n) = 1, and
by introducing a heuristic factor η(n) ≥ 1. Our algorithm
Policy-guided Heuristic Search (PHS) simply calls BFS (see
Algorithm 1) with the evaluation function ϕ defined as:

ϕ(n) = η(n)
g(n)

π(n)
,

where g and π were defined in Section 2, and ϕ(n) = ∞
if π(n) = 0; Orseau et al. (2018) discuss how to prevent
π(n) = 0. The factor g(n)/π(n) can be viewed as an approx-
imation of the search loss L(PHS, n) when reaching n: g(n)

is the loss of the path from the root to n, and 1/π(n) plays a
similar role to an importance sampling weight that rescales
the (local) path loss to the (global) search loss. Note that
paths with large probability π are preferred to be expanded
before paths with small π-values. The purpose of the new
heuristic factor η(n) is to rescale the current estimate of the
search loss L(·, n) to an estimate of the search loss L(·, n∗)
at the least-cost solution node n∗ that descends from n. This
is similar to how f(n) is an estimate of g(n∗) in A*. If both
η(·) and `(·) are 1 everywhere, PHS reduces to LevinTS.

Although for LevinTS fπ is monotone non-decreasing
from parent to child (Orseau et al. 2018), this may not be
the case anymore for ϕ due to η. Thus, for the sake of the
analysis we define the monotone non-decreasing evaluation
function ϕ+(n) = maxn′∈anc∗(n) ϕ(n′). Since in BFS nodes
are expanded in increasing order of their value, and a node n
cannot be expanded before any of its ancestors, it is guaran-
teed in PHS that a node n is expanded before any other node
n′ with ϕ+(n′) > ϕ+(n).

Define η+(n) = ϕ+(n)π(n)
g(n) ≥ η(n), and η+(n) = η(n)

if g(n) = 0, such that

ϕ+(n) = η+(n)
g(n)

π(n)
.

Note that even if we ensure that η(n∗) = 1 for any solution
node n∗ ∈ NG , in general ϕ+(n∗) may still be larger than
ϕ(n∗), that is, we may have η+(n∗) > 1.

We now state our main result and explain it below. Define
the set of nodes Nϕ(n) = {n′ ∈ desc∗(n0) : ϕ+(n′) ≤
ϕ+(n)} of value at most ϕ+(n) and its set of leaves Lϕ(n) =
{n′ ∈ Nϕ(n) : C(n′) ∩Nϕ(n) = ∅} that is, the set of nodes
in Nϕ(n) that do not have any children in this set.
Theorem 1 (PHS upper bound). For any non-negative
loss function `, for any set of solution nodes NG ⊆
desc∗(n0), and for any given policy π and any given heuris-
tic factor η(·) ≥ 1, PHS returns a solution node n∗ ∈
argminn∗∈NG ϕ

+(n∗) and the search loss is bounded by

L(PHS, n∗) ≤ g(n∗)

π(n∗)
η+(n∗)

∑
n∈Lϕ(n∗)

π(n)

η+(n)
. (1)

Proof. Slightly abusing notation, for a set of nodes N ′, de-
fine L(N ′) =

∑
n∈N ′ `(n) to be the cumulative loss over the

nodes inN ′. Since ϕ+ is non-decreasing from parent to child,
Nϕ(n) forms a tree rooted in n0 and therefore all the nodes
inNϕ(n) are expanded by BFS(n0, ϕ) before any other node
not in Nϕ(n). Therefore, L(PHS, n) ≤ L(Nϕ(n)). Then,

L(Nϕ(n)) = L
(⋃
n′∈Lϕ(n)

anc∗(n′)
)

≤
∑

n′∈Lϕ(n)

L(anc∗(n′))

=
∑

n′∈Lϕ(n)

g(n′) ≤ ϕ+(n)
∑

n′∈Lϕ(n)

π(n′)

η+(n′)

where the last inequality follows from η+(n′) g(n′)
π(n′) =

ϕ+(n′) ≤ ϕ+(n). Finally, since this is true for any n, the
result holds for the returned n∗ ∈ NG .

12384

We can derive a first simpler result:

Corollary 2 (PHS upper bound with no heuristic). From
Theorem 1, if furthermore ∀n, η(n) = 1 then

L(PHS, n∗) ≤ g(n∗)

π(n∗)
. (2)

Proof. Follows from Theorem 1 and
∑
n′∈Lϕ(n) π(n′) ≤ 1

for all n (Orseau et al. 2018, Theorem 3).

The bound in Eq. (2) is similar to the bound provided for
LevinTS (and equal when `(n) = 1 everywhere) and shows
the effect of the quality of the policy on the cumulative loss
during the search: Since necessarily L(PHS, n∗) ≥ g(n∗),
the bound says that the search becomes more efficient as
π(n∗) gets closer to 1. Conversely, with an uninformed policy
π the probability decreases exponentially with the depth,
which means that the search becomes essentially a breadth-
first search. The bound in Eq. (1) furthermore shows the
effect of the heuristic function where the additional factor
can be interpreted as the ratio of the heuristic value η+(n∗)
at the solution to the (preferably larger) average heuristic
value at the leaves of the search tree when reaching n∗. If the
heuristic is good, then this bound can substantially improve
upon Eq. (2)—but it can also degrade with a poor heuristic.

Example 3. Consider a binary tree where the single solu-
tion node n∗ is placed at random at depth d. Assume that
π(n′|n) = 1/2 for both children n′ of any node n. Assume
that η(n) =∞ for all nodes except η(n) = 1 for the nodes
on the path from the root to n∗, which makes PHS expand
only the d + 1 nodes on the path from the root to n∗. Take
`(n) = 1 for all nodes. Then Eq. (2) tells us that the search
loss (which is here the number of expanded nodes) is bounded
by (d+ 1)2d+1, which is correct but rather loose. By taking
the (very informative) heuristic information into account, we
have

∑
n∈Lϕ(n∗)

π(n)
η+(n) = π(n∗)/η(n∗) and thus Eq. (1)

tells us that the search loss is bounded by g(n∗) = d + 1,
which is tight. 4

The following lower bound is close to the bound of Eq. (2)
in general, and applies to any algorithm, whether it makes
use of the policy or not. First, we say that a policy π is proper
if for all nodes n,

∑
n′∈C(n) π(n′|n) = 1.

Theorem 4 (Lower bound). For every proper policy π and
non-negative loss function ` such that `(n0) = 0, for ev-
ery search algorithm S—that first expands the root and sub-
sequently expands only children of nodes that have been
expanded—there are trees rooted in n0 and sets of solution
nodes NG such that

min
n∗∈NG

L(S, n∗) ≥ g(n̂∗)

π(n∗)
, with n̂∗ = par(par(n∗)) .

Proof. Consider the following infinite tree: The root n0 has
m children, n1,1, n2,1 . . . nm,1 and each child ni,1 is assigned
an arbitrary conditional probability π(ni,1|n0) ≥ 0 such that∑
i∈[m] π(ni,1|n0) = 1. Each node ni,j has a single child

ni,j+1 with π(ni,j+1|ni,j) = 1, and is assigned an arbitrary
loss `(ni,j) ≥ 0. Observe that π(ni,j) = π(ni,1|n0).

Now let the given search algorithm expand nodes in any
order, as long as parents are always expanded before their
children, until at least one node is expanded in each branch
with positive probability—if this is not met then the bound
holds trivially. Then stop the search after any finite number
of steps. Let n̂i be the last expanded node in each branch
i ∈ [m]. Then pick the node n̂∗ among the n̂i with small-
est g(n̂i)/π(n̂i). Since this node n̂∗ has been expanded, its
unique child n̂′ may have already been tested for solution, but
not its grand-child since n̂′ has not yet been expanded. So we
set n∗ to be the unique child of n̂′, and set NG = {n∗}. For
each branch i we have g(n̂i)/π(n̂i) ≥ g(n̂∗)/π(n̂∗). There-
fore, recalling that the policy is proper, the cumulative loss
before testing if n∗ is a solution is at least∑
i∈[m]

g(n̂i) ≥
∑
i∈[m]

π(n̂i)
g(n̂∗)

π(n̂∗)
=
g(n̂∗)

π(n̂∗)
=
g(n̂∗)

π(n∗)
.

3.1 Admissible Heuristics
We say that η is PHS-admissible (by similarity to admissi-
bility of heuristic functions for A*) if for all nodes n, for
all solution nodes n∗ below n (i.e., n∗ ∈ desc∗(n) ∩ NG),
we have ϕ(n) ≤ ϕ(n∗) and η(n∗) = 1, that is, ϕ(n∗) =
g(n∗)/π(n∗). This means that ϕ(n) always underestimates
the cost of any descendant solution. This ensures that for
solution nodes, ϕ+(n∗) = ϕ(n∗) = g(n∗)/π(n∗). Note that
we may still not have ϕ+(n) = ϕ(n) for non-solution nodes.
Also observe that taking η(n) = 1 for all n is admissible, but
not informed, similarly to h(n) = 0 in A*.

Hence, ideally, if η(n) =∞ when desc∗(n) ∩NG = ∅,

and η(n) = min
n∗∈desc∗(n)∩NG

g(n∗)/π(n∗)

g(n)/π(n)
,

then ϕ(n) = min
n∗∈desc∗(n)∩NG

g(n∗)/π(n∗)

and thus, similarly to A*, PHS does not expand any node
which does not lead to a solution node of minimal ϕ-value.
When the heuristic is PHS-admissible but not necessarily
ideal, we provide a refined bound of Eq. (1):
Corollary 5 (Admissible upper bound). If η is PHS-
admissible, then the cumulative loss incurred by PHS be-
fore returning a solution node n∗ ∈ argminn∗∈NG ϕ

+(n∗) is
upper bounded by

L(PHS, n∗) ≤ g(n∗)

π(n∗)

∑
n∈Lϕ(n∗)

π(n)

η+(n)︸ ︷︷ ︸
Σ

. (3)

Proof. Follows from Eq. (1) with ϕ+(n∗) = ϕ(n∗) due to
the PHS-admissibility of η.

Corollary 5 offers a better insight into the utility of a heuris-
tic factor η, in particular when it is PHS-admissible. First,
observe that

∑
n′∈Lϕ(n) π(n′) ≤ 1, which means that the

sum term Σ can be interpreted as an average. Second, since
η+(·) ≥ 1, then necessarily Σ ≤ 1, which means that Corol-
lary 5 is a strict improvement over Eq. (2). Σ can thus be
read as the average search reduction factor at the leaves of

12385

the search tree when finding node n∗. Corollary 5 shows that
using a PHS-admissible heuristic factor η can help the search,
on top of the help that can be obtained by using a good policy.
In light of this, we can now interpret η+(n∗) in Eq. (1) as an
excess estimate for inadmissible η, and a trade-off appears
between this excess and the potential gain in the Σ term by
the heuristic. Interestingly, this trade-off disappears when the
heuristic factor is PHS-admissible, that is, the bounds suggest
that using a PHS-admissible heuristic is essentially ‘free.’

A number of traditional problems have readily available
admissible heuristics for A*. We show that these can be used
in PHS too to define a PHS-admissible η. Let h be a heuristic
for A*. Making the dependency on h explicit, define

ηh(n) =
g(n) + h(n)

g(n)
, then ϕh(n) =

g(n) + h(n)

π(n)
.

Theorem 6 (A*-admissible to PHS-admissible). If h is an
admissible heuristic for A*, then ηh is PHS-admissible.

Proof. Since h is admissible for A*, we have g(n) +h(n) ≤
g(n∗) for any solution node n∗ descending from n. Hence
ϕh(n) ≤ g(n∗)/π(n) ≤ g(n∗)/π(n∗) = ϕh(n∗) and thus
ηh is PHS-admissible.

Define h+(n) = π(n) maxn′∈anc∗(n) ϕh(n′) − g(n) ≥
h(n) which is such that ϕ+

h(n) = maxn′∈anc∗(n) ϕh(n′) is
monotone non-decreasing. Then η+

h (n) = 1 + h+(n)/g(n).

Corollary 7 (Admissible upper bound with h). Given a
heuristic function h, if η = ηh is PHS-admissible, then the
cumulative loss incurred before returning a solution node
n∗ ∈ argminn∗∈NG ϕ

+(n∗) is upper bounded by

L(PHS, n∗) ≤ g(n∗)

π(n∗)

∑
n∈Lϕ(n∗)

π(n)

1 + h+(n)/g(n)
.

Proof. Follows by Corollary 5 and the definition of η+

h .

Corollary 7 shows that the larger h(n) (while remaining
admissible), the smaller the sum, and thus the smaller the
bound. A well tuned heuristic can help reduce the cumulative
loss by a large factor compared to the policy alone.

We call PHSh the variant of PHS that takes an A*-like
heuristic function h and uses η = ηh.

3.2 A More Aggressive Use of Heuristics
Similarly to A*, the purpose of the heuristic factor is to es-
timate the g-cost of the least-cost descendant solution node.
But even when h is admissible and accurate, ηh is often not
an accurate estimate of the cumulative loss at n∗ due to miss-
ing the ratio π(n)/π(n∗)—and quite often π(n∗) � π(n).
Hence if h is the only known heuristic information, we pro-
pose an estimate η̂t that should be substantially more accurate
if conditional probabilities and losses are sufficiently regu-
lar on the path to the solution, by approximating π(n∗) as
[π(n)1/g(n)]g(n)+h(n): Take g(n) = d(n) for intuition, then
π(n)1/g(n) = p is roughly the average conditional probabil-
ity along the path from the root to n, and thus pg(n)+h(n)

is an estimate of the probability at depth d(n∗), that is, an
estimate of π(n∗). This gives

η̂h(n) =
1 + h(n)/g(n)

π(n)h(n)/g(n)
, ϕ̂h(n) =

g(n) + h(n)

π(n)1+h(n)/g(n)
(4)

so that ϕ̂h(n) is an estimate of g(n∗)/π(n∗). The drawback
of η̂h is that it may not be PHS-admissible anymore, so while
Theorem 1 still applies, Corollary 5 does not.

We call PHS* the variant of PHS that defines η as in Eq. (4)
based on some given (supposedly approximately admissible)
heuristic function h.

4 Learning the Policy
We consider K tasks, and quantities indexed by k ∈ [K]
have the same meaning as before, but for task k. We assume
that the policy πθ is differentiable w.r.t. its parameters θ ∈ Θ.
Ideally, we want to optimize the policy so as to minimize the
total search loss, i.e., the optimal parameters of the policy are

θ∗ = argmin
θ∈Θ

∑
k∈[K]

min
n∗∈NGk

Lk(PHSθ, n∗) .

Unfortunately, even if we assume the existence of a differ-
entiable close approximation L̃k of Lk, the gradient of the
sum with respect to θ can usually not be obtained. Instead
the upper bound in Eq. (1) can be used as a surrogate loss
function. However, it is not ideally suited for optimization
due to the dependence on the set of leaves Lϕ(n∗). Hence
we make a crude simplification of Eq. (1) and assume that for
task k, Lk(PHSθ, n∗k) ≈ ckg(n∗k)/πθ(n

∗
k) for some a priori

unknown constant ck assumed independent of the parameters
θ of the policy: indeed the gradient of the term in Eq. (1) that
ck replaces should usually be small since πθ(n) is often an
exponentially small quantity with the search depth and thus
∇θπθ(n) ≈ 0. Then, since df(x)/dx = f(x)d log f(x)/dx,

∇θL̃k(PHSθ, n∗k) = L̃k(PHS, n∗k)∇θ log L̃k(PHSθ, n∗k)

≈ L̃k(PHSθ, n∗k)∇θ log
(
ck
g(n∗k)

πθ(n∗k)

)
≈ Lk(PHSθ, n∗k)∇θ log

1

πθ(n∗k)
. (5)

Note that Lk(PHSθ, n∗k) can be calculated during the search,
and that the gradient does not depend explicitly on the heuris-
tic function h, which is learned separately. In the experiments,
we use this form to optimize the policy for PHS and LevinTS.

5 Experiments
We use `(·) = 1 everywhere, so the search lossL corresponds
to the number of node expansions. We test the algorithms A*,
GBFS, WA* (w=1.5), PUCT (c=1), PHSh (using η = ηh)
and PHS* (using η = η̂h), and LevinTS. Each algorithm uses
one neural network to model the policy and/or the heuristic
to be trained on the problems it manages to solve. For PUCT,
we normalize the Q-values (Schrittwieser et al. 2020), and
use a virtual loss (Chaslot, Winands, and van den Herik 2008)

12386

of unit increment with the following selection rule for a child
n′ of a node n,

h̄(n′) = (h(n′) + virtual loss(n′)− hmin)/(hmax − hmin)

PUCT(n′;n) = h̄(n)− cπ(n′|n)

√∑
n′′∈C(n)N(n′′)

1 +N(n′)

where N(n) is the number of times the node n has been
visited, c is a constant set to 1 in the experiments, and keep in
mind that h corresponds to losses—hence the negative sign.
The node n′ with minimum PUCT value is selected. The
virtual loss allows for evaluating the nodes in batch: we first
collect 32 nodes for evaluation using the PUCT rule and only
then evaluate all nodes in batch with the neural network. The
virtual loss allows us to sample different paths of the MCTS
tree to be evaluated. Similarly, for the BFS-based algorithms,
32 nodes are evaluated in batch with the neural network
before insertion in the priority queue (Agostinelli et al. 2019).
This batching speeds up the search for all algorithms.

Since we want to assess the cooperation of search and
learning capabilities of the different algorithms without using
domain-specific knowledge, our experiments are not directly
comparable with domain-specific solvers (see Pereira et al.
(2016) for Sokoban). In particular, no intermediate reward is
provided, by contrast to Orseau et al. (2018) for example.

5.1 Domains
Sokoban (10×10) Sokoban is a PSPACE-hard grid-world
puzzle where the player controls an avatar who pushes boxes
to particular spots (boxes cannot be pulled). We use the first
50 000 problems training problems and the provided 1 000
test problems from Boxoban (Guez et al. 2018).

The Witness (4×4) The Witness domain is a NP-complete
puzzle extracted from the video game of the same name (Abel
et al. 2020) and consists in finding a path on a 2D grid that
separates cells of different colors.3

Sliding Tile Puzzle (5×5) The sliding tile puzzle is a tra-
ditional benchmark in the heuristic search literature where
heuristic functions can be very effective (Korf 1985; Felner,
Korf, and Hanan 2004). The training set is generated with ran-
dom walks from the 5×5 solution state with walks of lengths
between 50 and 1 000 steps—this is a difficult training set as
there are no very easy problems. Test problems are generated
randomly and unsolvable problems are filtered out by a parity
check; note that this is like scrambling infinitely often, which
makes the test problems often harder than the training ones.

5.2 Training and Testing
Each search algorithm start with a uniform policy and/or an
uninformed heuristic and follow a variant of the Bootstrap
process (Ernandes and Gori 2004; Jabbari Arfaee, Zilles,
and Holte 2011): All problems are attempted with an initial
search step budget (2 000 for Witness and Sokoban, 7 000
for the sliding tile puzzle) and the search algorithm may

3Datasets and code are at https://github.com/levilelis/h-levin.

solve some of these problems. After 32 attempted problems,
a parameter update pass of the models is performed, using
as many data points as the lengths of the solutions of the
solved problems among the 32. If no new problem has been
solved at the end of the whole Bootstrap iteration, the budget
is doubled. Then the next iteration begins with all problems
again. The process terminates when the total budget of 7
days is spent (wall time, no GPU). We use the mean squared
error (MSE) loss for learning the heuristic functions: For
a found solution node n∗ the loss for node n ∈ anc∗(n∗)
is [(d(n∗) − d(n)) − h(n)]2, where h(n) is the output of
the network. Note that this loss function tends to make the
heuristic admissible. The cross-entropy loss is used to learn
the policy for PUCT. The policy for LevinTS and our PHS
variants are based on the approximate gradient of the L̃k loss
(see Section 4).

Testing follows the same process as training (with a to-
tal computation time of 2 days), except that parameters are
not updated, and the budget is doubled unconditionally at
each new Bootstrap iteration. The test problems are not used
during training. Each algorithm is trained 5 times with ran-
dom initialization of the networks. For fairness, we test each
algorithm using its trained network that allowed the search
algorithm to solve the largest number of training problems.

5.3 Results
The learning curves and test results are in Fig. 1 and Table 1.

Sokoban PHSh and PHS* obtain the best results on this
domain, showing the effectiveness of combining a policy and
a heuristic function with BFS’s efficient use of the priority
queue. LevinTS and WA* follow closely. A* takes signifi-
cantly more time but finds shorter solutions, as expected. By
contrast to the other algorithms, GBFS is entirely dependent
on the quality of the heuristic function and cannot compen-
sate an average-quality heuristic with a complete search (A*
and WA* also use the g-cost to help drive the search). After
the training period, PUCT could not yet learn a good policy
and a good heuristic from scratch: PUCT is designed for the
larger class of stochastic and adversarial domains and takes a
large amount of time just to expand a single new node. Some
variants of PUCT commit to an action after a fixed number
of search steps (e.g., Racanière et al. (2017)); although once
a good value function has been learned this may help with
search time, it also makes the search incomplete, which is not
suitable when combining search and learning from scratch.
Agostinelli et al. (2019) report better results than ours for
WA* (about 1 050 000 expansions in total on the test set),
but their network has more than 30 times as many parame-
ters, and they use 18 times as many training problems, while
also using a backward model to generate a curriculum. For
LevinTS, Orseau et al. (2018) reported 5 000 000 expansions,
using a larger network, 10 times as many training steps and
intermediate rewards. Our improved results for LevinTS are
likely due to the cooperation of search and learning during
training, allowing to gather gradients for harder problems.

The Witness This domain appears to be difficult for learn-
ing a good heuristic function, with the policy-guided BFS-

12387

Figure 1: Learning curves using the Bootstrap process. Each point is a Bootstrap iteration. Lines correspond to the training runs
with the least remaining unsolved problems at the end of the run. All 5 training runs per algorithm lie within the colored areas.

based algorithms being the clear winners. Even for PHS,
the heuristic function does not seem to help compared to
LevinTS; it does not hurt much either though, showing the
robustness of PHS. PUCT and WA* learned slowly during
training but still manage to solve (almost) all test problems,
at the price of many expansions. GBFS performs poorly be-
cause it relies exclusively on the quality of the heuristic—by
contrast, A* and WA* use the g-cost to perform a systematic
search when the heuristic is not informative.

Sliding Tile Puzzle Only WA* and PHS* manage to solve
all test problems. PHSh seems to not be using the heuristic
function to its full extent, by contrast to PHS*. The trend
in the learning curves (see Fig. 1) suggests that with more
training LevinTS, PHSh, and A* would achieve better results,
but both GBFS and PUCT seem to be stuck. Possibly the
training set is too difficult for these algorithms and adding
easier problems or an initial heuristic could help.

6 Conclusion
We proposed a new algorithm called PHS that extends the
policy-based LevinTS to using general non-negative loss
functions and a heuristic function. We provided theoretical
results relating the search loss with the quality of both the
policy and the heuristic. If the provided heuristic function is
PHS-admissible, a strictly better upper bound can be shown
for PHS than for LevinTS. In particular, an admissible heuris-
tic for A* can be turned into a PHS-admissible heuristic,
leading to the variant PHSh. We also provided a lower bound
based on the information carried by the policy, that applies to
any search algorithm. The more aggressive variant PHS* is
the only algorithm which consistently solves all test problems
in the three domains tested. It would be useful to derive more
specific bounds showing when PHS* is expected to work
strictly better than PHSh. In this paper, the learned heuristic
corresponds to the distance to the solution as for A*, but it
may be better to directly learn the heuristic η to estimate the
actual search loss at the solution. This may however intro-

Alg. Solved Length Expansions Time (s)

Sokoban 10×10 (test)

PUCT, c=1 229 24.9 10 021.3 39.7
GBFS 914 36.4 5 040.0 34.0
A* 995 32.7 8 696.8 61.7
WA*, w=1.5 1 000 34.5 3 729.1 25.5
LevinTS 1 000 40.1 2 640.4 19.5
PHSh 1 000 39.1 2 130.4 18.6
PHS* 1 000 37.6 1 522.1 11.3

The Witness 4×4 (test)

GBFS 290 13.3 10 127.9 44.6
A* 878 13.6 9 022.3 53.9
WA*, w=1.5 999 14.6 18 345.2 71.5
PUCT, c=1 1 000 15.4 4 212.1 23.6
PHS* 1 000 15.0 781.5 5.4
LevinTS 1 000 14.8 520.2 3.2
PHSh 1 000 15.0 408.1 3.0

Sliding Tile Puzzle 5×5 (test)

GBFS 0 — — —
PUCT, c=1 0 — — —
A* 3 87.3 34 146.3 27.2
PHSh 4 119.5 58 692.0 55.3
LevinTS 9 145.1 39 005.6 31.1
PHS* 1 000 224.0 2 867.2 2.8
WA*, w=1.5 1 000 129.8 1 989.8 1.6

Table 1: Results on the tests sets. Lengths are the solution
depths, and the last three columns are averaged over solved
problems only; hence numbers such as 123 cannot be prop-
erly compared with.

duce some difficulties since the heuristic function to learn
would now depend on the policy, making learning possibly
less stable.

12388

Acknowledgements
We would like to thank Tor Lattimore, Marc Lanctot, Michael
Bowling, Ankit Anand, Théophane Weber, Joel Veness and
the AAAI reviewers for their feedback and helpful com-
ments. This research was enabled by Compute Canada
(www.computecanada.ca) and partially funded by Canada’s
CIFAR AI Chairs program.

References
Abel, Z.; Bosboom, J.; Coulombe, M. J.; Demaine, E. D.;
Hamilton, L.; Hesterberg, A.; Kopinsky, J.; Lynch, J.; Rudoy,
M.; and Thielen, C. 2020. Who witnesses The Witness?
Finding witnesses in The Witness is hard and sometimes
impossible. Theor. Comput. Sci. 839: 41–102.

Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P. 2019.
Solving the Rubik’s cube with deep reinforcement learning
and search. Nature Machine Intelligence 1.

Allouche, D.; Barbe, S.; De Givry, S.; Katsirelos, G.; Leb-
bah, Y.; Loudni, S.; Ouali, A.; Schiex, T.; Simoncini, D.; and
Zytnicki, M. 2019. Cost Function Networks to Solve Large
Computational Protein Design Problems. In Operations Re-
search and Simulation in healthcare. Springer.

Chang, H. S.; Fu, M. C.; Hu, J.; and Marcus, S. I. 2005. An
Adaptive Sampling Algorithm for Solving Markov Decision
Processes. Operations Research 53(1): 126–139.

Chaslot, G. M. J. B.; Winands, M. H. M.; and van den Herik,
H. J. 2008. Parallel Monte-Carlo Tree Search. In Computers
and Games, 60–71. Springer Berlin Heidelberg.

Coulom, R. 2007. Efficient Selectivity and Backup Operators
in Monte-Carlo Tree Search. In Computers and Games, 72–
83. Springer Berlin Heidelberg.

Cropper, A.; and Dumancic, S. 2020. Learning Large Logic
Programs By Going Beyond Entailment. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, 2073–2079. ijcai.org.

Culberson, J. C. 1999. Sokoban is PSPACE-Complete. In
Fun With Algorithms, 65–76.

Doran, J. E.; Michie, D.; and Kendall, D. G. 1966. Exper-
iments with the Graph Traverser program. Proceedings of
the Royal Society of London. Series A. Mathematical and
Physical Sciences 294(1437): 235–259.

Ebendt, R.; and Drechsler, R. 2009. Weighted A∗ search –
unifying view and application. Artificial Intelligence 173(14):
1310 – 1342.

Edelkamp, S.; Schroedl, S.; and Koenig, S. 2010. Heuristic
Search: Theory and Applications. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. ISBN 0123725127.

Ernandes, M.; and Gori, M. 2004. Likely-Admissible and
Sub-Symbolic Heuristics. In Proceedings of the 16th Euro-
pean Conference on Artificial Intelligence, ECAI’04, 613–
617. IOS Press.

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive Pat-
tern Database Heuristics. Journal of Artificial Intelligence
Research 22: 279–318.

Guez, A.; Mirza, M.; Gregor, K.; Kabra, R.; Racaniere, S.;
Weber, T.; Raposo, D.; Santoro, A.; Orseau, L.; Eccles, T.;
Wayne, G.; Silver, D.; Lillicrap, T.; and Valdes, V. 2018.
An investigation of Model-free planning: boxoban levels.
https://github.com/deepmind/boxoban-levels/, 14 Dec 2018.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics SSC-
4(2): 100–107.

Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence 175(16): 2075–2098.

Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML, 282–293. Springer Berlin Heidel-
berg.

Korf, R. E. 1985. Depth-first iterative-deepening. Artificial
Intelligence 27(1): 97 – 109.

McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P. 2019.
Solving the Rubik’s Cube with Approximate Policy Iteration.
In International Conference on Learning Representations
(ICRL).

Orseau, L.; Lelis, L.; Lattimore, T.; and Weber, T. 2018.
Single-Agent Policy Tree Search With Guarantees. In Ad-
vances in Neural Information Processing Systems 31, 3201–
3211. Curran Associates, Inc.

Pearl, J. 1984. Heuristics - intelligent search strategies for
computer problem solving. Addison-Wesley series in artificial
intelligence. Addison-Wesley. ISBN 978-0-201-05594-8.

Pereira, A. G.; Holte, R.; Schaeffer, J.; Buriol, L. S.; and
Ritt, M. 2016. Improved Heuristic and Tie-Breaking for Op-
timally Solving Sokoban. In International Joint Conference
on Artificial Intelligence.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3): 193 – 204.

Racanière, S.; Weber, T.; Reichert, D.; Buesing, L.; Guez,
A.; Jimenez Rezende, D.; Puigdomènech Badia, A.; Vinyals,
O.; Heess, N.; Li, Y.; Pascanu, R.; Battaglia, P.; Hassabis, D.;
Silver, D.; and Wierstra, D. 2017. Imagination-Augmented
Agents for Deep Reinforcement Learning. In Advances in
Neural Information Processing Systems 30, 5690–5701. Cur-
ran Associates, Inc.

Rosin, C. D. 2011. Multi-Armed Bandits with Episode Con-
text. Annals of Mathematics and Artificial Intelligence 61(3):
203–230.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
Atari, Go, chess and shogi by planning with a learned model.
Nature 588(7839): 604–609.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587): 484–489.

12389

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. CoRR abs/1712.01815.

12390

