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Abstract

The problem of minimal cost path search is especially diffi-
cult when no useful heuristics are available. A common so-
lution is roll-out-based search like Monte Carlo Tree Search
(MCTS). However, MCTS is mostly used in stochastic or ad-
versarial environments, with the goal to identify an agent’s
best next move. For this reason, even though single player
versions of MCTS exist, most algorithms, including UCT, are
not directly tailored to classical minimal cost path search. We
present Plackett-Luce MCTS (PL-MCTS), a path search al-
gorithm based on a probabilistic model over the qualities of
successor nodes. We empirically show that PL-MCTS is com-
petitive and often superior to the state of the art.

Introduction
In the context of minimal cost path search, we consider the
problem of finding an optimal path in a (possibly infinite)
tree, i.e., a leaf l∗ ∈ argminl∈L φ(l), where φ : L→ R+ is
a scoring function on the set L of leaf nodes. As an impor-
tant difference to classical planning problems, we assume
that there is no informative heuristic to reliably approximate
φ(l∗n), where l∗n is the best scored leaf underneath n.

Examples include offline-planning problems, in which
performances can only be assessed by simulation, e.g., traf-
fic light placement [Corti, Manzoni, and Savaresi 2012] or
economic well-fare evolvement [Borghesi et al. 2013]. An-
other area that deals with such problems is software and al-
gorithm configuration, e.g., software product lines [Henard
et al. 2015], automated machine learning [Mohr, Wever, and
Hüllermeier 2018] or automated SAT solver selection and
configuration [Bischl et al. 2016].

In the absence of an informative heuristic, one approach
to solve this problem is to use Monte Carlo Tree Search
(MCTS) [Browne et al. 2012]. MCTS is a tree search algo-
rithm scheme that was originally designed to learn optimal
policies for Markov Decision Processes (MDPs). While our
tree could be considered as a special type of MDP and tack-
led with classical MCTS algorithms such as UCT [Kocsis,
Szepesvári, and Willemson 2006], we know from the realm
of single player games that variants of MCTS more special-
ized to deterministic conditions are superior to that approach
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[De Mesmay et al. 2009; Schadd et al. 2008; Bjornsson and
Finnsson 2009].

The contribution of this paper is to complement the group
of MCTS algorithms for single player problems by Plackett-
Luce MCTS (PL-MCTS), a version of MCTS based on pref-
erences. Different to previous algorithms that directly use
the quantitative observations to control the search process,
PL-MCTS associates the successors of a node with a prob-
ability that following it will reveal the best improvement
over the currently best solution. An important advantage
of this approach is its ability to work upon rankings over
child nodes. Such rankings are a natural choice to capture
the only vague belief of node promisingness one usually has
in MCTS due to the unavoidable distribution drifts. In three
heterogeneous problem domains, we show that PL-MCTS is
highly competitive and often superior to all other state-of-
the-art algorithms when run with a standard configuration
and that its flexibility to customize preference schemes can
improve the performance of PL-MCTS even more.

The code of PL-MCTS is published in the Java library
AILibs1 and can be directly used through a Maven artifact2.
This paper is accompanied by a code repository to reproduce
the experiments 3, which also contains the technical supple-
mentary material.

Problem Formulation
Since we tackle the optimal path problem via the MCTS al-
gorithm scheme, we reformulate the problem in this context.
Algorithm 1 depicts the MCTS scheme for this case. At its
core, MCTS is a loop in which each iteration consists of
the generation of a random path from the root to a leaf (roll-
out), the evaluation of that path, and the back-propagation of
the observation along the path. The roll-out is computed us-
ing two types of policies, which determine, for a given inner
node, a successor to complement the current path. Simply
speaking, the tree policy (TP) is used to determine succes-
sors of nodes that have already been considered in the past
and uses past observations to make its choices, and the de-
fault policy (DP) is used for all other nodes. In this paper, we
assume the absence of prior knowledge, so that the DP shall

1https://github.com/starlibs/AILibs
2https://mvnrepository.com/artifact/ai.libs/jaicore-search/0.2.4
3https://github.com/fmohr/aaai2021
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Algorithm 1: MonteCarloTreePathSearch

create root node n0, L = ∅
while within computational budget T do

/* iteratively call π(s, ni, T ) */
n← TREEPOLICY.GETOPENNODE(n0)
l← DEFAULTPOLICY(n)
L = L ∪ {l}
/* update state s used for π */
TREEPOLICY.UPDATE(〈n0, .., n〉, φ(l))

end
return 〈n0, .., l∗〉 with l∗ ∈ argminl∈L φ(l)

be a uniform sampler. The below algorithm summarizes the
successive path generation in two commands that first pro-
duces a node n up to which the TP could be used and from
whereon the DP is used. We refer the reader to [Browne et al.
2012] for details on the MCTS scheme.

There is an important though subtle difference to MCTS
applied to MDPs. General MCTS schemes for MDPs aim at
returning an action whose application in the current state of
an MDP appears best on average. In contrast, in the deter-
ministic case we will simply return the best path seen during
search. In particular, there is no notion of “applying” the so-
lution path to the MDP after search.

This being said and observing that the TP is the only com-
ponent of the algorithm we can influence (after fixing the
DP to uniform sampling), our goal is to design a TP that
has the highest probability of finding a good path during
search. Formally, for a space N of tree nodes and a space S
of MCTS search process states (e.g. elapsed time, past ob-
servations, the inner tree to which the TP can be applied,
etc.), a tree policy π in the deterministic setup is a mapping
π : S ×N × N→ N that chooses for an inner node n ∈ N
a successor, taking into account the current state s ∈ S of
the MCTS search process and the total time budget T ∈ N
of the search process. When running MCTS with a TP π
with budget T (number of roll-outs), the observations form
a finite sequence (Oπ1 , . . . , O

π
T ) of real-valued random vari-

ables obtained by applying the evaluation φ to the leaf nodes
of the roll-outs. The observations are random variables, be-
cause the deterministic policy π is only used in the already
explored part of the tree, while the random DP is used ev-
erywhere else. Assuming a uniformly sampling DP, the dis-
tributions of those variables only depend on the score land-
scape and the TP; hence the super-script π. Being interested
in making the best observation possible (the smallest score),
we let Xπ

t = min{Oπ1 , . . . , Oπt } be the random variable re-
flecting the smallest score seen up to time t when using TP
π, and then seek to find

π∗ ∈ argmax
π

P
(
Xπ
T = min

π′
(Xπ′

T )

)
, (1)

where π and π′ are chosen among all possible TPs. In words,
we seek the TP that has the highest probability to exhibit the
best score within the time budget T .

This goal formulation substantially differs from others in
the context of MCTS, which are typically based on the no-
tion of regret, i.e. the deviation of the chosen policy from
some baseline. First note that the policy π we assess here

is the tree policy used within MCTS and not a policy ap-
plied in the underlying MDP after search. This is a sub-
stantial difference to simple regret [Feldman and Domsh-
lak 2014], which characterizes the performance of an MDP
policy, namely the produced policy applied in the MDP (af-
ter finishing the search process). Simple regret hence qual-
ifies a TP only indirectly by the performance of the output
of MCTS produced with it but not its probability of finding
good solutions. In this sense, the cumulative regret as opti-
mized in UCT [Kocsis, Szepesvári, and Willemson 2006] is
closer related to our objective since it considers the perfor-
mance during search. However, the cumulative regret con-
siders the average performance, while we are interested in
the extreme performance. The underlying notion of extreme
regret has been analyzed on the level of bandits [Streeter
and Smith 2006; Carpentier and Valko 2014] but has been
lifted into the context of MCTS only in an ad-hoc man-
ner [De Mesmay et al. 2009]. From [Carpentier and Valko
2014], we also know that the extreme regret cannot be guar-
anteed to be bound without having knowledge about the un-
derlying distributions. Since we seek for an algorithm that
does not require (generally unavailable) distribution knowl-
edge as a parameter, regret bounds are out of reach. As a
consequence, the goal definition (1) abstains from a notion
of regret altogether.

Plackett-Luce MCTS
We now propose a tree policy based on the Plackett-Luce
(PL) model. Throughout this section, we denote by n ∈
N\L any inner node and by n1, . . . , nk its child nodes.

Past vs Future Observations
The motivating assumption of PL-MCTS is that we can main-
tain for each inner node a belief model that specifies for each
of its successor nodes a probability of revealing the best im-
provement (compared to its siblings) when choosing it the
next time. For a concrete decision situation characterized by
an MCTS state st reached after t iterations and an inner node
n with children ni, we denote as Y (ni,π)

st,T−t the (unknown) im-
provement over the currently best solution Xπ

t we will see
if choosing ni and adopt π in all other upcoming decisions.
It then seems natural to select the child by the means of

π(st, n, T )= argmax
ni:1≤i≤k

P
(
Y

(ni ,π)
st ,T−t = max

1≤j≤k

{
Y

(nj ,π)

st ,T−t

})
, (2)

and in the supplement we prove that this is in fact optimal
in the sense that a tree policy satisfies Eq. (1) if and only if
it selects nodes according to Eq. (2).

Our main line of argumentation is that due to the distri-
bution drift in MCTS, is can be better to refrain from using
the concrete observations for decision making altogether and
only use the observations indirectly to shape a belief model
over which nodes are best. The distribution drift refers to the
fact that the successors of an inner node are not associated
with a fixed distribution but with a distribution that changes
over time, because the tree policy will be used more and
more below that node in each new iteration. This model has
typically a self-reinforcing effect, because the more the TP
is used, the better the observations become, making it even
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more likely to choose the same node again in the upcom-
ing iterations. Needless to say, due to the distribution drift
in MCTS already recognized in UCT [Kocsis, Szepesvári,
and Willemson 2006] caused by the increasing use of the
TP over time, the samples observed in the past come from
distributions that (usually substantially) differ from those of
Y

(ni ,π)
st ,T−t , so that the distribution of those variables cannot

be reliably estimated. However, since we only need to de-
cide where to go next, the concrete distributions of those
variables are not even relevant as long as we can estimate
which of the children will be the best in (2). In other words,
it would be enough to have a ranking of child nodes in which
the top-ranked element is the one that will reveal the best im-
provement in the remaining time.

This view differs from other approaches, which are cen-
tered around models for past observations. The typical ap-
proach has been to build models around the distributions
that have generated the past observations and to prepare for
drift through confidence bounds [Kocsis, Szepesvári, and
Willemson 2006; Schadd et al. 2008; De Mesmay et al.
2009] or model variance [Bai, Wu, and Chen 2013]. We
propose PL-MCTS, which seeks to differ from this approach
in being more explicit in the attempt to use the past obser-
vations to fit a model of beliefs for future observations. In
other words, we do not seek to fit a model that best matches
the past observations but a model that best matches what
we expect to see based on the past observations. Of course,
without perfect information, this can only be achieved to a
certain extent. However, the idea is to provide a framework
that is more amenable to this view than models that are by
definition fixed to the past.

In order to establish rankings among child nodes with re-
spect to their promisingness for improvement, we rely on
the so-called Plackett-Luce (PL) model, a well established
statistical model to learn probabilities for rankings among a
finite set of objects. To this end, we exploit concepts from
the statistical branch of extreme value theory. Sections and
theoretically introduce the PL-model and explain why it can
be used to determine the best child according to (2) if the
available information really was from the distributions of
the Y

(ni ,π)
st ,T−t . Given the absence of such samples, Section

argues that the PL model seems preferable over quantiative
statistical models for distribution parameter estimation, be-
cause it allows to work only on rankings among child nodes,
which are an arguably natural and easy way to express node
promisingness in the face of distribution drift. Finally, Sec-
tion describes a tree policy built upon the PL model.

Gumbel-Distributed Future Observations

When seeking for the optimal child node in (2), we need
to understand the probabilities that the child will reveal
the best score, i.e., the distributions of Y

(nj ,π)
st ,T−t . Distribu-

tions of that kind, i.e., maximum statistics, have been ex-
haustively studied in the realm of extreme value theory
[De Haan and Ferreira 2007]. A core result, the Fisher-
Tippet-Gnedenko theorem, states that the limit distribution
of MP

s := max{Z1, . . . , Zs}, where Z1, . . . , Zs are iid

with distribution P , converges4 for growing s towards one
of the three non-degenerated parametric probability distri-
bution families Gumbel, Fréchet, or Weibull.

Many practically important distributions of Zi, includ-
ing the normal distribution, have the Gumbel distribution
as their asymptotic limit (see Table 1 in [Charras-Garrido
and Lezaud 2013] for an overview), so that we focus in the
following on the latter. A random variable G is Gumbel dis-
tributed with location parameter µ ∈ R and scale parameter
σ > 0

(
denoted by G ∼ G(µ, σ)

)
if its cumulative distribu-

tion function is given by

P(G ≤ z) = exp
(
− exp

(
− z − µ

σ

))
, ∀z ∈ R.

In the following, we will assume Y
(nj ,π)
st ,T−t to be distributed

Gumbel-like. Since the time horizon T − t is only finite and
may even be quite small, this is an idealized assumption but
comparable to using the central limit theorem to justify a
normal-like distribution of the statistical mean of a rather
small sample. Given the Gumbel distribution and the fol-
lowing properties well known in statistics literature [Train
2009], we will derive a closed form for condition (2).
Theorem 1. (i) Let G ∼ G(µ, σ). Then, for a > 0 and
b ∈ R, it holds that aG+ b ∼ G(aµ+ b, aσ).
(ii) If (Gi)i=1,...,k are independent and Gi ∼ G(µi, σ),
where σ > 0 and µi ∈ R for i = 1, . . . , n, then

P
(
Gj = max

1≤i≤k
Gi

)
=

exp(µj/σ)∑k
i=1 exp(µi/σ)

.

The distribution P is said to be in the domain of attraction
of G(µ, σ) if and only if there exist sequences (as)s≥1 ⊂ R+

and (bs)s≥1 ⊂ R such that, for any z ∈ R,

lim
s→∞

P
(
(MP

s −bs)/as ≤ z
)
= exp

(
− exp

(
− (z−µ)/σ

))
.

In particular, for a distribution P in the domain of attrac-
tion of G(µ, σ) property (i) of Theorem 1 implies that, for
sufficiently large s,

P(MP
s ≤ z) ≈ exp

(
− exp

(
− (z−µs)/σs

))
, (3)

where µs = asµ+ bs and σs = σas. In other words, MP
s is

approximately distributed as G(µs, σs).
Assuming that the Y

(nj ,π)
st ,T−t are independent as well as

Gumbel distributed with different locations but same scales,
which is justified for T − t large enough, the probability in
(2) can be expressed by means of (ii) of Theorem 1 in closed
form as

P
(
Y

(ni ,π)
st ,T−t= max

1≤j≤k
Y

(nj ,π)
st ,T−t

)
≈ exp(µ(ni)/σ)∑k

j=1 exp(µ
(nj)/σ)

. (4)

Certainly, the parameters µ(ni) and σ, which determine
the distribution, are not known. However, given that the dis-
tribution is Gumbel, there is a solid statistical model, the
Plackett-Luce model, to estimate the ratio of the parameters
based on observations in the form of rankings, which is suf-
ficient for our purposes.

4if properly localized and scaled
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The Plackett-Luce Model
The Plackett-Luce (PL) model is a parametric probability
model for rankings over a finite set of objects. The assump-
tion underlying the PL model is that every object is asso-
ciated with a so-called skill parameter reflecting its utility.
One of the main properties of the PL model is that the nor-
malized skill parameter corresponds to the probability that
the object turns up on the top position in a drawn ranking.

In our context, we consider one such model for each in-
ner node, and the ranked objects are the respective succes-
sor nodes. Formally, all child nodes n1, . . . , nk have a (un-
known but fixed) skill θi ∈ R, i = 1, . . . , k. The intended
semantic of these skill parameters (by mapping them into
[0, 1]) is the (estimated) probability of revealing the opti-
mal score underneath the corresponding node. The goal will
be to learn the skill parameters of the child nodes based on
rankings over them.

Suppose that we obtain a ranking ρ (we explain in the next
section how to acquire observations of such rankings) over
the child nodes, which is a (random) observation of sorting
noisy estimates of the skill parameters by virtue of

yi = θi + εi, i = 1, . . . , k, (5)
where (εi)i=1,...,k are random error terms. Then, the like-
lihood function for any skill vector (θ1, . . . , θk) given the
ranking ρ is given by

Pθ(yρ1 > yρ2 > . . . > yρk), (6)
where ρj , for 1 ≤ j ≤ k denotes the child node on the jth
position with respect to ρ.

The probability in (6) depends on the concrete values of
θ and the distribution of the noise terms εi. Different para-
metric probability models are used for the random noise in
order to assess the probability in (6), whereas it is common
to assume that the noise terms in (5) are independent. Using
G(0, 1) as the distribution for each εi leads to the Plackett-
Luce (PL) model [Alvo and Philip 2014], which allows a
closed-form expression of the likelihood in (6) by using
property (ii) in Theorem 1:

Pθ(yρ1 > yρ2 > . . . > yρk) =
k∏
j=1

exp(θρj )∑k
l=j exp(θρl)

.

Even better for our problem at hand, there is a closed-form
expression available for the probability that a particular child
node ni ∈ {n1, . . . , nk} is on top in the preference relation:

Pθ(yi = max
1≤j≤k

yj) =
exp(θi)∑k
j=1 exp(θj)

. (7)

Comparing the probability the PL model assigns to its top-
positional item in (7) to the Gumbel-approximation in (4),
they coincide if θj ≡ µ(nj)/σ holds for all j = 1, . . . , k,
which yields an approximation of criterion (2).

In practice, this model can be solved efficiently. The skill
parameters are identifiable up to a multiplicative constant,
and the likelihood function of the model has a simple ana-
lytical solution, which makes methods based on Maximum
Likelihood Estimation, such as Expectation-Maximization
(EM) inference and Bayesian approaches, tractable [Hunter
2004; Guiver and Snelson 2009; Caron and Doucet 2012].

Appropriateness of the PL Model in MCTS
The above model is based on the assumption that the rank-
ings used to build the PL model are based on the true (still
unknown) distributions of Y (ni ,π)

st ,T−t . This is exactly the same
dilemma all MCTS approaches have: They try to assess the
quality of one random variable (future performance) based
on samples generated by (a sequence of) other random vari-
ables with deviating distributions.

While no model can generally close this gap without be-
ing omniscient, we consider the application of PL in this
context superior to quantitative models. Like in the PL case,
a quantitative model would require to assume a particular
distribution class for the Y

(ni ,π)
st ,T−t , e.g., all bounded distri-

butions on [0, 1], or a specific parametric family of proba-
bility distributions such as Gaussian or Gumbel. However,
it is generally unclear how the past observations should be
used to learn such distributions, because the relation be-
tween those observations and the distribution we want to es-
timate is difficult to grasp. A reasonable way to solve this
problem are rankings: Based on the previous observations,
we can produce rankings among child nodes that order nodes
based on the current belief that they will reveal the best im-
provement; we compile the concrete values away into qual-
itative beliefs. The PL model is then a canonical solution to
work upon such rankings. An additional advantage of this
approach compared to Single Player UCT is that we neither
need to map scores into the unit interval nor does it require a
scaling parameter as adopted in [Schadd et al. 2008]. Since
the notion of rankings disregards the absolute values, there
is no need to adapt the algorithm to domain specific score
ranges. Even more, the approach could even work with or-
dinal scores in the leaf nodes.

In the following, we describe strategies to compile rank-
ings and to use the PL-model to make recommendations.

A Plackett-Luce Tree Policy
The PL Tree Policy works as follows. For each visited node
n, the policy memorizes the observations made under it in
a set o(n) containing one value for each roll-out that went
over n. To recommend a concrete child of some node n, it
generates a set of rankings from the observations of the chil-
dren of n, fits a PL model, and recommends each node with
a probability that is based on its skill parameter. To fit the
PL model, we adopt the MM method described in [Hunter
2004], which is a maximum likelihood estimator for the skill
parameters of the children. In the back-propagation phase,
we simply include the new observation into the set of ob-
servations of all nodes on the path who are subject to tree
policy selection themselves or their parent; the latter simply
avoids that we waste memory to store observations that will
never be relevant for decision making.

Three natural questions emerge from this description:
1. How are the rankings created from the observations?
2. Why does the policy return a random child node instead

of simply returning the best one?
3. The policy seems to be memory and computation intense.

Is this a problem and if yes, can we improve this?
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We now discuss these questions in turn.

Rankings via Bootstrapping Preference Kernels We
call the mechanism to create rankings a preference kernel. A
preference kernel is a function κ that maps a vector of sets of
observations (one set for each child node) to a multi-set of
rankings. Formally, κ(〈o(n1)

1 , .., o
(n1)
mn1
〉, .., 〈o(nk)

1 , .., o
(nk)
mnk
〉)

is a set that may contain any ranking of nodes n1, .., nk an
arbitrary number of times (hence it is a multi-set).

In this paper, we propose to build preference kernels upon
bootstrapping, a well-known technique in statistics to re-
duce sample noise [Diaconis and Efron 1983]. Intuitively,
we might want to create rankings based on the best value
observed among all the roll-outs that included each of the
children. That is, for an inner node nwith children n1, .., nk,
we may want to rank the k children based on min(o(ni)).
However, this would yield only one ranking and also may
be too biased towards lucky roll-outs. Instead, we can draw
a series of sub-samples of o(ni) for every ni of which we
then compute the statistic that we believe to best indicate
that the best solution can be observed under it; this yields
a bootstrapping procedure. In order to obtain l independent
rankings, we can l times draw a sub-sample for each child,
and order the children by the mean of the desired statistics.

Every statistic over the bootstrap samples then constitutes
a distinct preference kernel. For a principled procedure that
follows the idea of condition (2), we should choose a statistic
that leads to rankings that favor the child ni that has the best
probability to exhibit the best improvement when selecting
it. While using the sample mean is similar to other MCTS
approaches and is a robust default configuration, our eval-
uation shows that other preference kernels like mean minus
standard deviation as in [Schadd et al. 2008] or the minimum
can yield better (or worse) solutions in some scenarios. Of
course, it is hard to know in advance which kernel will per-
form well, and the attempt to learn the suitability of kernels
for specific problem classes plants interesting future work.

Probabilistic Recommendations One issue with adopt-
ing the PL approach above is that it is not directly clear how
and when to use the estimates of the PL model to guide the
search. With respect to the first point (how), it seems nat-
ural to recommend the node with the best estimated skill
parameter. But doing this would effectively disable further
exploration at this node as long as roll-outs under it main-
tain or improve upon past qualities, which is what we expect
to happen due to the distribution drift. To enable exploration
that is in accordance with the belief of optimality, we use
the re-scaled skill parameter estimates of the PL model to
derive probabilities to recommend the different nodes; this
is analogous to how one proceeds in Thompson sampling.
Regarding the second aspect (when), we must be aware that
the skill parameters estimated by the PL model take very
extreme values if the underlying sample basis is thin. If we
would adopt the model with already one sample, the best
node would have a skill parameter of 1 and the others a value
of 0, again disabling exploration. It is hence indispensable to
accumulate a certain basis of observations in order to enable
a sane exploration behavior.

Since we are not aware of any results on reliability condi-
tions of the PL model that would motivate a particular num-
ber of observations for the time when using it, we adopt a
resource-aware probabilistic model to control the influence
of the PL model onto the decisions of the tree policy. To
this end, we introduce a non-decreasing influence function
γ : N ×N×N→ R+, which is used as an exponent for the
determined skill parameters to obtain the probabilities of the
child nodes. The PL tree policy chooses for each inner node
n the successor nj among n1, . . . , nk by virtue of

P
(
πPL(n) = nj

)
= v

γ(n,t(n),T ))
j

( k∑
i=1

v
γ(n,t(n),T )
i

)−1
where vj are the estimates of the exponentiated skill param-
eters, i.e., exp(θi), of the underlying PL-model, t(n) are the
visits of node n up to time t, and T is the roll-out budget.

In spite of this conceptually probabilistic view, the PL tree
policy can be still considered deterministic from the func-
tional viewpoint. Internally, the policy draws a random suc-
cessor, but this randomness can be seeded based on the cur-
rent state and hence be made deterministic on the functional
level such that the policy always returns the same successor
for a given node in the light of a particular time budget and
MCTS search state.

According to the above discussion, the values of γ for any
node should traverse three phases depending on t and the
node depth. For small t, γ should be 0 to guarantee uncon-
ditional exploration in the beginning. It should then increase
and approach 1 for t in which exploration and following the
PL model should be balanced, and eventually may be > 1
for t when the search should be fully steered by the best PL
option. The question is where to locate the thresholds, say
τ1 and τ2, between the three phases.

Our proposal for a realization of γ is to set the thresh-
olds between the phases based on the time budget in a lin-
ear descending manner. The motivation is that exploration
makes generally more sense in upper parts of the trees as al-
ready recognized in the context of UCT [Kocsis, Szepesvári,
and Willemson 2006]. Without further knowledge, a robust
choice is to let the thresholds between the phases decrease
linearly with increasing node depth and hence make the al-
gorithm commit more quickly to the seemingly best can-
didate in lower parts of the tree and enforce more explo-
ration in upper parts. To achieve this balance, we propose
to set the second threshold τ2, i.e. for which γ = 1, to
τ2(d, T ) := τ2(0, T )(1− d/dmax) where d > 0 is the node
depth, dmax is the depth of the tree (average, sensed dur-
ing the roll-outs), and τ2(0, T ) := T/(

∑dmax

d=0

∑d
t=0(1 −

d−t
dmax

)(−b)−t) is the threshold for the root node in which b
plays the role of the average branching factor sensed dur-
ing search. In the supplement, we show that this choice
for the threshold τ2(0, T ) in the root will yield an overall
distribution of exploration such that the time budget is ex-
hausted when the tree policy hits a leaf node for the first
time. The first threshold τ1, for the infimum of the support
of γ, can be set to a value with moderate distance to τ2,
e.g. τ1(d, T ) := max{0.5τ2(d, T ), τ2(d, T ) − 100}. Using
a sigmoid-shaped function between τ1 and τ2, e.g. a cosine
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function, we enable a relatively long unbiased exploration
phase by a high τ1, followed by smooth transition to model
exploitation defined by τ2. Needless to say, these parameters
can be subject to optimization themselves in future work.

Computational Efficiency The PL tree policy has two po-
tential resource bottlenecks. First, it is memory intense since
it needs to memorize the observations in each node. Second,
in the naive variant, it fits a PL model in each node in each
roll-out. Even though each of them only takes a few millisec-
onds, the accumulation of those operations might lead to
substantially larger decision times compared to, say, UCB1.

Whether or not these bottlenecks become effective de-
pends on the application domain. In many domains that in-
clude simulation, computing the score of a path is already so
costly that the computation of the roll-out is negligible. For
example, in AutoML [Mohr, Wever, and Hüllermeier 2018],
evaluating a candidate can easily take several minutes, mak-
ing discussions about more effective roll-out computation
obsolete.

If efficiency in the path generation matters, there are sev-
eral options to reduce this computational burden without sig-
nificantly affecting the inference mechanism. First, we can
simply update the previous PL model by starting the MM
algorithm from the optimal point of the last iteration; this
often leads to one-step optimization runs. Second, we can
safely commit to a particular child if the probability of other
children being selected becomes negligible, e.g. for a prob-
ability of 99%. We can then not only free memory by re-
moving the observations but also save the time of fitting a
model for such a node. For the latter, we can decide more
generally to only infer a new PL model with probability
k(1−max pj)/(k − 1), which enforces rebuilds with prob-
ability 1 for highly undecided nodes and 0 for completely
decided nodes; here, pj is the probability of child j being
selected in the previous round. Other possibilities include
the check whether an observation will significantly change
the probability model, or conducting updates only sparsely
as in the BRUE algorithm [Feldman and Domshlak 2014].

Evaluation
Experimental Setup
Empirical evaluations on the addressed problem are hard
to conduct, especially if they require the (very costly) de-
velopment of a simulator to compute the score function φ.
While most previous approaches have only been evaluated
on a single domain, we use three benchmark problems with
different variations to compare the algorithms. Also the set
of baselines has been usually quite limited in that the only
baseline has been UCT. In contrast, we compare PL-MCTS
against seven algorithms to enable more profound insights.

The technical setup is as follows. To maximize compara-
bility, all algorithms are implemented in Java, and the MCTS
algorithms only deviate in the implementation of the tree
policy. Implementations are available at <anonymized> and
seedable such that the results are reproducible. All computa-
tions were run on one core of an Intel Xeon Gold "Skylake"
6148, 2.4 GHz with 16GB memory. In order to guarantee a
fair comparison, each algorithm was run until a predefined

overall time limit was met, which is the same for all algo-
rithms but varies among the problems as specified below.

Benchmark Problems We consider three problems to
evaluate our approach, which we now describe in detail. To
satisfy the needs of UCT, all scores are mapped into the unit
interval by exploiting lower and upper bounds respectively;
the score in the maximization problem is subtracted from 1
in order to obtain a minimization problem.

The Timed TSP with Breaks (TTSPB) extends the classi-
cal TSP in two ways. First, the cost to travel from one lo-
cation to another now depends on the time (hour of day)
when the edge is used (to model traffic jams) as suggested
in [Picard and Queyranne 1978]. Second, truck drivers must
take a break after a time as considered recently in [van der
Tuin, de Weerdt, and Batz 2018]. A driver must make a small
break of 15 minutes every 4 hours, and a long break (of 8
hours) every 8 hours. We are not aware of any heuristic for
this highly state-dependent action cost setup. We consider
problems with 20, 30, and 50 locations with timeouts of 1,
4, and 10 minutes.

The Job Scheduling With Variable Release Dates
(VRDJS) is a scheduling problem of minimizing total
weighted flowtime and in which the arrival time of jobs can
be chosen but must not be later than a common deadline d.
This recently studied problem has shown to be not only NP-
hard but also that no meaningful heuristics can be generated
by currently known techniques [Mohr, Mejía, and Yuraszeck
2021]. We evaluate the case of 100 jobs on 2, 5, and 9 ma-
chines with job weights and processing times sampled uni-
formly from {1, .., 100} and d corresponding to 40% of the
total processing time, which constitutes difficult instances.
The timeout is 5 minutes in all setups.

SameGame is a single-player board game, in which the
player has to clear a vertical l × l board initially filled ran-
domly with pieces of 5 different colors. SameGame has been
subject of evaluation in single-player MCTS [Schadd et al.
2008]. We refer to this paper for details, in which the authors
also discuss why SameGame cannot be addressed efficiently
with classical A* or IDA*. Timeouts are 5, 15, and 90 min-
utes for board sizes l = 10, 15, and 20 respectively.

Algorithm Setup and Baselines PL-MCTS can be
parametrized in the preference kernel κ and the influence
function γ. Using a bootstrapping based kernel for κ, one
can configure the number, size, and aggregation statistic.
The only reason to set the first two parameters low are re-
source limitations, and, using generous values of 1000 boot-
straps (rankings) based on 100 samples per child each, we
will see that we do not observe performance issues. As an
aggregation function, we use the mean value of each boot-
strap sample to derive rankings as discussed above as a de-
fault. In addition, we show results that would result from
choosing the mean - standard deviation or the minimum as
an aggregation function. Regarding the influence function γ,
the above resource-aware proposal constitutes a reasonable
default setup. An estimate of the number of roll-outs T is up-
dated in each iteration based on the empirical roll-out times
and the time budget (in terms of wall-time), and thresholds
for τ1 and τ2 are updated based on this estimate (and hence
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vary over time for each node).
In the following, we describe the algorithms against

which we compare PL-MCTS in a default parameter evalu-
ation. Comparing MCTS algorithms is a tricky undertaking,
because these algorithms have parameters, and the success
of an algorithm can substantially vary with different param-
eter values. The two canonical possibilities for evaluation
are to either fix one default value for each of the algorithms
that appears “reasonable” or to optimize over the parameters
and search the “best” parameters for each algorithm in each
setup. The problem of the latter is that it is methodologi-
cally difficult to decide which optimization is fair and which
is not. For example, if one algorithm has five parameters and
another algorithm has only one, the optimization process for
the second algorithm is much faster. How much time is al-
lowed for this optimization? In fact, doing this kind of opti-
mization in fact already is a kind of search on a meta-level,
and the used resources should count into the overall time
budget of each considered algorithm. While this approach is
not uninteresting, we are not aware that it has been done in
a methodologically clean way up to date. Instead, we base
our evaluation on a default parametrization per algorithm in
which all algorithms are equipped with a reasonable para-
matrization that should work well “on average”. The exact
parametrizations can be found in the supplement.

The variants of MCTS we consider are as follows. First,
we consider with UCT [Kocsis, Szepesvári, and Willemson
2006], DNG [Bai, Wu, and Chen 2013], and BRUE [Feld-
man and Domshlak 2014] three state-of-the-art MCTS ap-
proaches to learn policies for MDPs. The parametrizations
are fixed to reasonable default values; details per algorithm
are contained in the supplement. Second, we consider the
single-player versions of UCT as proposed in [Schadd et al.
2008], which applies a slight modification of UCB1 consid-
ering not only the mean but also the standard deviation of the
samples; this is denoted as SP-UCT. Third, we consider the
TAG algorithm [De Mesmay et al. 2009], which is an MCTS
approach specifically taylored for single-player games based
on extreme bandits.

We also include two algorithms specifically dedicated to
single player games even though not directly fitting into
the MCTS scheme. The first is Nested Monte Carlo Tree
Search (NMCS) [Cazenave 2009]. NMCS is simply a ran-
dom search that, instead of starting a single random search at
the root, starts one random search under each node in a pre-
defined depth (level). The algorithm then simply memorizes
the best solution seen so far, and this process is repeated un-
til the time budget is exhausted. There is no notion of using
observations to guide the search; in particular there is noth-
ing like a tree policy. The Nested Rollout Policy Adaptation
for Monte Carlo Tree Search (NRPA) is a kind of extension
of this algorithm [Rosin 2011]. The idea to initiate different
searches in a pre-defined depth is the same, but NRPA adopts
a learning search process under those nodes instead of draw-
ing only one single sample. While it also does not make use
of the explicit concept of a tree policy or default policy, it
does incorporate observations into the decision making pro-
cess by modifying the probability of the children, more pre-
cisely by increasing the probabilities of better children to

be drawn the next time. It therefore evolves the policy over
time. In a way, it can be seen as an algorithm that initiates
for each node in depth l a learning search procedure that is
independent of the other nodes under which such a search is
started. Like NMCS, it returns the best result observed dur-
ing search.

In addition, we add two algorithms to the baseline portfo-
lio, which are extreme in the exploration-exploitation spec-
trum. On the exploration side, we add a simple random
search (RANDOM), which does not take into account the
observations made during search at all. On the exploitation
side, we add a classical best-first (BF) search that gains its
node evaluations from a fixed number of 3 random samples
(taking the minimum value of them).

Experimental Results
The experimental results are summarized in Table 1. Due
to the different ranges of possible scores in the different
instances, we report the relative scores in that the score
of each algorithm is (score − best)/best on instances of
the minimization problems and score/best on instances of
SameGame, where best is the best observed score of any
algorithm in the respective instance. We report the empiri-
cal average of those values over 100 different instances and
their empirical standard deviation. Best average scores are in
bold, while the results whose distribution might be identical
to the best (according to a Wilcoxon signed rank test with
95% significance level) are underlined.

We do not want to give the impression to cherry-
pick among the different kernels for PL-MCTS. Therefore,
PL-MCTS is primarily represented by the mean kernel as a
choice to use PL-MCTS out of the box. However, to increase
insights, the results for the other two kernels are still pro-
vided in the separated last two rows. They are not consid-
ered in the computation of the best algorithm performances
(hence never marked in bold even if best). Instead, we use
the • symbol to indicate that the respective kernel would
have improved upon the best other solution in that scenario.

The experimental evaluation gives clear evidence that
PL-MCTS is a highly competitive algorithm for the addressed
problem. On almost all problems, PL-MCTS achieves best re-
sults and in several cases with substantial gaps to the runner-
up, e.g., in all TTSPB problems, and in the 2 and 5 machine
problems of the VRDJS. PL-MCTS is in no problem substan-
tially worse than any other tree policy; the only algorithm
that achieves to outperform PL-MCTS in one case is the BF
algorithm on the 15x15 SameGame problem.

The mediocre performance of theoretically sustained UCT
and BRUE should not surprise. First, the bounds are for cu-
mulative and simple regret, which we discussed above to be
not particularly relevant for our problem. Second, the regret
bounds are fairly loose and hence, admit slow convergence.

Another remarkable observation is that SP-UCT and the
TAG algorithm, both being specifically tailored for this prob-
lem class, largely fail to produce competitive results. The
TAG algorithm is extremely greedy and similar to the min-
imum preference kernel. The important difference in this
case is that PL-MCTS is not so quick in the application of
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TTSPB (MIN) - per num of locations VRDJS (MIN) - per num of machines SameGame (MAX) - per board size
20 30 50 2 5 9 10 15 20

RANDOM 0.48±0.19 0.76±0.17 0.76±0.25 0.25±0.33 0.23±0.35 0.27±0.38 0.84±0.24 0.57±0.24 0.68±0.17
BF 0.38±0.24 0.58±0.21 0.59±0.28 0.24±0.34 0.23±0.4 0.2±0.38 0.5±0.37 0.7±0.26 0.72±0.19

UCT 0.48±0.17 0.75±0.17 0.75±0.26 0.18±0.26 0.23±0.36 0.28±0.39 0.85±0.22 0.54±0.23 0.72±0.16
DNG 0.21±0.26 0.27±0.26 0.25±0.31 0.27±0.28 0.25±0.33 0.24±0.33 0.59±0.36 0.53±0.24 0.72±0.17
BRUE 0.54±0.18 0.77±0.17 0.78±0.26 0.22±0.32 0.2±0.34 0.23±0.36 0.81±0.27 0.6±0.25 0.74±0.17
SP-UCT 0.54±0.18 0.79±0.16 0.81±0.22 0.21±0.29 0.19±0.33 0.27±0.38 0.8±0.27 0.63±0.26 0.74±0.17
TAG 0.82±0.19 0.94±0.12 0.84±0.25 0.27±0.08 0.19±0.06 0.2±0.06 0.14±0.24 0.46±0.23 0.61±0.17
NMCS-3 0.48±0.03 0.61± 0.02 0.74±0.03 0.19±0.08 0.20±0.06 0.23±0.06 0.69±0.24 0.52±0.23 0.68±0.17
NRPA-3 0.45±0.03 0.59± 0.02 0.68±0.03 0.18±0.05 0.18±0.03 0.21±0.04 0.7±0.12 0.52±0.23 0.68±0.17
PL-MCTS-MEAN 0.16±0.26 0.15±0.25 0.15±0.28 0.14±0.32 0.13±0.28 0.19±0.35 0.85±0.27 0.62±0.26 0.74±0.18

PL-MCTS-MEAN-STD 0.14±0.25• 0.13±0.25• 0.18±0.26 0.19±0.35 0.19±0.34 0.22±0.38 0.88±0.24• 0.6±0.27 0.75±0.18•
PL-MCTS-MIN 0.42±0.2 0.71±0.21 0.73±0.26 0.17±0.34 0.22±0.39 0.25±0.4 0.8±0.29 0.77±0.25• 0.76±0.17•

Table 1: Relative results for the respective wall-times. Best results in bold, not significantly worse underlined.

the policy and hence allows for more exploration prior to
committing to the node recommended by the policy.

The 15x15 SameGame scenario is interesting as it con-
stitutes a scenario in which following the mean is a bad ad-
visor. In fact, all mean-oriented techniques like UCT, BRUE,
DNG, PL-MCTS-MEAN are not so stable in reaching the high-
quality regions. The fact that TAG also fails on this problem
shows that here it is a good idea to follow the minimum but
not all too greedy (PL-MCTS-MIN has the advantage of not
committing too quickly and to regularize the observations
by bootstrapping).

It is also noteworthy that the potential performance bottle-
necks discussed above were successfully eliminated by the
proposed remedies. In the supplement we provide a detailed
overview of the achieved iterations of each algorithm from
which it becomes evident that PL-MCTS is not significantly
slower than the competitors and even often faster than DNG.

Our conclusion from this evaluation is that PL-MCTS is a
very promising approach for finding good solutions to opti-
mal path search problems for which no meaningful heuristic
is available. While providing a solid fall-back with the mean
kernel, its flexibility in the control strategy via the prefer-
ence kernels points to interesting future work in the question
to learn which kernel to use in a particular domain or even
to detect online which one to use.

Conclusion
We proposed PL-MCTS, a single-player MCTS approach to
address optimal path search problems for which no classical
heuristics are available. Combining preference kernels with
the ranking-based Plackett-Luce model provides a variant
of MCTS that conceptually better closes the gap between
past observations and decision making for future observa-
tions than other approaches. Fortunately, the robust mean
kernel makes the customization of PL-MCTS optional and al-
lows its use out of the box. In future work, we plan to learn
the score landscape and decision heights during search, and
then to adjust the kernels and the influence parameter online.
Moreover, it would be interesting to analyze how the time at
which observations were made can be considered to improve
the ranking construction. Besides, exploring options to apply

PL-MCTS for MDPs poses an interesting challenge.
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