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Abstract

Most discrete evolutionary algorithms (EAs) implement
elitism, meaning that they make the biologically implausible
assumption that the fittest individuals never die. While elitism
favours exploitation and ensures that the best seen solutions
are not lost, it has been widely conjectured that non-elitism is
necessary to explore promising fitness valleys without getting
stuck in local optima. Determining when non-elitist EAs out-
perform elitist EAs has been one of the most fundamental open
problems in evolutionary computation. A recent analysis of a
non-elitist EA shows that this algorithm does not outperform
its elitist counterparts on the benchmark problem JUMP.
We solve this open problem through rigorous runtime analy-
sis of elitist and non-elitist population-based EAs on a class
of multi-modal problems. We show that with 3-tournament
selection and appropriate mutation rates, the non-elitist EA
optimises the multi-modal problem in expected polynomial
time, while an elitist EA requires exponential time with over-
whelmingly high probability.
A key insight in our analysis is the non-linear selection profile
of the tournament selection mechanism which, with appropri-
ate mutation rates, allows a small sub-population to reside on
the local optimum while the rest of the population explores the
fitness valley. In contrast, we show that the comma-selection
mechanism which does not have this non-linear profile, fails
to optimise this problem in polynomial time.
The theoretical analysis is complemented with an empirical
investigation on instances of the set cover problem, showing
that non-elitist EAs can perform better than the elitist ones.
We also provide examples where usage of mutation rates close
to the error thresholds is beneficial when employing non-elitist
population-based EAs.

Introduction
Evolutionary algorithms (EAs) are heuristic optimisation
methods inspired by evolution. Departing from nature –
where even the fittest individuals eventually die – EAs were
early on designed with elitism (Cavicchio 1970; De Jong
1975), where some of the fittest individuals are always copied
unchanged into the next generation. Both from a practical
and theoretical point of view, elitism was considered a neces-
sary mechanism to ensures monotone progress. Elitism was
thought necessary to saturate good solutions (Beyer 1997),
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and Rudolph used elitism as the essential property to guaran-
tee that the canonical genetic algorithm (CGA) converges to
the optimum (Rudolph 1994).

In contrast, the less frequently employed non-elitist EAs
produce the new generation solely from the offspring of the
old generation, and the old generation is then discarded. Non-
elitist EAs are highly inefficient if their mutation rates and
selection pressure have not been set appropriately. In par-
ticular, if the mutation rate exceeds the error threshold, a
quantity which depends on the selective pressure, then the
EA will require at least exponential time to locate any unique
global optimum (Lehre 2010). Error thresholds (or mutation-
selection balance) were originally studied in population genet-
ics (Wilke 2005), virology (Biebricher and Eigen 2005), and
later introduced to evolutionary computation (Ochoa 2006).
Non-elitist EAs with mutation rates below the error threshold
optimise many pseudo-Boolean problems in expected poly-
nomial time (Corus et al. 2018). For certain problems, the
mutation rate must be neither too high nor too low to ensure
polynomial runtime (Lehre and Yao 2012).

Our aim is to contribute to the long-standing open prob-
lem in evolutionary computation, to determine whether
non-elitism can lead to more efficient search than elitism
(Jägerskupper and Storch 2007; Doerr 2020). An attractive
hypothesis, which we call the escape hypothesis, is that non-
elitism helps EAs escape local optima. Some believe that if
the population contains a local optimum, a non-elitist EA
may allow a sub-population sufficient time to explore less fit
fitness valleys around the optimum, to eventually discover
better solutions. In contrast, the locally optimal individual
in an elitist EA are thought to take over the population too
quickly. To progress, the elitist EA will require a long time to
discover a fitter solution through a low probability mutation
(or crossover) event.

So far, there has been no convincing evidence that the
escape hypothesis is true. To test the hypothesis, one could
attempt to analyse the runtime of elitist and non-elitist EAs
on multi-modal problems with well known structure.

The CLIFF problem has local optima which can be reached
easily through hill-climbing, and which are all separated
from the optimum by a fitness valley of Hamming width k.
The non-elitist (1,λ) EA with population size λ ≥ 5 log(n)
optimises CLIFF (for k = bn/3c) in expected time O(e5λ),
whereas the elitist (1+λ) EA needs at least nn/4 function eval-
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uations with overwhelmingly high probability (Jägerskupper
and Storch 2007). This result is non-convincing for two rea-
sons. Both algorithms require astronomical runtime on this
problem, and the EAs have a (parent) population size of one.
Clearly, these algorithms cannot help us understand how less
fit sub-populations can survive.

The Strong Selection Weak Mutation (SSWM) model from
population genetics was studied in the context of evolution-
ary computation (Paixão et al. 2017). The authors proved a
speed-up of eΩ(d) of SSWM over the expected runtime Θ(nd)
of the (1+1) EA on the CLIFF function. Here, the quantity
d refers both to the “height” of the local optima and their
distance to the global optimum. Based on the construction
of LONGPATH, the VALLEYPATH function was introduced
in (Oliveto et al. 2018). It was shown that the non-elitist al-
gorithms with population of size 1, such as the SSWM and
Metropolis, are able to cross a valley of deceptive fitness, and
their ability to escape the current local optimum depends on
the depth of the valley. This is in contrast to the (1+1) EA
in which case the ability to escape crucially depends on the
width of the valley. Both of these results concern evolutionary
models with population size one. However, these results give
no insights into the population-dynamics of non-elitist EAs.

The JUMP problem has a similar (but not identical) struc-
ture to the CLIFF problem. Doerr proved that the non-elitist
(µ, λ) EA below the error threshold has asymptotically the
same optimisation time on the JUMP problem, as the eli-
tist (µ+λ) EA (Doerr 2020). (Above the error threshold, the
(µ, λ) EA requires exponential time.) While these algorithms
are true population-based EAs, they fail to show any dif-
ference in performance between the algorithms. The author
argues that the (µ,λ) EA operates in one of two modes. Above
the error threshold, the algorithm easily leaves the local op-
timum, but fails to find the global optimum efficiently as
proved earlier (Lehre 2010). Below the error threshold, the
algorithm has a similar behaviour to the elitist (µ+λ) EA, and
has a difficulty in leaving the optimum.

This dichotomy of the (µ,λ) EA was already well known
and studied several years earlier (Dang and Lehre 2016b).
For the PEAK problem, it was shown that the (µ, λ) EA be-
low the error threshold requires exponential time to escape
the local optimum. Above the error threshold, the algorithm
escapes the local optimum quickly, however fails to obtain
the global optimum in exponential time. The authors proved
that a non-elitist EA using tournament selection (rather than
(µ,λ)-selection) and self-adaptation to dynamically adjust
mutation rates, would optimise PEAK in expected polyno-
mial time. This result does not fully validate the escape hy-
pothesis because the efficiency of the algorithm on this prob-
lem relies partly on the self-adaptation mechanism. While
self-adaptation can be a highly effective mechanism for con-
trolling mutation rates in non-elitist EAs, (Case and Lehre
2020), we are here interested in understanding the benefit of
non-elitism alone.

Our Contributions
• Solving a decades-long open problem, we prove for the

first time that non-elitist population-based EAs can out-
perform elitist ones. In particular, we construct a problem

class FUNNEL where the escape hypothesis holds: The
elitist (µ+λ) EA gets trapped on a local optimum, and
needs exponential time with overwhelmingly high prob-
ability (Theorem 4). A non-elitist EA with 3-tournament
selection, mutation rate close to but below the error thresh-
old, and sufficiently large population size, escapes the
local optimum by exploring a fitness value, and optimises
the problem in expected time O

(
nλ log(λ) + n2 log(n)

)
(Theorem 9).

• We demonstrate that the capability of non-elitist EAs to es-
cape local optima depends on the choice of selection mech-
anism. The non-elitist EA becomes inefficient on FUNNEL
if 3-tournament selection is replaced with (µ, λ)-selection
(Theorem 6). This is the first time a such a difference has
been observed between these two selection mechanisms.

• Further demonstrating the importance of parameterisation
of non-elitist EAs, we show that the non-elitist EA be-
comes inefficient on FUNNEL if the mutation rate deviates
too much from the error threshold (Theorem 11).

• We provide preliminary empirical evidence that the non-
elitist EA with tournament selection outperforms elitist
EAs on instances of the Set Cover problem. The experi-
ments also indicate that the best performance occurs when
the mutation rate is close to the error threshold.

Preliminaries
The natural and base-2 logarithms are denoted ln(·), and
log(·) respectively. For any n ∈ N, define [n] := {1, . . . , n}.
The Hamming distance is denoted by H(·, ·) and the Iverson
bracket by [·]. Given a partition of a search space X into m
ordered “levels” (A1, . . . , Am), we define for any j ∈ [m],
A≥j := ∪mi=jAi. A population is a vector P ∈ X λ, the
i-th individual of P is denoted P (i). Given x ∈ X , define
H(x, P ) := minj∈[|P |]{H(P (j), x)}, and for A ⊆ X , we let
|P ∩A| := |{i | P (i) ∈ A}|, i. e. the number of individuals
of P belonging to A.

All non-elitist EAs with unary variation operators can
be cast in the framework of Algorithm 1 (Dang and Lehre
2016a). A new population Pt+1 is generated by indepen-
dently sampling λ individuals from an existing population
Pt according to a selection mechanism psel, then by perturb-
ing each of the selected individuals with a unary variation
operator pmut. The fitness function g : X → R is implicitly
defined through psel.

In k-tournament selection, a set S of k random numbers
are drawn independently and uniformly from [λ] then psel

Algorithm 1 (Dang and Lehre 2016a)

Require: Initial population P0 ∈ X λ, parameter χ ∈ [0, n].
1: for t ∈ N until a termination cond. is met do
2: for i = 1 to λ do
3: Sample It(i) ∼ psel(Pt), and set x := Pt(It(i)).
4: Sample x′ ∼ pmut(x, χ), and set Pt+1(i) := x′.
5: end for
6: end for
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FUNNEL(x) :=



LO(x) if w < LO(x) ≤ n (D)
LO(x) + u− v if v < LO(x) ≤ w (C)
LO(x) + w − v if u < LO(x) ≤ v and LO(x) = OM(x) (B)
−n if u < LO(x) ≤ v and LO(x) < OM(x) (B′)
LO(x) if OM(x) ≤ u (A)
−OM(x) otherwise (A′)

Figure 1: Structure and definition of FUNNEL function with parameters u, v, w. The darker the shade the higher region fitness.

returns argmaxi∈S{f(Pt(i))}. In (µ, λ)-selection (comma-
selection), the set of indices S = [λ] is first sorted accord-
ing to f(Pt(i)), then psel returns S[i] where i ∼ Unif([µ]).
We consider the standard bitwise mutation operator as
pmut and it is configured by a parameter χ ∈ (0, n/2] so
that for any pair of bitstrings x, x′ ∈ {0, 1}n, the prob-
ability of obtaining x′ from x is Pr (x′ = pmut(x, χ)) =

(χ/n)
H(x,x′)

(1− χ/n)
n−H(x,x′)

.
In the elitist (µ+λ) EA (see Algorithm 2 in the supple-

mentary material1), a new offspring population P is created
by selecting individuals uniformly from Pt and perturbing
them with pmut. The surviving population Pt+1 of the next
generation then composes of the µ best individuals among
both parent and offspring populations Pt ∪ P . The analysis
presented in this paper can be seen as comparing the three
selection mechanisms: the tournament and comma selections,
i. e. line 3 in Algorithm 1, and the plus selection, i. e. line 6
in Algorithm 2.

We consider the optimisation of the function f(x) =
FUNNEL(x) defined in Fig. 1 with parameters u, v, w. Here,
LO(x) :=

∑n
i=1

∏i
j=1 x(j) and OM(x) :=

∑n
i=1 x(i) are

the well-known LEADINGONES and ONEMAX functions.
In this paper, we assume u ≥ (n/2)(1 + ε) for a constant
ε > 0. The label to the right of each case corresponds to the
set of search points validating the part of the function, e. g.
A := {x ∈ {0, 1}n | u ≥ OM(x)}, Fig. 1 illustrates these
sets on LO(x) and OM(x) values.

Lemma 1. The function f satisfies −n = f(B′) < f(A′) <
f(A) < f(C) < f(B) < f(D) ≤ n.

By this hierarchy of the search space and assumingw−v =
Ω(n), we observe that B is a difficult part of the search
space for any algorithm to start in as it is a narrow region of

1Available at: https://gitlab.com/d2cmath/ea-solve-scp

highly fit solutions, with a local optimum on its end-point. If
the whole population of (µ+λ) EA is in B, then to progress
further, an individual in D must be sampled from one in B
and the probability of such event is n−Ω(n). Similarly, we can
prove that if the µ best individuals of (µ, λ) EA are in B and
the selection-mutation balance is strong enough (required to
optimise functions with unique optimum (Dang and Lehre
2016b)), then the individuals created in C (eg. from mutating
one in B) cannot reproduce, thus creating an individual in D
also takes exponential time. On the other hand, there is no
such difficulty for a non-elitist population with tournament
selection under the right setting. Using 3-tournament, we will
show that the number of individuals in B is always limited,
thus enabling those created in C to evolve towards D.

Inefficiency of Plus and Comma Selection
In this section, we will study the efficiency of both (µ+λ) EA
and (µ, λ) EA. The result for the former is complete in the
sense that we are able to prove that the population will even-
tually end up quickly with all individuals in B once one is
discovered. An analogous analysis for (µ, λ) EA requires a
weak assumption that the µ best individuals reach B quickly.
Experiments indicate that the assumption holds with high
probability, but proving it is left for future work.

The following two lemmas show that it is unlikely that
(µ+λ) EA optimises the B-region before the entire popula-
tion is on B.

Lemma 2. Assume that u ≥ (n/2)(1 + ε) for any constant
ε > 0, v − u = Ω(n) and define α := (v − u)/n. As-
sume that (µ+λ) EA with λ = poly(n) and χ ≤ n/2 has
obtained an individual in B for the first time in generation
t0. Define Xt := maxi∈[λ] LO(Pt0+t(i)) and assume that
u ≤ X0 ≤ v − (2/3)αn. Let T := min{t ∈ N | Xt ≥
v − (1/3)αn}. Then, Pr

(
T ≤ n1−2δ

)
= e−Ω(nδ) for any

12277



constant δ ∈ (0, 1/2).

Proof. We say that failure event 1 occurs if any individual in
the initial population P0 does not belong to region A. By a
Chernoff bound and a union bound, the probability of failure
event 1 is e−Ω(n).

If failure event 1 does not occur, then no future individual
will be accepted from region B′. Furthermore, to mutate any
search point x in regionA into regionC∪D, it is necessary to
flip all of the at least αn 0-bits within the first v bit-positions
of x. We say that failure event 2 occurs if this happens to
any individual within the first n1−2δ generations. By a union
bound, the probability of failure event 2 is no more than
λn1−2δ

(
χ
n

)αn ≤ λn1−2δ
(

1
2

)αn
= e−Ω(n).

We now assume that failure events 1 and 2 did not occur.
For a lower bound, we assume that any selected individual x
in generation t + t0 will belong to region B, and will have
LO(x) = Xt. Due to the definition of B, the probability of
mutating an individual x ∈ B with LO(x) ≤ v − nδ into
an individual x′ ∈ B with LO(x′) − LO(x) ≥ nδ is less
than (χ/n)n

δ

= 2−Ω(nδ), because it is necessary to flip at
least nδ specific bit-positions. We call any such mutation
within the first n1−2δ generations failure event 3. By a union
bound, the probability of failure event 3 is no more than
λn1−2δe−Ω(nδ) = e−Ω(nδ). If none of the three failure event
occurs, then for all t ≤ n1−2δ, it holds Xt − X0 ≤ tnδ ≤
n1−δ < (1/3)αn for n sufficiently large.

The following Lemma 3 gives a rough bound on the
upgrade time for the (µ+λ) EA in region B. For exam-
ple, by letting Xt be the number of individuals on B, the
stochastic process (Xt)t≥0 matches the one in Lemma 3 with
δ = (1−ε)e−χ ≤ (1−χ/n)n for any constant ε > 0. Setting
z = nδ in the lemma, and further assuming that λ/µ = Ω(1)
and that there are no fitter individuals in the population, the
probability that the population has not converged onB within
O
(
nδ log µ

)
generations is less than e−Ω(nδ).

Lemma 3. Assume a stochastic process (Xt)t∈N where
X0 ≥ 1 and for some constant δ ∈ (0, 1), for all t ∈ N,
Xt+1 = min(µ,Xt + Yt+1) where Yt+1 ∼ Bin(λ, δXt/µ).
Then for any z ≥ 0, Pr (Xτ < µ) ≤ se−z where τ :=
d 8µ
δλesz and s := dlog(µ)/ log(1 + δλ

2µ )e.

Proof. To simplify the analysis, we assume that Xt := Xt +
Yt+1 for all Xt ≤ µ. This will not change the probability of
the event Xτ < µ. We call an iteration successful if Yt+1 ≥
Xtδλ/(2µ). We consider s phases, where phase i ∈ [s] lasts
until a successful iteration occurs or if there have been r :=
d8µz/(δλ)e unsuccessful iterations. We say that a phase is
successful if it has a successful iteration.

Assume all phases until phase i have been successful. Then,
for any iteration t in phase i+1 it holdsXt ≥ (1+δλ/(2µ))i.
By a Chernoff bound,

Pr
(
Xt+1 ≤ (1 + δλ/(2µ))i+1 | Xt

)
≤ Pr (Yt+1 ≤ E [Yt+1] /2 | Xt) ≤ e−

δλXt
8µ ≤ e−

δλ
8µ =: p.

The probability that all of the r iterations in phase i are
unsuccessful is pr = e−z . By a union bound, the probability

that any of the s phases is unsuccessful is less than se−z . If all
phases are successful, then Xτ ≥ µ for iteration τ = sr.

We can now show that the (µ+λ) EA is inefficient.

Theorem 4. The runtime of the (µ+λ) EA with population
sizes µ, λ ∈ poly(n), λ/µ = Ω(1), and mutation rate pa-
rameter χ = O(1) on function f with v − u = Ω(n),
w−v = Ω(n) and u ≥ (1+ε)n/2 for any constant ε > 0 sat-
isfies Pr(T ≤ ecnd) ≤ e−Ω(nd) for some constants c, d > 0.

Proof. We will prove a stronger statement that with prob-
ability 1 − e−Ω(nd) during the first ecn

d

function evalua-
tions none of the search point in C ∪ D is created, where
c, d ∈ (0, 1) are constants which will be defined later. Be-
cause u ≥ (1 + ε)n/2, then by a Chernoff and union bound,
the probability that the whole initial population is in A is
at least 1− µe−Ω(n) = 1− e−Ω(n). From these individuals
in A, it is possible to create those in C ∪D by either direct
mutation, or through creating individuals in B.

In the case of direct mutation, to create an individual inC∪
D from A, at least v − u = Ω(n) 0-bits must be flipped and
the probability of such an event is n−Ω(n) for the mutation
rate χ/n = O(n−1). Thus by a union bound, the probability
that no search point in C ∪D is created by a direct mutation
from A within the first ecn

d

/λ generations of the algorithm
is 1− ecndn−Ω(n) = 1− e−Ω(n).

In the case of mutating an individual in B, we note that if
the whole population is in B, then to create a search point
in C ∪D it is necessary to mutate from B to D. By an argu-
ment similar to the one above, with probability 1 − e−Ω(n)

no search point in D is created that way within ecn
d

/λ gener-
ations afterwards. Therefore, to complete the proof it suffices
to show that once an individual in B appears for the first time
in the population, it will take over the population faster than
the time needed for an individual in C ∪D to appear, or more
pessimistically, than the time needed for an individual in B
with a close distance to C ∪D to appear in the population.

By Lemma 3 with z = nδ and δ = e−χ/2 < (1 − χ
n )n

for sufficiently large n, with probability 1 − e−Ω(nδ) the
take over time is less than c′nδ log µ generations for some
constant c′. On the other hand, when an individual x in B
is created for the first time from one in A, it holds with
probability 1 − n−Ω(n) that LO(x) ≤ u + (v − u)/3 since
at least (v − u)/3 = Ω(n) bits have to be flipped.

Define the constant d := δ/2 and recall that δ = e−χ/2 <
1/2. Applying Lemma 2 gives that the probability that the
number of generations required to create an individual in B
with at least u+(2/3)(v−u) leading 1-bits exceeds n1−2d is
1 − e−Ω(nd). Note that log µ < n1−2d−δ/c′ = n1−2δ/c′ =
for sufficiently large n. The probability that the population
is taken over by search points in B before it gets close to
C ∪ D is 1 − e−Ω(nd). In overall, by a union bound, the
algorithm will need more than ecn

d

function evaluations to
create a search point in C ∪D and this holds with probability
1− e−Ω(nd).
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We now explain informally why the non-elitist (µ,λ)-
selection mechanism behaves differently than tournament
selection. Let P be a population sorted according to fitness.
We define β(γ) = β(γ, P ) for γ ∈ [0, 1] as the probability
of selecting an individual at least as fit as the individual with
rank γλ in P . Note that β(γ) is a cumulative probability
function which depends on the selection mechanism used.
In the case of (µ,λ)-selection, β(γ) is a piece-wise linear
function (Lehre 2011) where β(γ) = γλ/µ if γ ≤ µ/λ and
β(γ) = 1 otherwise. In contrast, for k-tournament selection,
β is a non-linear function β(γ) = 1− (1− γ)k (Lehre 2011).
Assume that the current population contains γλ individuals
on a given subset B of the search space, and that when the
mutation operator is applied to a solution in B, it produces
an offspring in B with probability p0. Note that p0 depends
on the mutation rate χ and the structure of B. If the subset B
represents promising new search points, we want this fraction
to grow, which requires that β(γ)p0 > γ(1 + δ) when γ is
small for some small constant δ > 0. If B is a local opti-
mum, we do not want the individuals in B to take over the
population, so that less fit sub-populations have the chance
to explore fitness valleys. We would therefore also require
that β(γ)p0 < γ(1− δ) when γ is large. It is easy to see that
the non-linear β-function for tournament selection displays
both properties: there exists a ψ such that β(γ)p0 ≤ γ for
γ ∈ (ψ, 1), and β(γ)p0 ≥ γ for γ ∈ [0, ψ). In contrast,
the piece-wise linear function β for (µ, λ)-selection can only
display either one of the two properties exclusively.

In Algorithm 1, define Rt(i) :=
∑
j∈[λ][It(j) = i], i. e.

the number of times Pt(i) is selected as parent at generation
t. Then, E [Rt(i)] is called the reproductive rate of the i-th
individual of the population at time t (Lehre 2011).

Lemma 5 (Theorem 3 in (Dang and Lehre 2016b)). Algo-
rithm 1 with mutation parameter χ and an anytime upper
bound α0 of the reproductive rate satisfying χ ≥ lnα0+δ for
some constant δ > 0 has runtime such that Pr (T ≤ ecn) ≤
e−Ω(n) for some constant c > 0 on any function with unique
optimum x∗ assuming that H(P0, x

∗) > bn holds for some
constant b ∈ (0, 1) with probability 1− e−Ω(n).

For (µ, λ)-selection of the (µ, λ) EA, each individual
among the µ best of the population has the same probability
1/µ of being selected as parent. Thus, they have the same
reproductive rate λ/µ, which is also the highest of the pop-
ulation. Therefore, if the mutation parameter χ > ln(λ/µ),
the lemma above implies that the (µ, λ) EA is inefficient on
any function with a unique optimum, and also on f .

On the other hand, if the mutation parameter is below
ln(λ/µ), assuming that the population starts with the µ best
individuals in B, it can be shown by induction that with
high probability the next generations still have the µ best
individuals from B. This implies that the other individuals of
the population, particularly those in C which are closer to D,
indeed have zero reproductive rate and cannot evolve.

Theorem 6. For any constant δ > 0, the (µ, λ) EA with mu-
tation parameter satisfying χ = O(1) and χ /∈ [ln(λ/µ) −
δ, ln(λ/µ) + δ], with a population of size λ = Ω(n) has
runtime T , such that Pr (T ≤ ecn) ≤ e−Ω(n) on function f

with w − v = Ω(n) and n − w = Ω(n) for some constant
c > 0, assuming that the µ best individuals of P0 are in the
B region of f .

Proof. The result for χ ≥ ln(λ/µ) + δ follows directly from
Lemma 5 by noting that the µ best individuals of P0 are still
at distance n− w away from the global optimum 1n.

When χ ≤ ln(λ/µ)− δ, it suffices to prove by induction
that with high probability, the µ best individuals are still
search points in B, i. e. non-optimal points, during the first
ecλ generations for some constant c sufficiently small. Since
the µ best individuals of P0 are in B, it is certain that the
selected parents to produce offspring in the next generation
are fromB. Then, to create an offspring inB, it suffices to not
modify any bit from the parent, the corresponding probability
is
(
1− χ

n

)n ≥ (1−σ)e−χ ≥ µ(1−σ)eδ

λ for any constant σ ∈
(0, 1), if n is large enough. Choosing σ so that 1+σ

1−σ = eδ,

this probability is at least (1+σ)(µ/λ). By a Chernoff bound,
the probability that the population has less than µ individuals
from B in the next generation is e−Ω(λ) = e−Ω(n). For those
individuals to be the best of the population, no individual inD
must be created. The probability of creating a D-individual
by mutating a B-individual is n−Ω(w−v) = n−Ω(n). By a
union bound, this event occurs with probability no more than
λ · n−Ω(n) = n−Ω(n) within one generation. By induction
and a union bound, with probability 1 − e−Ω(n) the µ best
individuals are those from B during the next ecn generations
for some sufficiently small constant c.

Efficiency of Tournament Selection
To analyse tournament selection, we will apply an analytical
tool called the level-based theorem (Corus et al. 2018). The
theorem is applicable to any population-based process where
the individuals in Pt+1 are sampled independently from the
same distribution D(Pt) parameterised by Pt (see Algorithm
3 in the supplementary material). For example, in Algorithm 1
we have D = pmut ◦ psel.
Theorem 7 (Theorem 1 in (Corus et al. 2018)). Con-
sider Algorithm 3 with population size λ. Given a partition
(A1, . . . , Am) of X , define T := min{tλ | |Pt ∩ Am| > 0},
where for all t ∈ N, Pt ∈ X λ is the population in generation
t. If there exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such
that for any population P ∈ X λ, y ∼ D(P ), any j ≤ m− 1,
and any γ ≤ γ0

(G1) If |P ∩A≥j | ≥ γ0λ, then Pr (y ∈ A≥j+1) ≥ zj ,
(G2) If |P ∩ A≥j | ≥ γ0λ and |P ∩ A≥j+1| ≥ γλ, then

Pr (y ∈ A≥j+1) ≥ (1 + δ)γ,

(G3) λ ≥
(

4

γ0δ2

)
ln

(
128m

z∗δ2

)
, where z∗ := min

j
zj ,

then E [T ] ≤
(

8
δ2

)∑m−1
j=1

(
λ ln

(
6δλ

4+zjδλ

)
+ 1

zj

)
.

Note that the original theorem in (Corus et al. 2018) re-
quires a weaker condition on (G2) which does not need to
hold for the level Am−1. This can be useful in some appli-
cations but irrelevant for our case. In fact, we critically need
(G2) to hold for the levels of the C region, i. e. the valley
below B that can lead to optimality. For this purpose, we first
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prove a variant of Lemma 3 in (Dang and Lehre 2016b) for
3-tournament selection because this will allow us to restrict
the number of individuals in B.
Lemma 8. Given any subset B ⊂ X , let Yt := |Pt ∩ B|
be the number of individuals in generation t ∈ N of Al-
gorithm 1 with psel being 3-tournament, that belong to
B. If there exist three parameters σ, ε ∈ (0, 1) and ρ ∈
(0, 1 − σ) satisfying that for any t ∈ [t0, t1], if x =
Pt(psel(Pt)) and y = pmut(x) then Pr (y ∈ B | x ∈ B) ≤
ρ, and Pr (x 6∈ B ∧ y ∈ B) ≤ σψ − ε where ψ :=

(1/2)
(

3−
√

(4− 3ρ− 4σ)/ρ
)

, then for any t ∈ [t0, t1],

Pr (Yt ≥ max (ψλ, (1− ε/2)t−t0Yt0)) ≤ (t− t0) · e−Ω(λ).

Proof. Let γ := Yt/λ ≤ 1. It can be shown that the pa-
rameter ψ is monotonically increasing wrt ρ when ρ ∈
(0, (4/3)(1 − σ)). Under the assumption 0 < ρ < 1 − σ,
the parameter ψ is therefore bounded by ψ < 1. Given the
definition of γ, we also have max(γ, ψ) ≤ 1.

For an upper bound, assume that the individuals in B are
fitter than any other individual, then

Pr (x ∈ B ∧ y ∈ B)

= Pr (x ∈ B) Pr (y ∈ B | x ∈ B)

≤ (1− (1− γ)3)ρ

≤ (1− (1−max(ψ, γ))3)ρ

= max(ψ, γ)(3−max(ψ, γ)(3−max(ψ, γ)))ρ

≤ max(ψ, γ)(3− ψ(3− ψ))ρ

= max(ψ, γ)(1− σ).

In the last inequality above, we used that the function h(x) =
x(3−x) increases monotonically on the interval [0, 1). Thus,
using that max(ψ, γ) < 1, the probability of producing an
individual in B is
Pr (y ∈ B) = Pr (x ∈ B ∧ y ∈ B) + Pr (x 6∈ B ∧ y ∈ B)

≤ max(ψ, γ)(1− σ) + σψ − ε
≤ max(ψ, γ)(1− σ) + max(ψ, γ)σ − ε
≤ max(ψ, γ)(1− ε) =: ps.

Hence Yt+1 is stochastically dominated by the random vari-
able Z ∼ Bin(λ, ps). It now follows by a Chernoff bound
that

Pr (Yt+1 ≥ max(ψλ, Yt(1− ε/2)))

≤ Pr (Z ≥ max(ψλ, Yt(1− ε/2))

≤ Pr

(
Z ≥ E [Z]

(
1 +

ε

2(1− ε)

))
≤ exp

(
−ε

2 max(ψλ, Yt)

12(1− ε)

)
≤ e−

ε2ψλ
12(1−ε) .

The proof is completed by induction with respect to t and a
union bound.

Our main result of the section is the following.
Theorem 9. There exists a constant c > 0 such that the ex-
pected runtime of Algorithm 1 with 3-tournament as psel, pop-
ulation size λ ≥ c log(n), mutation parameter χ = 1.09812
on function f with w/n ≤ 3/4 is O(nλ log(λ)+n2 log(n)).

To prove the result, we use the following partition of the
search space into m = 2n+ u+ 2 levels:

Uj :=



B′ if j = −n− u− 1

{x ∈ A′ | OM(x) = u+ j} if j ∈ [−n− u,−1]

{x ∈ A | LO(x) = j} if j ∈ [0, u],

{x ∈ B | LO(x) = j} if j ∈ [u+ 1, v],

{x ∈ C | LO(x) = j} if j ∈ [v + 1, w], and
{x ∈ D | LO(x) = j} if j ∈ [w + 1, n].

Particularly, when j falls into the appropriate range we will
also useXj to refer to the internal levelUj ofX , i. e.Uj ⊆ X ,
here X can be either A′, B′, A,B,C, or D. A similar nota-
tion also uses for X≥j , e. g. C≥w−1 = U≥w−1 = Cw−1 ∪D.

The following lemma ensures that condition (G2) of Theo-
rem 7 is satisfied in region C.

Lemma 10 (Condition (G2)). There exist constants c, δ, γ0 >
0 and a failure event F with probability e−Ω(λ), such that
unless the failure event occurs, for any population Pt ∈ X λ
with t ≤ ecλ of Algorithm 1 with psel being 3-tournament,
mutation parameter χ := 1.09812 running on f with w/n ≤
3/4, for any γ ∈ (0, γ0), if |Pt ∩ C≥j+1| = γλ and y =
pmut(Pt(psel(Pt))) then Pr (y ∈ U≥j+1) ≥ γ(1 + δ).

Note that Theorem 9 assumes a very specific value 1.09812
for the mutation parameter χ. For k-tournament selection this
value is close to the natural logarithm of the tight upper bound
by Bernoulli’s inequality on the reproductive rate of the best
individual λ(1− (1− 1/λ)k) ≤ λ(1− (1− k/λ)) = k, e. g.
if k = 3 then ln(3) − 1.09812 is positive, but close to 0. It
is essential for the non-elitist populations to escape the local
optima, and this will not occur if the mutation rate is too
low. To complete the picture, we now consider 3-tournament
selection for χ below ln(3). The following theorem implies
that given the likely assumption that a large fraction of the
population reaches region B, if the mutation rate is below
χ ≤ ln(ξ) ≈ 0.647461, then the algorithm will not be able
to optimise the problem in polynomial time.

Theorem 11. There exist a constant ψ ∈ (0, 1) such that if
Algorithm 1 with 3-tournament selection, and mutation rate
χ ≤ ln(ξ(1 − δ)) for ξ := 4

3 + 1√
3
− δ and any constant

δ ∈ (0, 1) obtains a population with at least ψλ individuals
in the B-region, then Pr (T ≤ ecn) ≤ e−Ω(λ) for a small
constant c > 0.

Experiments
To extend our theoretical analysis and observations to practi-
cal problems, we carried out some preliminary experiments
with the non-elitist EAs on several instances of the Set Cover
Problem (SCP) from the OR-library (Beasley 1990), rep-
resenting the CYC and CLR families (Grossman and Wool
1997) and the Stein (Fulkerson, Nemhauser, and Trotter 1974)
family of hard unicost benchmarks. The problem series CYC
and CLR are related to the combinatorial questions posed
by Paul Erdős in (Erdős 1990) and (Erdős 1963). The Stein
series is based on Steiner triple systems, which have applica-
tions e.g. in the statistical design of experiments.
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Figure 2: Average cover size as a function of mutation rate χ on CYC.7.

SCP is a constraint combinatorial optimisation problem,
and we use the penalty method to reduce it to the optimisation
of a pseudo-Boolean function. We assume that each bit xi of
a solution corresponds to a covering subset, so that the value
of xi = 1 means that subset i is included into the solution,
then we assign a unit of penalty for each uncovered element.
An uncovered element can easily be covered with one new
covering subset, so the objective of a solution repaired from
infeasibility in a unicost instance is at most the number of
ones, plus the penalty value. The practical performance of this
penalty method in the case of the Independent Set Problem
was demonstrated in (Borisovsky and Zavolovskaya 2003).

In this paper, we experimented with seven algorithms:
the (1+1) EA, (100+200) EA, (66+200) EA, (100, 200) EA,
(66, 200) EA, and the non-elitist EAs with tournament se-
lection of size 2 and 3. The population parameters used in
comma selection were chosen so that the estimates of the er-
ror threshold for mutation, i. e. ln(λ/µ), approximately match
those in tournament selection, i. e. ln(k) from our theory. The
same parameters were then carried over to plus selection.
The algorithms were implemented in C++ using its standard
library for the random number generation. They were com-
piled, then called from a Python program running on a server
machine with AMD EPYC 7502 processors, Ubuntu 20.04
OS, GCC 9.3.0 and Python 3.8.3. Each algorithm was al-
lowed the same budget of 2× 108 function calls to evaluate
its solutions, and each setting on each instance were tested
with 40 replications of the run using different random seeds.

To illustrate an example of the output results, Fig. 2 shows
the average cover sizes in the experiments for instance CYC.7,
where n = 448. The graphs of non-elitist EAs with tourna-
ment selection are passing close to the best-known solution
size 144 when χ = 0.67 if the tournament size is k = 2, and
when χ = 1.08 if k = 3. These χ-values are slightly less than
ln(2) and ln(3), the error threshold rates for tournament sizes
2 and 3. The average performances of the elitist (µ+λ) EA are
analogous one to another, and much worse when compared
to the two tournament settings. These observations match
perfectly with what our developed theory would suggest. The
EAs with (µ, λ)-selection mechanism performs only slightly
worse than the non-elitist EAs with tournament selection.
This is interesting and worthy of further investigations in the

sense that the induced landscape may not be typically as hard
as the one studied in our theoretical results.

On the instance CYC.6 where n = 192, the average so-
lution cost behaves similarly, attaining the optimal value
of 60 at χ = 0.67 and χ = 1.08 for tournament sizes 2
and 3, respectively. Fig. 3 shows the frequency of obtaining
the optimum (of size 60) and the 95% confidence intervals
of the probability to find the optimum, computed using the
Bernoulli distribution quantiles. (For better visibility, only
results for selected algorithms are shown.) Again we remark
that the non-elitist EA with mutation rate slightly below the
error threshold significantly outperforms the elitist (1+1) EA.
However, relatively small deviations of χ from the error
threshold lead to dramatic drops in performance.

Using the same experimental setting and tuneable param-
eters, we tested the seven algorithms on instances CLR.10,
CLR.11, Stein.81 and Stein.135. In general, these experi-
ments demonstrated similar tendencies to those observed on
CYC.6 and CYC.7, as discussed above, with one exception
for the instance Stein.81. On this instance, the best settings
for the mutation rates are significantly higher than the error
threshold and the elitist algorithm (1+1) EA is quite compet-
itive (see Fig. 4). The plots with confidence intervals, and
the source code with the instruction on how to reproduce the
experiments are provided in the supplementary material.

Conclusion
Despite promises that diverse populations in EAs can cope
with multi-modal problems, overcoming local optima re-
mains one of the major challenges in evolutionary computa-
tion. We suggest this problem is related to the biologically
implausible, but prevalent practice, of enforcing elitism.

Solving a long-standing open problem, we show how and
when non-elitist population-based EAs without any addi-
tional enhancements can cope with local optima. We have
proved that non-elitist EAs with the right set of operators,
here with tournament selection and bitwise mutation, and
under the right setting, i. e. mutation rate below but close
to the error threshold, is able to both explore fitness valleys
and escape the local optima. This leads to the efficient op-
timisation on a class of benchmark functions with a local
optimum. However elitist EAs or ill-configured non-elitist
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Figure 3: Frequency of successful runs and confidence intervals for success probability on CYC.6.
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Figure 4: Frequency of successful runs and confidence intervals for success probability on Stein.81.

EAs, e. g. employing (µ,λ)-selection or too low mutation
rate, are shown to stagnate at the local optimum, resulting in
super-polynomial runtime.

Preliminary experiments conducted on instances of the Set
Cover problem demonstrated the possibility to extend our the-
oretical investigation to practical problems. In particular, we
demonstrate that on some well-known benchmark instances
of diverse origins it may be recommended to use mutation
rates close to the error threshold when employing non-elitist
population-based EAs. Moreover, given appropriate mutation
rates, these algorithms tend to outperform the elitist EAs in
a similar experimental setting. One exception observed in
the case of Stein.81 instance implies that these recommen-
dations are not universal and further research is required to
understand how the fitness landscape properties influence the
runtime of the EA.

The analysis should be extended to wider ranges of selec-
tion mechanisms, such as exponential ranking selection, and
mutation operators, such as with heavy-tailed mutation rates
(Doerr et al. 2017). Future work should compare non-elitist
EAs with elitist EAs employing diversity mechanisms, such
as stochastic ageing (Oliveto and Sudholt 2014). The perfor-
mance of EAs are here compared in terms of their runtime.
In the future, it would be interesting to compare the quality
of the best solutions obtained by elitist and non-elitist EAs
within a fixed number of function evaluations (Jansen and
Zarges 2014).

Acknowledgements
Eremeev was supported by program of fundamental scien-
tific research of the Russian Academy of Sciences, I.5.1,
project 0314-2019-0019. Lehre was supported by a Turing
AI Fellowship (EPSRC grant ref EP/V025562/1). The first
and third authors would like to thank Tiago Paixão for useful
discussions about non-elitism in population genetics.

References
Beasley, J. E. 1990. OR-Library: Distributing Test Problems
by Electronic Mail. The Journal of the Operational Research
Society 41(11): 1069–1072.
Beyer, H.-G. 1997. G4.2 Design optimization of a linear
accelerator using evolution strategy: solving a TSP-like opti-
mization problem. In Handbook of Evolutionary Computa-
tion. IOP Publishing Ltd.
Biebricher, C. K.; and Eigen, M. 2005. The error threshold.
Virus Research 107(2): 117–127. doi:10.1016/j.virusres.2004.
11.002.
Borisovsky, P. A.; and Zavolovskaya, M. S. 2003. Experi-
mental Comparison of Two Evolutionary Algorithms for the
Independent Set Problem. In Proceedings of EvoWorkshop
2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB,
and EvoSTIM (EvoWorkshop’2003), Applications of Evolu-
tionary Computing, 154–164. Berlin, Heidelberg: Springer-
Verlag.
Case, B.; and Lehre, P. K. 2020. Self-adaptation in non-Elitist
Evolutionary Algorithms on Discrete Problems with Un-

12282



known Structure. IEEE Transactions on Evolutionary Com-
putation 24(4): 650–663. doi:10.1109/TEVC.2020.2985450.

Cavicchio, D. J. 1970. Adaptive Search Using Simulated
Evolution. Ph.D. thesis, University of Michigan, Ann Arbor,
MI.

Corus, D.; Dang, D.-C.; Eremeev, A. V.; and Lehre, P. K.
2018. Level-Based Analysis of Genetic Algorithms and Other
Search Processes. IEEE Trans. Evolutionary Computation
22(5): 707–719.

Dang, D.-C.; and Lehre, P. K. 2016a. Runtime Analysis
of Non-elitist Populations: From Classical Optimisation to
Partial Information. Algorithmica 75: 428–461. doi:10.1007/
s00453-015-0103-x.

Dang, D.-C.; and Lehre, P. K. 2016b. Self-adaptation of
Mutation Rates in Non-elitist Populations. In Proceedings
of the 2016 Conference on Parallel Problem Solving from
Nature (PPSN 2016), 803–813. Cham: Springer. doi:10.1007/
978-3-319-45823-6 75.

De Jong, K. A. 1975. An analysis of the behavior of a
class of genetic adaptive systems. Ph.D. thesis, University of
Michigan, USA. AAI7609381.

Doerr, B. 2020. Does comma selection help to cope with local
optima? In Proceedings of the 2020 Genetic and Evolution-
ary Computation Conference (GECCO 2020), 1304–1313.
New York, NY, USA: ACM.

Doerr, B.; Le, H. P.; Makhmara, R.; and Nguyen, T. D. 2017.
Fast genetic algorithms. In Proceedings of the 2017 Genetic
and Evolutionary Computation Conference (GECCO’ 2017),
777–784. New York, NY, USA: ACM.
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Erdős, P. 1990. On some of my favourite problems in graph
theory and block designs. Le Matematiche 45(1): 61–74.

Fulkerson, D. R.; Nemhauser, G. L.; and Trotter, L. E. 1974.
Two computationally difficult set covering problems that arise
in computing the 1-width of incidence matrices of Steiner
triple systems, 72–81. Berlin, Heidelberg: Springer.

Grossman, T.; and Wool, A. 1997. Computational experience
with approximation algorithms for the set covering problem.
European Journal of Operational Research 101(1): 81–92.
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