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Abstract

During Multi-Agent Path Finding (MAPF) problems, agents
can be delayed by unexpected events. To address such situa-
tions recent work describes k-Robust Conflict-Based Search
(k-CBS): an algorithm that produces a coordinated and
collision-free plan that is robust for up to k delays for any
agent. In this work we introduce a variety of pairwise sym-
metry breaking constraints, specific to k-robust planning, that
can efficiently find compatible and optimal paths for pairs of
colliding agents. We give a thorough description of the new
constraints and report large improvements to success rate in
a range of domains including: (i) classic MAPF benchmarks,
(ii) automated warehouse domains, and (iii) on maps from
the 2019 Flatland Challenge, a recently introduced railway
domain where k-robust planning can be fruitfully applied to
schedule trains.

Introduction
Multi-Agent Path Finding (MAPF) is a coordination prob-
lem where we need to find collision-free paths for a team
of cooperating agents and is known to be NP-hard on
graphs and grids (Yu and LaValle 2013; Banfi, Basilico, and
Amigoni 2017). When MAPF problems are solved in prac-
tice, agents can sometimes be unexpectedly delayed during
plan execution; e.g. due to exogenous events or mechanical
problems. Currently, there exist two principal approaches to
handle such delays. The first approach involves robust exe-
cution policies (Ma, Kumar, and Koenig 2017; Hönig et al.
2019). Here dependencies are introduced to guarantee that
agents execute their plans in a specific and compatible or-
der. Another approach is to reason about potential delays at
the planning stage which involves computing robust plans.

Following (Atzmon et al. 2018) we say that a plan is k-
robust if the individual path of each agent remains valid for
up to k unexpected delays of that agent. In other words, pro-
vided each agent waits for no more than k timesteps on the
way to its target, its plan is guaranteed to be collision-free.
In addition to their execution benefits, k-robust plans are
valuable in application areas where agents must maintain
minimum safety distances. Such constraints appear in rail
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scheduling, quay crane scheduling, planning for warehouse
robots and others. In these settings a k-robust plan naturally
provides k timesteps of distance between agents that are are
moving, while also allowing agents to stay close if they are
not moving. Furthermore, k-robust plans can be used in con-
junction with robust execution policies to benefit from both
methods (Atzmon et al. 2020).

To compute k-robust plans, Atzmon et al. (2018) propose
k-robust Conflict-Based Search (k-CBS), a robust variant of
the popular and well known branch-and-replan strategy used
for MAPF (where k = 0) (Sharon et al. 2015), and a SAT-
based solution, which cannot solve problems on large grids
like brc202d DAO map(Stern et al. 2019). A main problem
with CBS is that the algorithm is extremely inefficient when
reasoning equivalent permutations of conflicts that can oc-
cur between pairs of agents, such as rectangle symmetry (Li
et al. 2019), corridor symmetry, and target symmetry (Li
et al. 2020). Further complicating the situation is that the
reasoning techniques proposed to handle these situations, do
not always extend straightforwardly to the k-robust case.

To address this gap in the literature we introduce a variety
of specialised k-robust symmetry breaking constraints that
dramatically improve performance for the k-CBS algorithm.
Experimental results show very large gains in success rate
for k-CBS; not only on classic MAPF benchmarks but also
in two application specific domains: in warehouse logistics,
where k-robust plans are desirable and in railway scheduling
where k-robust plans are mandatory.

Problem Definition
We consider a multi-agent coordination problem where the
operating environment is an undirected (e.g. gridmap) or di-
rected (e.g. rail network) graph G = (V,E). We restrict
graph G to be a 4-neighbour grid and we place upon it m
agents {a1...am}. Every agent ai is assigned an initial ver-
tex si and a goal vertex gi. Time is discretised into unit-size
steps. In each timestep, agents can move to an adjacent ver-
tex or wait at the current location. Each move or wait action
has an associated unit cost.

We say that a path is k-robust if for each location v vis-
ited at time t by agent a no other agent visits the location in
the time interval [t, t + k]. We call a k-delay vertex conflict
the situation where agent ai at timestep t and aj at timestep
t′ = t + ∆,∆ ∈ [0, k], visit the same location v. We de-
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(a) Rectangle (b) Corridor

(c) Target

Figure 1: Examples of rectangle, corridor and target conflicts
when k=0, reproduced from (Li et al. 2020).

note such a conflicts by 〈ai, aj , v, t,∆〉. When k = 0 it is
further possible for two agents to cross the same edge in op-
posite directions at the same time, resulting in a so-called
edge conflict. Notice however that with k > 0 such a cross-
ing will always result in a vertex conflict. Thus for k > 0 we
do not need to model edge conflicts.

A solution to the problem (equiv. a k-robust plan) is a set
of paths, one for each agent ai, which moves each agent ai
from its start location si to its goal location gi such that there
are no k-delay conflicts with the plans of any other agent.
Our objective is to find a k-robust plan which minimises the
sum of all individual path costs (SIC).

k-Robust Conflict-Based Search
k-Robust Conflict-Based Search (k-CBS) (Atzmon et al.
2018) is a two-level search algorithm specialised from clas-
sical MAPF (k=0) (Sharon et al. 2015). At the high-level,
k-CBS searches (in a best-first way) a binary constraint tree
(CT ) where each node is a complete assignment of paths to
agents (i.e. a plan). The process of finding such single agent
paths constitutes the low level of k-CBS. Here individual
agents find paths (via A*) from start to target while subject
to a set of collision-avoiding constraints.

The search process of k-CBS proceeds as follows: At each
iteration k-CBS expands the CT node with lowest f -cost. If
the current node is conflict-free then that node is a goal and
the search terminates having found a least-cost feasible plan.
Otherwise, the current node must contain at least one pair of
agents that are in collision. Suppose for example that the
conflict is 〈ai, aj , v, t,∆〉. This situation occurs when agent
ai at timestep t and aj at timestep t′ = t + ∆,∆ ∈ [0, k],
visit the same location v. To resolve the conflict k-CBS re-
plans each of the two affected agents and thus generates two
new candidate plans. To each child node is added a time
range constraint which resolves the situation now and in

all future descendant nodes derived from each respective
child. The constraint 〈ai, v, [t, t + k]〉 says that agent ai is
not allowed to occupy vertex v at any timestep in the range
[t, t + k]. The second child node, where aj is replanned, re-
ceives a similar constraint: 〈aj , v, [t, t + k]〉.
k-CBS continues in this way, splitting and searching,

while the current CT node contains any conflict. This ap-
proach is solution complete and optimal. It guarantees to
find a k-robust plans (Atzmon et al. 2018), if any such plan
exists, since the union of valid plans permitted by the two
child nodes is the same as at the parent node (i.e. adding
constraints does not eliminate valid solutions).

Conflict selection strategies: Deciding which conflict
to resolve next is critical to the success of (k-)CBS. In this
work we follow Boyarski et al. (2015) where authors classify
conflicts as cardinal, semi-cardinal and non-cardinal:

• A conflict C is cardinal if replanning for any agent in-
volved in the conflict increases the SIC.

• A conflict C is semi-cardinal if replanning for one agent
involved in the conflict always increases the SIC while
replanning for the other agent does not.

• A conflict C is non-cardinal otherwise.

In Boyarski et al. (2015) it is shown that resolving cardi-
nal conflicts first can dramatically reduce the size of the
resulting CBS tree. After all cardinal conflicts are resolved
we choose semi-cardinal conflicts and finally non-cardinal.
Similar to that work we use a Multi-valued Decision Dia-
gram (MDD) to classify conflicts. Each MDD records all
nodes (i.e., vertex-time pairs) that can appear on an opti-
mal path for each agent. (Semi-)cardinal conflicts require the
conflict node to be a singleton for (resp. one) both agents, i.e.
all optimal paths must pass through the node.

CBS Heuristics (CBSH): Different from (Atzmon et al.
2018) but following (Felner et al. 2018), we also exploit
known cardinal conflicts to derive a minimal cost increase
heuristic for our high-level A* search. This strategy is
known to improve the performance of CBS and has become
a common approach in leading MAPF (k = 0) solvers.

k-Symmetries
Symmetries in MAPF occur when two agents repeatedly run
into one another along equivalent individually optimal paths.
Figure 2a shows an example for k = 4. Notice that each
agent has available a number of optimal-cost paths. How-
ever every optimal path of agent a1 is in collision with ev-
ery optimal path of agent a2 and vice versa. Without detect-
ing such situations k-CBS will repeatedly split, node after
node, growing the CT tree in order to enumerate all pos-
sible collisions in the highlighted rectangle area. Figure 2b
shows the result: each time k-CBS splits, it potentially dou-
bles the amount of search yet remaining to reach the goal
node. The size of the CT tree grows exponentially as the
size of the rectangle area increases, causing k-CBS to return
timeout failure. Note that as k increases, the size of the CT
tree also grows exponentially, which makes the problem ex-
tremely difficulty to solve. All this difficulty can be avoided
by recognising there exists a simple optimal strategy: one of
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(a)
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Figure 2: (a)A collision-free solution, orange path, is elimi-
nated, if we simply put ”thick” barrier constraints to resolve
a k-delay rectangle conflict when k = 4. (b) How number of
high-level nodes expanded by k-CBS increases with k and
the size of the rectangle area.

the two agents has to wait. For k = 0 one agent must wait
for one timestep. For k > 0 one agent may need to wait
for more than one timestep. However, as k grows large the
problem can permit optimal-cost bypass routes that allow
one agent to avoid the rectangle area entirely. For example
in Figure 2a, when k ≥ 4 the solid-orange-line path becomes
optimal and agent a2 can reach its target without waiting.

In this work we consider three distinct symmetric situa-
tions which can appear in k-robust MAPF:

• Rectangle Symmetries, as illustrated in Figure 1a.

• Corridor Symmetries, as illustrated in Figure 1b.

• Target Symmetries, as illustrated in Figure 1c.

Rectangle symmetries have previously been studied in the
context of MAPF (k = 0) (Li et al. 2019) while Corridor and
Target Symmetries have only recently been introduced (Li
et al. 2020), again in the context of MAPF (k = 0). Each
time authors show that symmetries are common in a range
of standard benchmarks and they report dramatic gains in
performance when these symmetric situations are resolved
via specialised reasoning techniques. We adapt each of these
ideas to k-robust planning and we report similarly strong re-
sults. Generalising these constraints is not simply academic.
As we show in the experimental section, k-robust plans are

needed for important practical problems. Without the de-
velopment of suitable algorithmic techniques such problems
will remain out of reach to MAPF planners.

k-Robust Rectangle Reasoning
Rectangle symmetries arise in k-CBS when the paths of two
agents cross topologically. The agents are heading in the
same directions (e.g. down and right in Figure 2a) and there
exists for each many different but equally shortest paths
which arise from re-ordering their individual moves. In such
cases the standard replanning strategy of k-CBS does not
help to immediately resolve the problem.
Definition 1 (k-delay rectangle conflict). A k-delay rect-
angle conflict between two agents occurs if all paths with
cost between optimal and optimal+k (inclusive) for the two
agents that enter a given rectangular area have a k-delay
vertex conflict in the rectangular area.

Rectangle conflicts pose substantial challenges for k-robust
planning in general and for k-CBS in particular because:
• the agents do not have to reach positions at exactly the

same time to have a conflict;
• the delay caused by the conflict can be up to k + 1; and
• for k ≥ 2 an agent can leave and enter the conflicting area

without adding more than k steps to its path.
To address these challenges we follow Li et al. (2019) where
authors develop barrier constraints: a pruning strategy that
can efficiently resolve rectangle conflicts for CBS with k =
0 in a single branching step. With respect to Figure 2a, one
barrier constraint prohibits agent a1 from occupying cells
(5, 2), (5, 3), and (5,4) at timesteps 3, 4, and 5, respec-
tively. Similarly, the other barrier constraint prohibits agent
a2 from occupying cells (3, 4), (4, 4), and (5, 4) at timesteps
3, 4, and 5, respectively. Notice that each barrier blocks all
equivalent shortest paths and forces one agent or the other to
wait, thus resolving the conflict.

A straightforward idea for extending this strategy to k > 0
would be to increase the “thickness” (number of timesteps)
of the barrier constraints. We therefore introduce temporal
barrier constraints, which unify the (temporal) range con-
straints of (Atzmon et al. 2018) and the (spatial) barrier con-
straints of (Li et al. 2019).
Definition 2 (Temporal barrier constraint). Given a vertex-
time pair p = (u, t) we denote with ot(p, v) the opti-
mal time to reach vertex v = (vx, vy) from vertex u =
(ux, uy) starting at timestep t. We compute the optimal
time by adding to t the Manhattan distance from u to v:
ot(p, v) = t + |vx − ux|+ |vy − uy|. A w temporal barrier
constraint, denoted B(ax, V, p, w), forbids an agent ax, cur-
rently at vertex-time pair p, from visiting any vertex v ∈ V
at its optimal time or up to w timesteps later. That is, the bar-
rier constraint B(ax, V, p, w) is the set of time-range vertex
constraints 〈ax, v, [ot(p, v), ot(p, v) + w]〉, v ∈ V .

To resolve the k-robust rectangle conflict in Figure 2a, one
might think that we can replace the two barrier constraints
used by (Li et al. 2019) with two k temporal barrier con-
straints at the exit of the rectangle. However, this approach
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Figure 3: (1) Example of temporal barrier constraints. In this
case k1 = 2, S1(R)l1 and S4(R)l1 are shifted for l1 = 1
grid location away from S1(R) and S4(R), and k2 = 4 so
S2(R)l2 and S3(R)l2 are shifted for l2 = 2 timesteps from
S2(R) and S3(R). (2) The yellow area is the rectangle R.
Adding the light and dark orange areas gives rectangle R′.
(3) The solid red line is a path traversing rectangle R and
must have k-delay conflicts. The dashed red line is a path
bypassing the rectangle R, but traversing rectangle R′ and
must have k-delay conflicts as well. The green dashed line
is a collision-free path bypassing the rectangle R′. (4) Ex-
tended constraints (Step Temporal Barrier Constraint) de-
fined in Section fill the gaps in the barriers for the dark
orange area.

is not complete! For example, when k = 4, the orange line is
a collision-free path for agent a2, no matter what path agent
a1 takes. But this solution is eliminated by the w = 4 tem-
poral barrier constraints. Therefore, we propose a novel ap-
proach that enlarges the rectangle area being reasoned about
and adding temporal barrier constraints based on it with ad-
justed thickness so that we can preserve the completeness
and optimality by taking into consideration such bypasses.

Enlarging Rectangle and Shifting Borders
Given a 4-neighbor grid map, we define a rooted rect-
angle R as the set of vertices occurring in the rectan-
gle defined by the two corner points D = (Dx, Dy) the
root corner, and E = (Ex, Ey) the opposite corner. As
shown in Figure 3, the illustrated rectangle is defined by
D = (4, 3) and E = (5, 4). Given D and E, we de-
fine four sides: S1(R) = {(Dx, Dy)..(Ex, Dy)}, S2(R) =
{(Dx, Dy)..(Dx, Ey)}, S3(R) = {(Ex, Dy)..(Ex, Ey)},
and S4(R) = {(Dx, Ey)..(Ex, Ey)}. We define the shifted
side Sj(R)l, j ∈ [1, 4], l ∈ [0, bk2 c], as the side Sj(R)
shifted away from the center of R by l grid locations, note
the Sj(R) cannot be shifted beyond the start or goal loca-
tions of agents involved in the conflict. Define the y-shifted
start location Dy

l as the root corner D shifted l locations
along y-axis away from R, and the x-shifted start location

Dx
l as the start location shifted l locations along y-axis away

from R. Similarly define Ey
l and Ex

l .
Given these definitions, the shifted barrier constraints

with some particular thickness can define a k-delay rectan-
gle conflict, that is all paths for two agents a1 and a2 that
cross these barriers must inevitably result in a k-delay con-
flict.

Theorem 1. Consider a k-robust MAPF problem with an
arbitrary rooted rectangle R defined by corners D and E
and two arbitrary integers 0 ≤ k1, k2 ≤ k. Let root time rt
be the minimum of the timestep when agent a1 or a2 reaches
the root corner D, l1 = bk1

2 c, l2 = bk2

2 c, p1 = (Dy
l1
, rt −

l1), and p2 = (Dx
l2
, rt − l2). If the paths for agents a1 and

a2 violate all of the four constraints:

• a1 Entrance: B(a1, S1(R)l1 , p1, k2),
• a1 Exit: B(a1, S4(R)l1 , p1, k2),
• a2 Entrance: B(a2, S2(R)l2 , p2, k1),
• a2 Exit: B(a2, S3(R)l2 , p2, k1),

the paths of the two agents have a k-delay vertex conflict.

Proof. Assume that S1(R) is the top of the rooted rectan-
gle R, S4(R) the bottom, S2(R) the left, and S3(R) the
right. The other cases follow similarly. S1(R)l1 , S4(R)l1 ,
S2(R)l2 , S3(R)l2 are corresponding sides shifted away
from R. These shifted sides define a new larger rectangle
R′ with two corner points D′ and E′, as shown in Figure 3.

In order to violate the first two constraints, agent a1 has to
enter the top of rectangle R′ through a vertex v on S1(R)l1
at timestep ot(p1, v) or up to k2 timesteps later, and leave
from the bottom through a vertex v on S4(R)l1 at timestep
ot(p1, v) or up to k2 timesteps later, so it can wait for at most
k2 timesteps in R′ but cannot leave R′, since this would re-
quire at least extra 2l2 +2 timesteps comparing with a short-
est path across R′ but 2l2+2 > k2. Every vertex v it visits in
R′ is visited within the time range [ot(p1, v), ot(p1, v)+k2].

Similarly agent a2 enters the left of rectangle R′ through
a vertex v on S2(R)l2 at timestep ot(p2, v) or up to k1
timesteps later, and leaves the right through a vertex v on
S3(R)l2 at timestep ot(p2, v) or up to k1 timesteps later.
Again it cannot leave R′, since this would require at least
extra 2l1 + 2 timesteps and it can take at most k1 wait in R′.
Every vertex v it visits in R′ is visited within the time range
[ot(p2, v), ot(p2, v) + k1].

Now since agent a1 crosses from top to bottom and
agent a2 from left to right, their paths must cross, say at
vertex v ∈ R′. Assume that agent a1 visits vertex v at
t1 ∈ [ot(p1, v), ot(p1, v) + k2] while agent a2 visits ver-
tex v at t2 ∈ [ot(p2, v), ot(p2, v) + k1]. Since ot(p1, v) and
ot(p2, v) share the same root time rt, ot(p1, v) = ot(p2, v),
and k1 and k2 are both less than or equal to k, which make
|t1−t2| ≤ k, there is a k-delay conflict 〈a1, a2, v, t1, t2−t1〉
(if t1 ≤ t2) or 〈a2, a1, v, t2, t1 − t2〉 (if t1 > t2).

Extending Temporal Barrier Constraints
The temporal barrier constraints proposed in Theorem 1 do
not cover all situations where two agents must have a k-
delay vertex conflict in a rectangle area because they do not
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cover the entire circumference of rectangle R′. As the red
dashed line path shown in Figure 3 illustrates, if agent a1
enters the top of rectangle R′ through corner D′ at the opti-
mal time, and leaves from left-bottom vertex at the optimal
time. This path (red dashed line) traverses through S2(R)l2
and is 2bk2 c timesteps longer than paths entering through
S1(R)l1 optimally and leaving through S4(R)l1 optimally.
Now agent a2 enters R′ via S2(R)l2 at the optimal time or
up to k2 timesteps later, so they still have a k-delay conflict.

We cannot simply extend temporal barrier constraints to
the entire circumference of R′ to eliminate such conflicts, as
it would also eliminate the green dashed collision-free path
in Figure 3. We thus consider a stronger reasoning method.

Definition 3 (Step temporal barrier constraint). Denoted
by Bstep(ax, S, p, k

′) this constraint reduces the temporal
width of the barrier B(ax, S, p, k

′) by a value of 2 for each
step away from the original barrier. Let l′ = bk

′

2 c, we add
range constraints 〈ax, v, [ot(p, v), ot(p, v) + k′ − 2d]〉 for
each vertex v in the same line as S at distance d ∈ [1, l′]
from the original barrier.

For the rectangle R′ in Figure 3, the step tempo-
ral barrier constraint Bstep(a1, S1(R)l1 , p1, k2) consists
of B(a1, S1(R)l1 , p1, k2) and the additional range con-
straints 〈a1, (2, 2), [rt+ 1, rt+ 1]〉, 〈a1, (3, 2), [rt, rt+ 2]〉,
〈a1, (6, 2), [rt+ 1, rt+ 3]〉, and 〈a1, (7, 2), [rt+ 2, rt+ 2]〉.
Notice how the time ranges shrink further from the original
barrier. This prevents the red dashed path in Figure 3. We
can now extend Theorem 1: if the paths of agents a1 and a2
violate all of the four following constraints:

• a1 Entrance: Bstep(a1, S1(R)l1 , p1, k2)

• a1 Exit: Bstep(a1, S4(R)l1 , p1, k2)

• a2 Entrance: Bstep(a2, S2(R)l2 , p2, k1)

• a2 Exit: Bstep(a2, S3(R)l2 , p2, k1)

the paths of the two agents have a k-delay vertex conflict.
The proof is similar.

Resolution of k-Delay Rectangle Conflicts
We can always resolve a rectangle conflict by four-way
branching adding to each branch one of the constraints: a1
Entrance, a1 Exit, a2 Entrance, and a2 Exit; since we know
that one of them must be violated in any solution. But in
many cases, we can correctly resolve the rectangle conflict
by two-way branching on the constraints a1 Exit and a2 Exit,
if both agents satisfy the following condition:

Condition 1 All possible paths that traverse the exit bar-
rier must also traverse the entrance barrier.

We can use a k-MDD to check that the condition is sat-
isfied. A k-MDD for agent ai is a modified Multi-Valued
Decision Diagram (MDD) (Boyarski et al. 2015) that stores
all paths of agent ai from start to goal with path length no
more than k above the optimal. MDDs are widely used in
CBS algorithms to store all optimal paths, the k-MDD is a
direct extension.

If either agent’s k-MDD shows that paths that bypass the
entrance barrier and traverse the exit barrier exist, the given

conflict cannot be resolved by two-way branching on the
given barriers, as it may eliminate conflict free paths that
bypass the entrance barrier. If any combination of k1 and k2
lead to Condition 1 being satisfied, the given conflict can re-
solved by two-way branching on the exit barriers. If none of
the combinations satisfy Condition 1, the given conflict will
be resolved as a normal conflict (i.e. we never do four-way
branching).

We can classify k-delay rectangle conflicts as cardinal,
semi-cardinal and non-cardinal using the k-MDD:
• A k-delay rectangle conflict is cardinal, if all paths in the

k-MDDs of both agents traverse the exit barrier, which
means that replanning for any agent involved in the con-
flict increases the SIC.

• A k-delay rectangle conflict is semi-cardinal, if only one
agent has all paths in its k-MDD traverse the exit barrier,
which again means that replanning this agent involved
always increases the SIC while replanning for the other
agent does not.

• A k-delay rectangle conflict is non-cardinal if both agents
have paths in their k-MDD bypass their exit barriers.

We can then prioritize selecting conflict based on cardinality.

Detecting Rectangle Conflicts
When we detect a vertex conflict during CBS we need to
recognise that it’s actually a rectangle conflict, in order to
perform rectangle symmetry breaking.

Assume that agents a1 and a2 have a k-delay vertex con-
flict 〈a1, a2, v, t,∆〉. Let d1 and d2 be the moving directions
when agents a1 and a2 enter vertex v, respectively. If they
are the same directions, then there is an earlier vertex con-
flict (where they both came from). If they are opposite direc-
tions, then there is no rectangle conflict.

So assume d1 and d2 are orthogonal directions. Let
(B1x, B1y) be the earliest vertex in the path of agent a1
where all moves from here to v are in direction d1 or d2,
similarly define (B2x, B2y) for agent a2. Let tb1 be the ear-
liest timestep that a1 visits (B1x, B1y) and tb2 be the earli-
est timestep that a2 visits (B2x, B2y). Let (A1x, A1y) be
the latest vertex in the path of agent a1 where all moves
from v to here are in directions d1 or d2, similarly define
(A2x, A2y) for agent a2.

Define Dx to be the closer of B1x and B2x to vx, simi-
larly for Dy . Define Ex to be the closer of A1x and A2x to
vx, similarly for Ey . Figure 4 shows an example.

Let rt1 = tb1 + |B1x − Dx| + |B1y − Dy| and rt2 =
tb2 + |B2x − Dx| + |B2y − Dy|. We define the root time
rt = min(rt1, rt2).

We then for each value k1 ∈ {0, 1, . . . , k} and k2 ∈
{0, 1, . . . , k} check if the agents satisfy Condition 1 us-
ing the Step Temporal Barriers defined by these values. We
do so by examining the k-MDD for each agent, temporar-
ily blocking its entrance barrier and seeing if its exit barrier
is still reachable. If not then Condition 1 holds. We try the
values for k1 and k2 in decreasing order to find the strongest
blocking conditions possible. If k1 = a, k2 = b satisfies
the conditions we don’t investigate any pairs (a′, b′) where
a′ ≤ a and b′ ≤ b.
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Figure 4: Detecting a rectangle conflict when k = 2.

Figure 4 shows an example of the rectangle detection.
In this example, agents a1 and a2 have a 2-delay conflict
〈a1, a2, (3, 4), 4, 2〉 with d1 pointing right and d2 pointing
down. Then B1 is located at (1, 4) with tb1 = 2 and rt1 = 3,
and B2 located at (2, 1) with tb2 = 2 and rt2 = 5. Root
time rt = min(tb1, tb2) = 3. We detect that for the case
k1 = k2 = 2 the Step Temporal Barriers defined by these
values satisfy Condition 1.

We call the detection of rectangles and the associated
branching K-CBSH-RM (it is a generalization of the RM
technique defined by Li et al. (2019)).

Theorem 2. K-CBSH-RM is correct.

Proof. Since Condition 1 holds for the chosen Step Tem-
poral Barriers, and using (extended) Theorem 1, each pair
of paths that violate the exit barriers must conflict. Hence
the two-way branching removes no solutions, and advances
the search since it is violated by the current paths.

k-Robust Corridor Reasoning
A corridor from B to E is a chain of nodes C where
nodes in C except B and E each have exactly two neigh-
bours, and B and E have exactly one neighbour in C.
Figure 1b shows a corridor where B = (3, 1), C =
{(1, 3), (2, 3), (3, 3), (4, 3), (5, 3)} and E = (5, 3). A cor-
ridor conflict (Li et al. 2020) occurs when two agents have a
vertex or edge conflict occurring in a corridor. In the exam-
ple agents a1 and a2 conflict at vertex (3, 3). Simply adding
a vertex conflict constraint will not resolve the conflict, they
will continue to conflict in the corridor. Li et al. (2020) in-
troduce corridor symmetry breaking constraints which we
extend here for k-delay conflicts.

The difference between corridor conflicts for k-robust
CBS and normal corridor conflicts is that agents need to oc-
cupy vertexes for extra timesteps to avoid k-delay conflicts.
Assuming there is a corridor with length of l between vertex
B and vertex E, and a k-delay conflict in the corridor with

agent a1 (a2) moving from B to E (resp. E to B). Let t1
(resp. t2) be the earliest timestep when agent a1 (a2) is able
to reach vertex E (resp. B).

Clearly when planning a k-robust solution, any path of a1
using the corridor that reaches vertex E at or before timestep
t2+l+k must conflict with any paths of a2 using the corridor
that reach vertex B at or before timestep t1+ l+k. But there
may be alternate paths the agents can take to reach B or E.
Assuming agent a1 can reach vertex E at timestep t′1 without
using the corridor and reach vertex B at timestep tb. Agent
a2 can reach vertex B at timestep t′2 without traversing the
corridor and reach vertex E at timestep te. Hence in plan-
ning a k-robust solution, any path of a1 that reaches vertex
E at or before timestep min(max(te +k, t′1−1), t2 + l+k)
must conflict with any path of a2 that reaches vertex B at or
before timestep min(max(tb + k, t′2 − 1), t1 + l + k).

Hence the constraint 〈a1, E, [0,min(max(te + k, t′1 −
1), t2 + l+ k)]〉∨ 〈a2, B, [0,min(max(tb + k, t′2− 1), t1 +
l + k)]〉 must hold in all solutions. To handle the corridor
constraint we branch on this disjunction. Clearly

Theorem 3. k-robust Corridor Reasoning is correct.

k-Robust Target Reasoning
A target conflict (Li et al. 2020) occurs when one agent a2
reaches its goal vertex g2 at timestep l, and another agent a1
conflicts with agent a2 at vertex g2 at some later timestep
t, t ≥ l. Consider Figure 1c where agent a2 reaches its
goal cell (4,2) at timestep 1, and then agent a1 tries to tra-
verse cell (4,2) at timestep 3. Simply adding the constraint
〈a1, (4, 3), [3, 3]〉 causes a1 to wait before entering cell (4,3)
at timestep 4 and then the conflict reoccurs.

To avoid this Li et al. (2020) resolve the conflict by
branching on et2 ≤ t ∨ et2 > t where et2 is the end time
for agent a2. In the first case, since agent a2 finishs before or
at timestep t, agent a1 can never use location g2 at timestep
t or after. In the second case agent a2 cannot finish before
timestep t + 1 freeing up the location for agent a1.

Planning a k-robust solution requires the avoiding of k-
delay conflict. Therefore, we branch on et2 ≤ t+ k ∨ et2 >
t+ k. The first case forces agent a2 to finish before timestep
t + k preventing agent a1 (or any other agent) from using
vertex g2 at timestep t, the second case forces agent a2 not
to finish earlier so vertex g2 at timestep t is freed up for agent
a1. Again clearly

Theorem 4. k-Robust Target Reasoning is correct.

Note that to handle target symmetries we have to update
the low-level path finder for agents to take into account new
kinds of constraints where we restrict the end time of an
agent, and where we prevent any agent from using a location
from some time point onwards. Both are straightforward ad-
ditions. See Li et al. (2020) for details.

Experiments
The implementation is based on CBS with rectangle, corri-
dor and target reasoning of Li et al. (2020) and support for
k-robust planning is added on top of it. It is programmed
in C++ and experiments were performed on a server with
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(a) Random 32x32 (b) Den520d (c) Brc202d (d) Maze 128x128 (e) Warehouse map (f) Flatland Railways

Figure 5: Success rate versus number of agents on different problems.

AMD Opteron 63xx class CPU and 32 GB RAM. For each
map, we keep increasing the number of agents, and for each
number of agent we solve 25 different instances. The time
limit is set to 90s for each instance. In result plots, K-CBS
is the current state of art algorithm to plan k-robust plan
proposed by Atzmon et al. (2018),which is selected as the
baseline, K-CBSH is our extension of K-CBS with heuris-
tics (Section ), RM adds k-robust Rectangle reasoning, C
adds k-robust Corridor Reasoning, and T adds k-robust Tar-
get Reasoning.

Experiment 1: Game Maps The MAPF research com-
munity have developed a series of benchmark maps from
games (Stern et al. 2019). They are available from movin-
gai.com. We use 25 even scenarios from movingai.com to
evaluate our algorithms. We run experiments on following
representative maps: Brc202d, Den520d, Random-32-32-10,
and Maze-128-128-1.

Figure 5 shows the experiment results on grid game maps.
K-CBSH-RM based algorithms shows significant higher
success rate compared with K-CBS on Brc202d, Den520d,

and Random-32-32-10. Although k-robust corridor reason-
ing does not help on these three maps and k-robust tar-
get reasoning slightly helps, they effectively improves the
success rate on maze-128-128-1. As k increases, the prob-
lem becomes harder, and the success rate drops, but the
symmetry-breaking algorithms still show significant advan-
tages over K-CBS.

Experiment 2: Warehouse Map We use a 31×79 Ware-
house map (Li et al. 2020) with randomly generated prob-
lems to evaluate the performance of robots in warehouse sys-
tem. Figure 5e shows that k-CBSH significantly improves
success rate, k-robust target reasoning and corridor reason-
ing helps to further improve the success rate of K-CBSH-
RM. Here target reasoning is clearly very important.

Experiment 3: Simplified Railway System The Flatland
challenge is a railway scheduling challenge 1 provides a sim-
plified railway simulator using a directed grid map, where

1Swiss Federal Railways, 2019, Flatland Challenge.
https://www.aicrowd.com/challenges/flatland-challenge
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Figure 6: Percentage of k-delay rectangle conflicts among
all conflicts as k increases when using K-CBSH-RM-C-T.

trains cannot move backwards. Railway systems have head-
way control, one train cannot start to enter a railway block if
another train currently occupies the block. Hence the railway
domain requires k = 1 robust plans. Our experiments use
flatland-rl v2.0.0 to generate experiment problems. Note, no
target conflicts can occur in the Flatland challenge scenarios
since trains “disappear” when reaching their destination.

We have two settings for evaluation: (1) a 100×100 fixed
dense map contains fixed 140 start and goal locations, and
each pair of start and goal are connected by 5 railways; and
(2) a 100×100 incremental sparse map has one start and
goal location per agent, and each pair of start and goal are
only connected by 1 railway.

The experiment on railway maps, Figure 5f shows that K-
CBSH and K-CBSH-RM performs substantially better than
K-CBS. k-robust corridor reasoning helps further improve
performance on sparse railways map. Clearly the rectangle
methods are more important on the denser map, where more
symmetric conflicts are possible, and k-robust corridor rea-
soning is more important on sparse maps.

Ratio of Rectangle Conflicts The Figure 6 shows the per-
centage of k-delay rectangle conflicts among all resolved
conflicts using K-CBSH-RM-C-T as k increases. The statis-
tics on conflicts are derived from Experiment 1 and Exper-
iment 2. Clearly, as k increases, the percentage of k-delay
rectangle conflicts rises on the maps where rectangle con-
flicts can occur, hence the importance of k-robust rectangle
reasoning is demonstrated.

Conclusions and Future Work
This research introduces symmetry resolution methods for
generating k-robust plans, which are vital for robust (e.g.
warehouse robotics) and safe (e.g. railway scheduling)
multi-agent plans. Symmetry reasoning methods improve
dramatically on K-CBS, with k-robust rectangle reasoning
being the most important, while k-robust corridor and target
reasoning can further improve the performance.
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