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Abstract

The maximum quasi-clique problem (MQCP) is an impor-
tant extension of maximum clique problem with wide appli-
cations. Recent heuristic MQCP algorithms can hardly solve
large and hard graphs effectively. This paper develops an ef-
ficient local search algorithm named NuQClq for the MQCP,
which has two main ideas. First, we propose a novel vertex
selection strategy, which utilizes cumulative saturation infor-
mation to be a selection criterion when the candidate vertices
have equal values on the primary scoring function. Second, a
variant of configuration checking named BoundedCC is de-
signed by setting an upper bound for the threshold of for-
bidding strength. When the threshold value of vertex exceeds
the upper bound, we reset its threshold value to increase the
diversity of search process. Experiments on a broad range
of classic benchmarks and sparse instances show that NuQ-
Clq significantly outperforms the state-of-the-art MQCP al-
gorithms for most instances.

Introduction
Given a graph, a clique is a subset of vertices in which each
pair of vertices are adjacent. Clique is an important concept
in graph theory, and the maximum clique problem (MCP) is
a classic graph-theoretic problem. The clique model is well
known for its applications in social network analysis (Luce
and Perry 1949; Wasserman, Faust et al. 1994), and there are
also interests in its applications to cluster detection in differ-
ent fields such as bioinformatics, chemoinformatics, finan-
cial networks, and telecommunications (Wu and Hao 2015).
Nevertheless, the concept of clique is too strict for many
real-world applications, as it requires each pair of vertices
in the clique to be adjacent. In fact, most information arisen
from real world is incomplete or erroneous, which moti-
vates the development of clique relaxations. There have been
various clique relaxations: k-clubs (Pajouh and Balasun-
daram 2012), k-defective cliques (Trukhanov et al. 2013),
k-plexes (Gao et al. 2018), and γ-quasi-cliques (Zhou, Ben-
lic, and Wu 2020). In this paper, we focus on the maximum
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quasi-clique problem (MQCP), which has been used in var-
ious real-world domains (On et al. 2006; Tsourakakis et al.
2013; Lee and Lakshmanan 2016). For example, Zheng et
al. (2019) proposed a new method for author set identifica-
tion, i.e., matching the information of reviewers and papers
by encoding this problem to the MQCP.

Given a graph G = (V,E) and a fixed constant γ ∈ (0,1],
a γ-quasi-clique is a subset S of V such that the edge density
of the subgraph induced by S is at least γ. The MQCP aims
to identify the γ-quasi-clique with the maximum size in a
graph. It is easy to see that MCP is a special case of MQCP.
The MQCP is NP-hard for every fixed constant γ ∈ (0,1]
(Pattillo et al. 2013).

There are mainly two types of algorithms for the MQCP,
i.e., exact algorithms and heuristic algorithms. Recently,
many exact algorithms (Pattillo et al. 2013; Pajouh, Miao,
and Balasundaram 2014; Veremyev et al. 2016; Pastukhov
et al. 2018; Ribeiro and Riveaux 2019; Marinelli, Pizzuti,
and Rossi 2020; Miao and Balasundaram 2020) have been
proposed for solving the MQCP. Although exact algorithms
can guarantee the optimality of their solutions, they may fail
to solve large-size instances.

To deal with hard instances of large scale, lots of fast
heuristic algorithms have been designed for solving the
MQCP, which can obtain a good approximate solution
within reasonable time. An early heuristic algorithm for
solving the MQCP was proposed in (Abello, Resende, and
Sudarsky 2002), which relied on efficient semi-external
memory algorithms and greedy randomized adaptive search
procedures. Brunato et al. (2007) introduced two high-
performance stochastic local search algorithms according to
new data structures and some basic operators. Khosraviani
and Sharifi (2011) developed an MQCP algorithm based on
MapReduce programming model. Tsourakakis et al.(2013)
designed two efficient algorithms for the MQCP, includ-
ing a greedy algorithm and a heuristic based on the local-
search paradigm. Oliveira et al. (2013) presented a restart
iterative greedy algorithm named RIG∗. Afterwards, some
different versions of biased random-key genetic algorithm
(BRKGA) for the MQCP were proposed (Pinto et al. 2015,
2018, 2019). Among these versions, BRKGA-LSQClique

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12258



(2019) had the best performance. Djeddi et al. (2019) used
an extension of adaptive multistart tabu search to approxi-
mate the MQCP solution, resulting in the TSQC algorithm.
Very recently, Zhou et. al. (2020) presented an opposition-
based memetic algorithm named OBMA, relied on three
novel ideas. According to the literature, because the above
three heuristic algorithms are proposed in parallel, the cur-
rent best heuristic algorithms for the MQCP are BRKGA-
LSQClique,TSQC and OBMA.

In this paper, we develop an efficient local search algo-
rithm named NuQClq, which achieves the best results on
almost all benchmarks used in the literature. There are two
main novel ideas in our algorithm.

The first idea aims to address the issue about tie-breaking
in the primary scoring function. Although tie-breaking
mechanism seems a relatively minor concern at first sight,
our experiments show that the common scoring function
based on vertex degree usually results in more than one ver-
tices with the best score, making tie breaking an important
factor of the algorithm. To break ties, we introduce a novel
function, which indeed, can be seen as the secondary scor-
ing function. This function is based on a key concept named
cumulative saturation, which measures the sum of primary
scoring value of a vertex during the search history. The idea
is that the larger cumulative saturation value a vertex owns,
the higher probability it would be selected. In some sense,
this cumulative saturation value can be seen as an “integra-
tion” of the primary scoring function over the steps since the
last time it changed its state.

The second strategy is a new configuration checking (CC)
strategy named BoundedCC which considers the character-
istics of the MQCP. CC proposed by Cai (2011) was used
to overcome the cycling issue of local search. Different vari-
ants of CC have been used in many combinational optimiza-
tion problems (Luo et al. 2015; Wang et al. 2018; Li et al.
2018; Wang et al. 2020; Chen et al. 2020). The BoundedCC
strategy distinguishes itself from previous CC variants by
introducing an upper bound for the threshold which repre-
sents the forbidding strength of CC. If the threshold value of
vertex exceeds the upper bound, then its threshold is reset in
order to increase the diversity of search process.

Extensive experiments are carried out to evaluate NuQClq
on the benchmarks used in the literature. Compared with
three state-of-the-art heuristic algorithms, NuQClq obtains
the best results for almost all benchmarks. Besides, our ex-
perimental analyses show that the proposed strategies play
crucial roles in the outstanding performance of NuQClq.

Preliminaries
An undirected graph G = (V,E) consists of a vertex set
V = {v1, . . . , vn} and an edge set E = {e1, . . . , em}. Each
edge e = (u, v) is a 2-element subset of V . Two vertices are
neighbors if they belong to a same edge. For a vertex v, the
set of edges incident to v is denoted as E(v). The density of
graphG is given by dens(G) = |E|/

(|V |
2

)
. For a vertex v, its

neighborhood is NG(v) = {u | u ∈ V, (u, v) ∈ E}, and the
degree of vertex v is denoted as dG(v) = |NG(v)|. ∆G is the
maximum number of dG(v) among V . The closed neighbor-

hood is NG[v] = NG(v) ∪ {v}. For a vertex set S ⊆ V , we
use NG(S) =

⋃
v∈S NG(v) \ S and NG[S] =

⋃
v∈S NG[v]

to denote the neighborhood and the closed neighborhood of
S, respectively. The induced subgraph G[S] = (VS , ES) is
a subgraph of G whose vertex set is S and whose edge set
includes all the edges in ES that have both endpoints in S.

Given a graph G = (V,E) and a fixed constant γ ∈
(0,1], a γ-quasi-clique is any subset S ⊆ V such that
dens(G[S]) ≥ γ. A γ-quasi-clique S is maximal if there is
no other γ-quasi-clique S′ that strictly contains S. The max-
imum quasi-clique problem (MQCP) is to find a γ-quasi-
clique S with the most vertices.

Cumulative Saturation Heuristic
We propose a vertex selection function based on the concept
of cumulative saturation. Before presenting the heuristic, we
introduce the previous scoring functions.

Previous Scoring Functions
Local search algorithms for MQCP maintain a current can-
didate solution denoted as S ⊆ V . The adjacency dS(v) of
a vertex v ∈ V with S is the number of vertices in S that are
connected to v, i.e.,

dS(v) = |{u | u ∈ S, (u, v) ∈ E}|

In previous heuristic search algorithms for MQCP, the scor-
ing functions are mainly based on this dS(v) property. We
review these scoring functions below.

During the search process, OBMA (2020) and TSQC
(2019) maintain an infeasible solution S of size k where the
current best found size is k-1. These algorithms exchange
two vertices iteratively until S becomes a feasible solution,
where exchanging two vertices means removing one vertex
u from S and adding another vertex v into it. The score of
exchanging two vertices, denoted as swap score(u, v), is
used to choose the pair of vertices to exchange.

swap score(v, u) = dS(v)− dS(u)− euv,

where u ∈ S, v ∈ V \ S, and euv = 1 if (u, v) ∈ E, and
euv = 0 otherwise.

Another scoring function was used in some versions of
BRKGA (Pinto et al. 2015, 2018, 2019). For example, the
BRKGA-IG∗ algorithm (2018) works as follows: during
each iteration, starting from a candidate solution S, it first
removes some vertices from S according to the dS value,
and then adds some vertices based on the diff information.

diff(v) = dCL(v) + |CL|(dS(v)− γ(|S|+ 1))

where v ∈ CL and CL = {u | u ∈ V \ S, dens(G[S ∪
{u}]) ≥ γ}. Another BRKGA algorithm called BRKGA-
LSQClique (2019) hybridizes an exact enumeration algo-
rithm (Ribeiro and Riveaux 2019) with BRKGA-IG∗. The
difference between BRKGA-IG∗ and BRKGA-LSQClique
is that during the addition process, the latter one calls the ex-
act algorithm with a certain probability and otherwise uses
the same scoring function as BRKGA-IG∗ to add vertices.
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The Saturation Based Function
Previous heuristic algorithms for MQCP usually consider
dS(v) in the primary scoring function. In our algorithm, we
directly use the dS information as the primary scoring func-
tion to decide which vertex should be operated. However,
the values of dS are often the same during the search. Ac-
cording to our experiments, 14.64% candidate vertices on
average have the same best score values in our algorithm. To
further select a vertex among these vertices with the same
best dS , we design the secondary scoring function.

We distinguish the edges into three types, according to
a measurement on the number of endpoints included in S,
denoted as λ(e) (S is the maintained candidate solution).
Specifically, for ∀e ∈ E, λ(e) has three possible values.

• λ(e) = 0 means none of endpoints of e is included in S.

• λ(e) = 1 means only one endpoint of e is included in S.
An edge is said critical if and only if λ(e) = 1.

• λ(e) = 2 means both endpoints of e are in S. An edge is
said full if and only if λ(e) = 2.

As MQCP mainly concerns about the density of all sub-
sets of the selected vertices, it is intuitive to pick vertices
which share more edges. A mechanism that encourages crit-
ical edges to transfer to full edges would help to achieve
this end. Therefore, the algorithm prefers the vertices that
are incident to more critical edges when choosing a vertex
v /∈ S to be added to S, and prefers vertices that are incident
to fewer full edges when choosing a vertex to be removed
from S. This has been embodied in dS(v), which serves as
the primary scoring function in our algorithm.

Nevertheless, the dS(v) function only considers the cur-
rent state and ignores the situation of the passed steps. In
our opinion, we should also take into account the history in-
formation about dS(v) over a recent period. Based on these
considerations, we propose a function which can be seen as
the cumulative effect of this measurement over a recent pe-
riod. Before we present the function, we first define a vertex
property named saturation as follows.

Definition 1. For a local search algorithm with an input
graph G = (V,E), the saturation of a vertex v at step t
is Γt(v) =

∑
e∈E(v) I (e), where I (e) is an indicator for

critical edges, i.e, it is 1 if λ(e) = 1 at step t and 0 otherwise.

Based on the concept of saturation of vertices, we design
a function named cumulative saturation, which serves as the
secondary scoring function for our local search algorithm.

Definition 2. For a local search algorithm with an input
graph G = (V,E), the cumulative saturation of a vertex v
is defined as

Γ(v) =
T∑

t=t0(v)

Γt(v)− TS(v) ·∆G,

where T is the current step number, t0 is the step number at
which v changed its state most recently (being added or re-
moved w.r.t. S), while TS(v) is the number of steps at which
v ∈ S since t0.

To understand and use this function, we need to distin-
guish the two cases v /∈ S and v ∈ S (at the current step).

(1) If v /∈ S at the current step, then Γ(v) equals to∑T
t=t0(v)

Γt(v), as TS(v) = 0. In this case, Γ(v) is the
sum of Γt(v) over steps since t0(v), so it is obvious that
we should prefer to add vertices with bigger Γ(v).

(2) For the case v ∈ S, however, the offset TS(v) ·∆G 6=
0. Indeed, in this case we always have Γ(v) ≤ 0, as shown
below.

Γ(v) =
T∑

t=t0(v)

Γt(v)− TS(v) ·∆G

=
T∑

t=t0(v)

(Γt(v)−∆G) ≤ 0

For choosing a vertex v ∈ S to be removed from S,
we should prefer the vertices with smaller Γ(v) (i.e., big-
ger |Γ(v)|), as will be described later. This is not so obvious
as the case (1), and we explain it below. i) We introduce the
offset to make Γ(v) have negative relation to the number of
passed steps for v staying in S since t0, which means that the
longer time a vertex v stays in S, the smaller Γ(v) value it
would have. For the sake of diversification, we believe a ver-
tex staying too long in S should be preferable to removing
from S. ii) On the other hand, the Γt(v) value for the ver-
tex v ∈ S measures the number of its neighbors outside S.
Thus, a vertex with the small

∑t
t=t0

Γt(v) means that it is of
lower potential to expand S via this vertex, as it is adjacent
to relatively fewer vertices outside S.

To strike a good balance, the above two factors are taken
into account for the case v ∈ S by setting the function as
Γ(v) =

∑t
t=t0

(Γt(v)−∆G). Particularly, the offset at each
step is set as ∆G for a good reason, as it is sufficient to make
Γt(v) − ∆G be negative and also it is close enough to the
biggest possible value of Γt(v).

Vertex Selection Rules
Put the above considerations together, we present two selec-
tion rules for adding and removing operations respectively.

Add Rule. Select a vertex v with the highest dS(v) value,
breaking ties by preferring the one with the highest Γ(v)
value, further ties are broken randomly.

Remove Rule. Select a vertex v with the lowest dS(v)
value, breaking ties by preferring the one with the highest
|Γ(v)| value, further ties are broken randomly.

According to the analysis of our experimental results, re-
solving ties randomly after the secondary scoring function
has a 7.2% probability on average. When our algorithm
doesn’t use the secondary scoring function, resolving ties
randomly has a 60.7% probability on average.

Bounded Configuration Checking Strategy
Configuration checking (CC) firstly proposed by Cai (2011)
is a diversification strategy that has been widely used in
many NP-hard problems. It can be described as following:
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when selecting a vertex to be added into S, for a vertex
v /∈ S, if the configuration of v (usually denoted by the states
of vertices in NG[v], i.e., in S or not in S) has not changed
since v’s last removing from S, which means the circum-
stance of v has not changed, then v should not be added back
to S. In practice, it is usually implemented with an array
named confChange, where confChange(v) = 1 means
v is allowed to be added into S, and confChange(v) = 0
means it is forbidden to be added.

CC Strategies for Clique Problems
Among the variants of CC, two of them have been developed
in the context of clique problems, including strong config-
uration checking (SCC) strategy for the maximum weight
clique problem (Wang et al. 2020) and dynamic-threshold
configuration checking (DCC) strategy for the maximum k-
plex problem (Chen et al. 2020).

Different from the original CC strategy, SCC allows a ver-
tex v to be added into the candidate solution if some (more
than one) neighbors of v have been added since the last re-
moval of v.

DCC can be considered as a quantitative version of SCC,
which can better exploit the vertex degree information in
the strategy and has been shown more effective for the max
k-plex problem. It allows to add a vertex v if a certain
amount of vertices inNG(v) have been added, which is con-
trolled by a dynamic threshold. Specifically, a vertex v is
allowed to be added into the candidate solution only when
confChange(v) ≥ threshold(v) where threshold is used
to control the forbidding strength. Whenever v is added into
the solution, threshold(v) is increased by one.

The BoundedCC Strategy
We propose a new CC strategy named BoundedCC. The idea
is to impose stricter CC condition to the vertices that are
more frequently operated. This could be implemented by a
CC strategy similar to DCC with dynamic thresholds. Nev-
ertheless, we notice that DCC does not limit the maximum
value of the threshold of CC condition, which makes some
frequently operated vertices have very large threshold com-
pared to other vertices and thus are forbidden for a long pe-
riod of time.

We conducted experiments to investigate the distribution
of the threshold values of CC condition in DCC. It was ob-
served that, by taking average over all instances in this work,
the maximum threshold value is 6.3 times more than the av-
erage threshold value. Particularly, the gap is significant for
dense graphs. For example, for frb59-26-4 with γ = 0.9, the
maximum threshold value is 20.4 times more than the av-
erage value, which means there are some vertices with very
high threshold of CC condition and thus would be forbid-
den for a long period of time. This consists with the in-
tuition: the configurations of vertices with high degree are
likely to change, as the change on any of its neighbors would
cause an increase on the total change of the confChange
values. This makes the threshold values increase quickly
for such vertices. In fact, as our experiments show, Bound-
edCC shows particularly improvements over DCC for dense
graphs. Specially, for all graphs with density larger than

80%, our algorithm replacing DCC with BoundedCC per-
forms better for 6 graphs and no worse solutions for others.
Moreover, the proposed BoundedCC makes the maximum
threshold value only 1.5 times more than the average thresh-
old value.

In this work, we set an upper bound on the threshold of
CC condition (denoted by ub threshold), so that no vertex
would be forbidden for too long time. Moreover, when the
threshold exceeds ub threshold, we reset the threshold to 1
to increase the diversity of search process. Specifically, our
CC strategy can be described as follows.

BoundedCC-InitialRule. For ∀v ∈ V , confChange(v)
and threshold(v) are both initialized to 1.

BoundedCC-AddRule. When v is added into the can-
didate solution, for ∀u ∈ NG(v), confChange(u)
and threshold(v) is increased by one, respectively. If
threshold(v) > ub threshold, threshold(v) should be re-
set to 1.

BoundedCC-RemoveRule. When v is removed from the
candidate solution, confChange(v) is set to 0.

Note that for v ∈ V \ S, if confChange(v) ≥
threshold(v), then we say this vertex satisfies the Bound-
edCC constraint and v can be selected into S.

The NuQClq Algorithm
According to the above novel strategies, we propose a lo-
cal search algorithm for the MQCP named NuQClq, which
is outlined in Algorithm 1. Initially, the best found γ-quasi-
clique, denoted as S∗, is initialized to an empty set. In each
loop (lines 2–5), after constructing an initial candidate solu-
tion (line 3), the algorithm calls the local search procedure
(line 4). If the local best solution Slbest in this search tra-
jectory is better than the global best solution S∗, then S∗ is
updated by Slbest (line 5). At last, S∗ is returned (line 6).

Before introducing our InitConstruct function, we need
to define an additional property of each vertex v ∈ V , de-
noted as freq(v), which is used to represent the frequency
of operation. The freq value of each vertex is initialized as
0. During the search process, if vertex v is operated (i.e., to
be removed or added), then freq(v) will be increased by
one. The InitConstruct function works as follows: given an
empty candidate solution S, the algorithm first selects a ver-
tex with the lowest freq value, breaking ties randomly. Then
it performs a series of iterations until S cannot be expanded.
In each iteration, if NG(S) is not empty, it picks a vertex
v ∈ NG(S) that has the lowest freq value with a probabil-
ity of β, and with a probability of 1 − β, a random vertex
v ∈ NG(S) is chosen. If NG(S) is empty, then a random
vertex v ∈ V \ S is selected. If the density of the subgraph
induced by S ∪ {v} is smaller than γ, then the algorithm
returns S, and otherwise the vertex v is added into S. The
complexity of InitConstruct function is O(|V ||S|).

QCSearch iteratively modifies the candidate solution until
the unimproved step count (stepUnimpr) reaches the limit
stepMax, as is shown in Algorithm 2. At the beginning,
stepUnimpr is set to 0 and Slbest is initialized to S. During
each step, if S is a γ-quasi-clique, Slbest is updated by S and
stepUnimpr is reset to 0 (line 4). Then the algorithm calls
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Algorithm 1: the NuQClq Algorithm
Input: graph G = (V,E), the cutoff time, parameter γ
Output: the best γ-quasi-clique S∗ found

1 S∗ := ∅;
2 while elapsed time < cutoff do
3 S := InitConstruct();
4 Slbest := QCSearch(S);
5 if |Slbest| > |S∗| then S∗ := Slbest ;

6 return S∗;

Algorithm 2: QCSearch(S)
Input: a feasible solution S
Output: the best solution Slbest found

1 stepUnimpr := 0, Slbest := S;
2 while stepUnimpr < stepMax do
3 if dens(G[S]) ≥ γ then
4 Slbest := S, stepUnimpr := 0;
5 v := SelectV ertexToAdd(S);
6 S := S ∪ {v};
7 update threshold and confChange according to

BoundedCC-AddRule;
8 continue;

9 v := SelectV ertexToAdd(S);
10 S := S ∪ {v};
11 select u ∈ candRemove(S) according to Remove

Rule and S := S \ {u};
12 update threshold and confChange according to

BoundedCC-AddRule, BoundedCC-RemoveRule;
13 update Γ(v) for ∀v ∈ NG[S];
14 stepUnimpr := stepUnimpr + 1;

15 return Slbest;

the SelectVertexToAdd(S) function to get the added vertex
which is described in Algorithm 3. First, if NG(S) is empty,
the algorithm randomly selects a vertex v ∈ V \ S and re-
turns it. Otherwise, we use a Boolean indicator hasCand(v)
to denote whether there are vertices inNG(v) that satisfy the
BoundedCC constraint. If the hasCand values of all ver-
tices in S are false, then a random vertex v will be selected
and candAdd(S) will be constructed. If there exist some
vertices in S whose hasCand values are true, then a random
vertex from these vertices will be selected and candAdd(S)
will contain the vertices in NG(v) \ S which satisfy the
BoundedCC constraint. After that, the algorithm chooses a
vertex from candAdd(S) according to Add Rule and returns
the selected vertex. During this process, the maximum size
of added candidate set is only ∆G. After adding the selected
vertex v into S, the value of threshold and confChange
are updated accordingly. The QCSearch algorithm skips to
the next iteration (line 8).

When S is not a feasible solution, our algorithm executes
an exchange step (lines 9–14) until S becomes a feasible
solution or stepUnimpr reaches stepMax. Each exchang-
ing step consists of an adding stage and a removing stage. In
the adding stage, the algorithm first calls SelectVertexToAdd
function to get the selected vertex and then adds it into S.
Afterwards, in the removing stage, the algorithm chooses

Algorithm 3: SelectVertexToAdd(S)
Input: the current solution S
Output: the candidate added vertex u

1 if NG(S) is empty then
2 select u ∈ V \ S randomly;

3 else
4 if hasCand(v) = 0 for ∀v ∈ S then
5 select a random vertex v ∈ S;
6 candAdd(S) := {u | u ∈ NG(v) \ S};
7 else
8 select a random vertex v with hasCand(v) 6= 0;
9 candAdd(S) := {u | confChange(u) ≥

threshold(u), u ∈ NG(v) \ S};
10 select u ∈ candAdd(S) according to Add Rule;

11 return u;

a vertex u ∈ candRemove(S) according to Remove Rule
(line 11). A trick is used to accelerate the removing stage. If
dens(G) > 0.5, candRemove(S) is composed of all ver-
tices in S except the just added vertex. Otherwise, we adopt
the BMS strategy (Cai, Lin, and Luo 2017), i.e., randomly
selecting |S|/2 vertices to compose candRemove(S). This
strategy works well when the graph is very sparse, and
makes the solution more diversified. After removing the
vertex u from solution S, threshold, confChange, and
Γ need to be updated accordingly (lines 12–13). At last,
stepUnimpr is increased by one. The complexity of each
iteration in the local search process is O(max(∆2

G, |V |)).

Experimental Evaluation
We evaluate NuQClq on a broad range of classic bench-
marks as well as sparse instances, and compare it with three
state-of-the-art heuristic algorithms.

Since previous works use different instances, we select all
used instances from (Pinto et al. 2019; Djeddi, Haddadene,
and Belacel 2019; Zhou, Benlic, and Wu 2020). To be spe-
cific, we consider 289 instances, which are mainly divided
into two parts: (1) 187 classic instances from DIMACS
benchmark (Johnson 1993)1 and BHOSLIB benchmark (Xu
et al. 2007)2; (2) 102 sparse instances whose density is from
0.00014% to 3.869% from Florida Sparse Matrix Collection
(Davis and Hu 2011)3 and Stanford Large Network Dataset
Collection (Rossi and Ahmed 2015)4. Note that, the same
graph with different γ is seen as the different instances.

According to the literature, the best values found by three
parallel works, i.e., BRKGA-LSQClique (2019), TSQC
(2019) and OBMA (2020), are better than those obtained by
previous algorithms. Thus, we compare NuQClq with these
three state-of-the-art heuristic algorithms. Since the source
or binary codes of BRKGA-LSQClique and OBMA are not
available to us, we have to reimplement them. The code of

1http://archive.dimacs.rutgers.edu/pub/challenge/
2http://sites.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-

benchmarks.htm
3https://sparse.tamu.edu/
4http://networkrepository.com
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Parameters Ranges Final values

ub threshold {3, 5, 7, 9} 7
β {0.5, 0.6, 0.7, 0.8, 0.9} 0.8
stepMax {3000, 4000, 5000} 4000

Table 1: Tuned NuQClq parameters based on the irace tool.

TSQC is kindly provided by the authors. NuQClq, OBMA,
and BRKGA-LSQClique are all implemented in C++ and
complied by g++ with -O3 option, while TSQC is compiled
by MATLAB.

All experiments are run on Intel Xeon E5-2640 v4 @
2.40GHz CPU with 128GB RAM under CentOS 7.5. As
for BRKGA-LSQClique, TSQC and OBMA, we set the pa-
rameters as same as what described in the corresponding lit-
erature, respectively. For each instance, all algorithms are
executed 10 times with random seeds from 1 to 10 and a
cutoff time of 1000 seconds. For each instance, max de-
notes the best size found (i.e., maximal solution value), and
avg denotes the average size obtained over 10 runs. When
max=avg, we do not report avg. The bold values in the ta-
bles indicate the best solution among all the algorithms. Sev-
eral instances of two selected benchmarks are so easy that
all algorithms obtain the same solution quality. Due to the
limitation of space, we do not present these results in our
tables. Detailed results and our sourced code are reported in
github5.

The automatic configuration tool irace (2016) is used to
tune parameters for NuQClq. For the training set, we collect
60 instances randomly chosen from all instances. The tuning
process is given a budget of 3000 runs with a time budget of
1000 seconds per run. The final values obtained by irace are
represented in Table 1. We have also run the combinations
of all the possible parameters on the training subset. Exper-
iments show that the maximal solution size obtained by the
best parameter settings have on average 0.1686 larger than
the combinations of other parameters. Thus, our method is
quite stable depending on these parameters.

Results on DIMACS and BHOSLIB Benchmarks
The results are reported in Table 2. For all classic in-
stances, NuQClq finds better solution values than BRKGA-
LSQClique, TSQC, and OBMA for 84, 30, and 14 instances,
except only one. For instances where both algorithms find
the same best solution values, the average solution value
found by NuQClq is always larger than that of competitors,
except for two instances. When NuQClq and the correspond-
ing algorithm find the same quality values (i.e., same max-
imal and average values), we also present the comparisons
of run time on these benchmarks in Figure 1, which clearly
shows the superiority of NuQClq.

Results on Sparse Instances
Table 3 summarizes the results on all sparse instances. Once
again, the performance of NuQClq is better than BRKGA-

5https://github.com/yiyuanwang1988/NuQClq.git
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Figure 2: The comparisons of run time on sparse instances.

LSQClique, TSQC, and OBMA for 20, 4, and 23 instances,
with only one exception. For the instances where NuQClq
gets a solution with the same maximal value as the corre-
sponding competitor, NuQClq generates better average val-
ues for most instances with 6 exceptions. The superiority of
NuQClq on the sparse instances is also clearly illustrated by
Figure 2, which summarizes the run time distributions of the
MQCP algorithms when both NuQClq and one competitor
find the same quality. For all instances, the speed-up ratio of
average run time is represented in Table 4.
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Instances γ BRKGA- TSQC OBMA NuQClq Instances γ BRKGA- TSQC OBMA NuQClq
LSQClique LSQClique
max(avg) max(avg) max(avg) max(avg) max(avg) max(avg) max(avg) max(avg)

brock400 1 0.999 25 27(25.8) 26(25.1) 27(26) frb40-19-5 0.999 39(38.2) 39(38.9) 40(39.4) 40(39.7)
brock400 2 0.999 25 29(28.2) 27(25.3) 29 0.95 100 101 101 101

0.8 187(186.2) 187 187 187 0.9 333 334 334 334
brock400 3 0.999 31(26.2) 31 28(26.2) 31 frb45-21-1 0.999 43(42.3) 44(43.1) 46 46
brock800 1 0.9 43(42.1) 43 43 43 0.95 125(124.4) 127 127 127
brock800 2 0.999 21 21 21 24 0.9 508 509 509 509

0.8 95 96 96 96 frb45-21-2 0.999 43(42.2) 46(43.4) 46(45.4) 46
brock800 3 0.999 22(21.1) 22 22 22 0.95 123(122.1) 124 124 124

0.9 43(42.3) 43 43 43 0.9 491 492 492 492
0.8 93 94 94 94 frb45-21-4 0.999 42 44(43.3) 46(45.9) 46

C1000.9 0.999 68(67.7) 70(69.6) 70(69.9) 70(69.9) 0.95 131(130.7) 132 132 132
0.95 220(219) 222 222 222 0.9 554 555 555 555

C2000.9 0.999 76(74.7) 80(78.8) 81(79.5) 82(79.5) frb45-21-5 0.999 43(42) 46(43.3) 45(44.4) 46
0.95 283(280.3) 288(284.4) 288 288 0.95 123(122.8) 125 125 125

C4000.5 0.999 17 17(16.4) 18 18 frb50-23-1 0.999 48(47.1) 49(48.5) 51(50.4) 51(50.2)
0.9 29(28.8) 30(29.3) 31(30.1) 30 0.95 162(160.6) 164 164 164
0.8 51(49.9) 53(51.8) 53(52.1) 53(52.9) frb50-23-2 0.999 48(47.4) 50(48.6) 51(50.1) 51(50.1)

C500.9 0.999 57 58 58 58 frb50-23-4 0.999 48(47.2) 49 51(50.9) 51(50.9)
0.95 158 159 159 159 0.95 160(158.7) 162 162 162

DSJC1000.5 0.999 15 15(14.7) 15 15 0.9 772(771.6) 772 772 772
0.8 40 41 41 41 frb50-23-5 0.999 47 49(48.6) 51(50.5) 51(50.8)

DSJC500.5 0.999 13 13(12.9) 13 13 0.95 162(161.8) 165 165 165
gen200 p0.9 44 0.999 42(41.3) 44 44 44 frb53-24-1 0.999 50(49.5) 51(50.6) 53(52.7) 53(52.9)
gen400 p0.9 55 0.999 53 55 55 55 0.95 202(201.8) 204 204 204
gen400 p0.9 65 0.999 66(62) 66 66 66 frb53-24-2 0.999 51(50) 52(51.6) 54(52.8) 54(53)
hamming10-4 0.95 84(83.6) 87(85.3) 87(86.5) 88(87.3) 0.95 175(173.4) 177 177 177
keller6 0.95 279(275.8) 285 284(281) 286(285.2) 0.9 926(925.9) 926 926 926
MANN a27 0.999 135 135(134.8) 135(134.2) 135 frb53-24-4 0.999 50(49.6) 52(51.1) 53(52.6) 54(52.7)
MANN a45 0.999 435(430.9) 435(434.6) 433(431.7) 441 0.95 182(181.6) 185 185 185
san200 0.7 1 0.95 57 57(55) 57(52.8) 57 frb53-24-5 0.999 50(49.6) 52(51.1) 54(52.7) 54(52.8)
san200 0.7 2 0.95 34 34 34(32.4) 34 0.95 172(171.3) 175 175 175
san400 0.7 2 0.95 64(62.3) 62 62(55.8) 65(64) frb56-25-1 0.999 53(51.9) 55(53.6) 56(55.3) 56(55.5)
san400 0.7 3 0.95 40(38.9) 40(37.9) 37(35.4) 40(39.6) 0.95 228(227.5) 231 231 231
frb30-15-4 0.999 29 30 30 30 frb56-25-2 0.999 53(52.2) 54(53.4) 56(55.1) 56(55.3)

0.95 61(60.8) 61 61 61 0.95 217(214.9) 220(219.1) 220 220
frb30-15-5 0.999 29 30 30 30 frb56-25-4 0.999 53(52.3) 55(54) 57(55.8) 57(55.4)
frb35-17-1 0.999 33 34 35 35 0.95 199(198) 202(201.7) 202 202

0.95 78 79 79 79 0.9 1125 1126 1126 1126
frb35-17-2 0.999 34(33.1) 35 35 35 frb56-25-5 0.999 53(52.2) 55(54.1) 57(55.6) 57(55.7)

0.9 207 208 208 208 0.95 204(203.1) 208(207.3) 208 208
frb35-17-4 0.999 33 35(34.1) 35 35 0.9 1138 1139 1139 1139

0.95 81(80.8) 81 81 81 frb59-26-1 0.999 56(54.7) 57(56.3) 59(58.2) 59(58.3)
frb35-17-5 0.999 34 35(34.9) 35 35 0.95 245(243.6) 248(247.6) 248 248

0.95 80(79.5) 80 80 80 frb59-26-2 0.999 56(55) 57(56.6) 58 59(58.1)
frb40-19-1 0.999 39(38.1) 40(39) 40 40 0.95 240(239.7) 244(243.2) 244 244

0.95 114(113) 114 114 114 frb59-26-4 0.999 55(54.9) 57(56.3) 59(58.1) 59(58.1)
frb40-19-2 0.999 39(38.1) 39(38.9) 40(39.5) 40 0.95 235(233.6) 238(237) 238 238

0.95 104(103.2) 105 105 105 frb59-26-5 0.999 55(54.3) 57(56.5) 60(58.6) 60(58.7)
frb40-19-4 0.999 39(38) 39(38.9) 40(39.9) 40 0.95 228(226.7) 231(230.6) 231 231

0.95 97(96.3) 97 97 97 0.9 1360 1361 1361 1361
0.9 292(291.7) 293 293 293 frb100-40 0.999 88(87.2) 95(94.1) 98(97.7) 99(98.6)

0.95 1838(1837) 1842 1842 1842

Table 2: Experiment results on the classic benchmark.

The Effectiveness of the Proposed Strategies

In this subsection, we compare NuQClq with four alterna-
tive versions: (1) NuQ1 uses the random selection strategy

when the candidate vertices have the same score value, in-
stead of our secondary scoring function Γ; (2) NuQ2 utilizes
the DCC strategy (Chen et al. 2020) instead of our Bound-
edCC strategy; (3) NuQ3 utilizes the SCC strategy (Wang
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Instances γ BRKGA- TSQC OBMA NuQClq Instances γ BRKGA- TSQC OBMA NuQClq
LSQClique LSQClique
max(avg) max(avg) max(avg) max(avg) max(avg) max(avg) max(avg) max(avg)

as-skitter 0.9 112 112 66(52.6) 112 roadNet-CA 0.9 4(3.1) 3 3 4
0.8 152(151.2) 152 77(62.4) 152 0.8 5(4.7) 5(4.3) 5(4.4) 5
0.7 209 209 93(78.5) 209 0.7 5 5(4.8) 5(4.9) 6
0.6 271(270.9) 271 140(114.9) 271 0.6 6 6(5.4) 6(5.9) 6

ca-GRQC 0.5 76(73.6) 81 81 81 roadNet-PA 0.9 3 3 4(3.2) 4
California 0.9 7 12(7.5) 12 12 0.8 5(4.5) 5(4.1) 5(4.4) 5

0.8 10 13 13 13 0.7 5 5(4.8) 5 5
0.7 12 14 14 14 0.6 6 6(5.7) 6(5.9) 6
0.6 15 16 16 16 roadNet-TX 0.9 3 3 3 4

Harvard500 0.9 21 23 23 23 0.8 5(4.6) 5(4) 5(4.4) 5
0.8 22 24 24 24 0.7 5 5(4.7) 5(4.9) 5
0.7 24 26 26 26 0.6 6 6(5.6) 6(5.9) 6
0.6 27 29 29 29 web-Google 0.9 60(44.3) 60(49.3) 29(25.9) 60
0.5 33(32.4) 37 37 37 0.8 69(53.4) 69(52.6) 34(32) 69(68.9)

LiveJournal 0.9 430(406.4) 430(263.8) 24(20.2) 430(427.2) 0.7 74(61.7) 74(67.5) 41(37.2) 74
0.8 472(449.7) 472(471) 29(24.9) 472(471) 0.6 82(73.7) 83(73.5) 49(47) 83
0.7 549(463.7) 550 43(29.8) 550 wiki-Talk 0.9 58(57.9) 58 58 58
0.6 628(537.3) 628 55(37.4) 628(619.8) 0.6 222 222 222(211.1) 222

netscience 0.6 27 27(26.9) 27 27 wiki-topcats 0.9 47(37.6) 47(39.3) 23(22.1) 47(38.4)
orkut 0.9 81(67.4) 124(99.9) 55(40.2) 124(116.9) 0.8 59(58.1) 68(60.9) 32(28.5) 68(54.5)

0.8 118(111.4) 166(162) 97(61.2) 166(146.3) 0.7 101(92.1) 102 46(44.3) 102(83.1)
0.7 172(171.3) 202 153(100.7) 201(194.9) 0.6 171(163.4) 171 101 171(143)
0.6 259 259 243(161.4) 259

Table 3: Experiment results on the sparse instances.

Instances vs. BRKGA- vs. TSQC vs. OBMA
LSQClique

Classic Benchmark 15.99x 5.92x 1.41x
Sparse Instances 10.54x 2.15x 33.9x

Table 4: The speed-up ratio of average run time of NuQ-
Clq and the corresponding competitors when they obtain
the same solution quality. The speed-up ratio larger than 1
means that NuQClq is faster than the corresponding com-
petitor.

vs. NuQ1 vs. NuQ2 vs. NuQ3 vs. NuQ4

#Better 11 10 7 18
#Worse 0 1 1 2

Table 5: Comparing NuQClq with four modified versions
on all benchmarks. #Better and #Worse denote the number
of instances where NuQClq finds better and worse results,
respectively.

et al. 2020) instead of our BoundedCC strategy; (4) NuQ4
replaces our initialization process with the previous restart
initialization process, i.e., constructing the initial solution
whose size is equal to the best obtained size plus one, which
is similar to the initialization method used in TSQC and
OBMA. As shown in Table 5, the results demonstrate that
all proposed strategies are effective.

Conclusion
In this paper, we propose a novel cumulative saturation
based vertex selection heuristic and a variant of configura-
tion checking for the MQCP. Based on the above strategies,
we develop a local search algorithm NuQClq. Experiments
show that NuQClq significantly outperforms the state-of-
the-art heuristic algorithms. The main technology of NuQ-
Clq is general with wide applications, and thus its core ideas
would be applied in extensive real-world applications, such
as social network, protein interaction network and resource
optimization in cloud systems.
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