
Generalization in Portfolio-Based Algorithm Selection

Maria-Florina Balcan,1 Tuomas Sandholm,1,2,3,4 Ellen Vitercik1

1Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
2Optimized Markets, Inc., Pittsburgh, PA 15213, USA
3Strategic Machine, Inc., Pittsburgh, PA 15213, USA

4Strategy Robot, Inc., Pittsburgh, PA 15213, USA
{ninamf, sandholm, vitercik}@cs.cmu.edu

Abstract

Portfolio-based algorithm selection has seen tremendous
practical success over the past two decades. This algorithm
configuration procedure works by first selecting a portfolio
of diverse algorithm parameter settings, and then, on a given
problem instance, using an algorithm selector to choose a pa-
rameter setting from the portfolio with strong predicted per-
formance. Oftentimes, both the portfolio and the algorithm
selector are chosen using a training set of typical problem in-
stances from the application domain at hand. In this paper, we
provide the first provable guarantees for portfolio-based algo-
rithm selection. We analyze how large the training set should
be to ensure that the resulting algorithm selector’s average
performance over the training set is close to its future (ex-
pected) performance. This involves analyzing three key rea-
sons why these two quantities may diverge: 1) the learning-
theoretic complexity of the algorithm selector, 2) the size
of the portfolio, and 3) the learning-theoretic complexity of
the algorithm’s performance as a function of its parameters.
We introduce an end-to-end learning-theoretic analysis of the
portfolio construction and algorithm selection together. We
prove that if the portfolio is large, overfitting is inevitable,
even with an extremely simple algorithm selector. With ex-
periments, we illustrate a tradeoff exposed by our theoretical
analysis: as we increase the portfolio size, we can hope to in-
clude a well-suited parameter setting for every possible prob-
lem instance, but it becomes impossible to avoid overfitting.

1 Introduction
Algorithms often come with a variety of tunable parameters.
With a deft parameter tuning, these algorithms can often ef-
ficiently solve computationally challenging problems. How-
ever, the best parameter setting for one problem is rarely
optimal for another. Algorithm portfolios, which are finite
sets of parameter settings, are used in practice to deal with
this variability. A portfolio is often used in conjunction with
an algorithm selector, which is a function that determines
which configuration in the portfolio to employ on any input
problem instance. Portfolio-based algorithm selection has
fueled breakthroughs in combinatorial auction winner deter-
mination (Leyton-Brown 2003; Sandholm 2013), SAT (Xu
et al. 2008), integer programming (Xu, Hoos, and Leyton-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Brown 2010; Kadioglu et al. 2010), planning (Núñez, Bor-
rajo, and López 2015), and many other domains.

Both the portfolio and the algorithm selector are often
chosen using a training set of problem instances from the
application domain at hand. This training set is typically as-
sumed to be drawn from an unknown, application-specific
distribution. The portfolio and algorithm selector are chosen
to have strong average performance (quantified by low aver-
age runtime, for example) over the training set. We investi-
gate whether the learned algorithm selector also has strong
expected performance on problems from the same applica-
tion domain. The difference between average performance
and expected performance is known as generalization error.
If the generalization error is small, every parameter setting’s
average performance over the training set is close to its ex-
pected performance, so the learned algorithm selector will
not overfit. When overfitting occurs, the learned selector has
strong average performance over the training set but poor
expected performance on the true distribution.

There are multiple reasons the generalization error might
be large in this setting: 1) the learning-theoretic complexity
of the algorithm selector, 2) the size of the portfolio, and 3)
the learning-theoretic complexity of the algorithm’s perfor-
mance as a function of its parameters. We provide end-to-
end bounds in terms of all three elements simultaneously.
The multitude of factors impacting generalization differen-
tiates this paper from prior research on generalization in al-
gorithm configuration (e.g., Gupta and Roughgarden 2017;
Balcan et al. 2017; Garg and Kalai 2018; Liu et al. 2020).
That research focuses on learning a single good configura-
tion rather than a portfolio together with an algorithm selec-
tor. In the former case, generalization error only grows with
(3)—just one of the sources of error we must contend with.

Our bounds apply to the widely-applicable setting where
on any fixed input, algorithmic performance is a piecewise-
constant function of its parameters with at most t pieces, for
some t ∈ Z. This structure has been observed in algorithm
configuration for integer programming, greedy algorithms,
clustering, and computational biology (Gupta and Rough-
garden 2017; Balcan et al. 2017, 2018, 2021; Balcan 2020).
Given a training set of size N , we prove that the generaliza-

tion error is bounded1 by Õ
(√(

d̄+ κ log t
)
/N
)
, where

1Here we assume that algorithmic performance is a quantity in

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12225

κ is the size of the portfolio and d̄ measures the intrinsic
complexity of the algorithm selector, as we define in Sec-
tion 3. We also prove that this bound is tight up to loga-
rithmic factors: the generalization error can be as large as

Ω̃
(√(

d̄+ κ
)
/N
)
. This implies that even if the algorithm

selector is extremely simple (d̄ is small), overfitting cannot
be avoided in the worst case when the portfolio size κ is
large. Moreover, we instantiate our guarantees for several
commonly-used families of algorithm selectors.

Finally, via experiments in the context of integer program-
ming configuration, we illustrate the inherent tradeoff our
theory exposes: as we increase the portfolio size, we can
hope to include a high-performing parameter setting for any
given instance, but it become increasingly difficult to avoid
overfitting. We incrementally increase the size of the port-
folio and with each addition we train an algorithm selector
using regression forest performance models. As the portfolio
size increases, the algorithm selector’s training performance
continues to improve, but there comes a point where the test
performance begins to worsen, meaning that the algorithm
selector is overfitting to the training set.

Additional related research. Gupta and Roughgarden
(2017) also provide generalization guarantees for algorithm
configuration. They primarily analyze the problem of learn-
ing a single parameter setting with high expected perfor-
mance. They do provide guarantees for the more general
problem of learning a mapping from instances to parameter
settings in a few special cases, but do not study the prob-
lem of learning a portfolio in conjunction with learning a
selector, which we do. They study settings where for each
problem instance, a domain expert has defined a number
of relevant features, as do we in Section 4. Their first re-
sult applies to learning an algorithm selector when the set
of features is finite. In contrast, our results apply to infi-
nite feature spaces. Their second set of results is tailored
to the problem of learning empirical performance models.
An empirical performance model is meant to predict how
long a particular algorithm will take to run on a given in-
put. An algorithm selector can use an empirical performance
model by selecting the parameter setting with best predicted
performance. Gupta and Roughgarden (2017) provide guar-
antees that bound the difference between the empirical per-
formance model’s expected error and average error over the
training set. Their guarantees can be applied once the port-
folio is already chosen. They do not study the problem of
learning the portfolio itself, whereas we study the composite
problem of learning the portfolio and the algorithm selector.

2 Problem Formulation and Road Map
Notation. Our theoretical guarantees apply to algorithms
parameterized by a real value ρ ∈ R. We use the notation
Z to denote the set of problem instances the algorithm may
take as input. For example, Z might consist of integer pro-
grams (IPs) if we are configuring an IP solver. There is an
unknown distribution D over problem instances in Z .

[0, 1], an assumption we relax in Section 2.

To describe the performance of a parameterized algo-
rithm, we adopt the notation of prior research (Balcan et al.
2021). For every parameter setting ρ ∈ R, there is a function
uρ : Z → [0, H] that measures, abstractly, the performance
of the algorithm parameterized by ρ given an input z ∈ Z .
For example, uρ might measure runtime or the quality of the
algorithm’s output. We use the notation U = {uρ : ρ ∈ R}
to denote the set of all performance functions.

Problem formulation. A portfolio-based algorithm selec-
tion procedure relies on two key components: a portfo-
lio and an algorithm selector. A portfolio is a set P =
{ρ1, . . . , ρκ} ⊆ R of κ parameter settings. An algorithm
selector is a mapping f : Z → P from problem instances
z ∈ Z to parameter settings f(z) ∈ P . In practice (Xu,
Hoos, and Leyton-Brown 2010; Kadioglu et al. 2010; Sand-
holm 2013), the portfolio and algorithm selector are typi-
cally learned using the following high-level procedure:

1. Choose a class F of algorithm selectors, each of which
maps Z to R. (In Section 4, we provide several examples
of classes F used in practice.)

2. Draw a training set S = {z1, . . . , zN} ∼ DN of problem
instances from the unknown distribution D.

3. Use S to learn a portfolio P̂ = {ρ1, . . . , ρκ} ⊆ R.

4. Use S to learn an algorithm selector f̂ ∈ F that maps to
parameter settings in the portfolio P̂ .
Given an instance z ∈ Z , the performance of the parame-

ter setting selected by f̂ is uf̂(z)(z). We bound the expected

quality Ez∼D
[
uf̂(z)(z)

]
of the learned algorithm selector.

Road map. We first analyze the extent to which the av-
erage performance of the selector f̂ over the training set
generalizes to its expected performance. We then use this
analysis to relate the performance of f̂ and the optimal
selector under the optimal choice of a portfolio. Specifi-
cally, we bound the difference between Ez∼D

[
uf̂(z)(z)

]
and maxP:|P|≤κ Ez∼D [maxρ∈P uρ(z)]. (If our goal is to
minimize uρ(z), we may replace each max with a min.)

3 Sample Complexity Bounds
In this section, we bound the difference between the average
performance of any selector f ∈ F over the training set
S ∼ DN and its expected performance. Formally, we bound∣∣∣∣∣ 1

N

∑
z∈S

uf(z)(z)− E
z∼D

[
uf(z)(z)

]∣∣∣∣∣ (1)

for any choice of an algorithm selector f ∈ F . This
will serve as a building block for our general analysis of
portfolio-based algorithm selection.

Our bounds apply in the widely-applicable setting where
on any fixed input, algorithmic performance is a piecewise-
constant function of the algorithm’s parameters. This struc-
ture has been observed in algorithm configuration for integer

12226

programming, greedy algorithms, clustering, and computa-
tional biology (Gupta and Roughgarden 2017; Balcan et al.
2017, 2018, 2021; Balcan 2020). To describe this structure
more formally, for a fixed input z ∈ Z , we use the notation
u∗z : R → R to denote algorithmic performance as a func-
tion of the parameters (whereas the functions uρ defined in
Section 2 measure performance as a function of the input z).
Naturally, u∗z(ρ) = uρ(z). We refer to u∗z as a dual function
(as opposed to uρ, which is a primal function). We assume
algorithmic performance is a piecewise-constant function of
the parameters, or more formally, that each function u∗z is
piecewise constant with at most t pieces, for some t ∈ Z.

Our bounds depend on both the number of pieces t and on
the intrinsic complexity of the class of algorithm selectorsF .
We use the following notion of the multi-class projection of
F to define the class’s intrinsic complexity.

Definition 3.1. Given a selector f ∈ F , let ρ1 < ρ2 <
· · · < ρκ̄ be the parameter settings f maps to, with κ̄ ≤ κ.
The function f defines a partition Z1, . . . , Zκ̄ of the problem
instances Z where for any z ∈ Z , if f(z) = ρi, then z ∈ Zi.
For each function f ∈ F there is therefore a corresponding
multi-class function f̄ : Z → [κ] that indicates which set
of the partition the instance z belongs to: f̄(z) = i when
z ∈ Zi. We use the notation F̄ =

{
f̄ : f ∈ F

}
to denote

the set of all such multi-class functions.

Defining this set of multi-class functions allows us to use
classic tools from multi-class learning to reason about the
algorithm selectors F . In particular, our bounds depend on
the Natarajan (1989) dimension of the class F̄ , which is a
natural extension of the classic VC dimension (Vapnik and
Chervonenkis 1971) to multi-class functions.

Definition 3.2 (Natarajan dimension). The set F̄ multi-class
shatters a set of problem instances z1, . . . , zN if there exist
labels y1, . . . , yN ∈ [κ] and y′1, . . . , y

′
N ∈ [κ] such that:

1. For every i ∈ [N], yi 6= y′i, and
2. For any subset C ⊆ [N], there exists a function f̄ ∈ F̄

such that f̄ (zi) = yi if i ∈ C and f̄(zi) = y′i otherwise.

The Natarajan dimension of F̄ is the cardinality of the
largest set that can be multi-class shattered by F̄ .

In Section 4, we bound the Natarajan dimension of
F̄ for several commonly-used classes of algorithm se-
lectors F . We use Natarajan dimension to quantify the
intrinsic complexity of the class of selectors, which in
turn allows us to bound Equation (1) for every function
f ∈ F . To do so, we relate the Natarajan dimension of
F̄ to the pseudo-dimension of the function class UF ={
z 7→ uf(z)(z) : f ∈ F

}
. Every function in UF is defined

by an algorithm selector f ∈ F . On input z ∈ Z , uf(z)(z)
equals the utility of the algorithm parameterized by f(z)
on input z. Pseudo-dimension (Haussler 1992) is a classic
learning-theoretic tool for measuring the intrinsic complex-
ity of a class of real-valued functions (whereas Natarajan
dimension applies to multi-class functions). Both Natarjan
dimension and pseudo-dimension are extensions of the clas-
sic VC dimension, so they bear some resemblance. Below,
we define the pseudo-dimension of the class UF .

Definition 3.3 (Pseudo-dimension). The set UF shatters a
set of instances z1, . . . , zN ∈ Z if there exist witnesses
w1, . . . , wN ∈ R such that for any subsetC ⊆ [N], there ex-
ists an algorithm selector f ∈ F such that uf(zi) (zi) ≤ wi
if i ∈ C and uf(zi) (zi) > wi otherwise. The pseudo-
dimension of UF , denoted Pdim (UF), is the size of the
largest set of instances that can be shattered by UF .

Classic learning-theoretic results allow us to provide gen-
eralization bounds once we calculate the pseudo-dimension.
For example (Haussler 1992), with probability 1−δ over the
draw of the set {z1, . . . , zN} ∼ DN , for any selector f ∈ F ,∣∣∣∣∣ 1

N

N∑
i=1

uf(zi)(zi)− E
z∼D

[
uf(z)(z)

]∣∣∣∣∣
= O

(
H

√
1

N

(
Pdim (UF) + log

1

δ

))
. (2)

We provide a general bound on Pdim (UF), which al-
lows us to bound Equation (1). The proof is in the full ver-
sion (Balcan, Sandholm, and Vitercik 2020).
Theorem 3.4. Suppose each dual function u∗z is piecewise-
constant with at most t pieces. Let d̄ be the Natarajan di-
mension of F̄ . Then Pdim (UF) = Õ

(
d̄+ κ log t

)
.

At a high level, the Õ
(
d̄
)

term accounts for the intrin-
sic complexity of the algorithm selectors F . The O (κ log t)
term accounts for the complexity of composing selectors
f with the performance functions uρ. In Theorem 3.5, we
prove this bound is tight up to logarithmic factors.

Proof sketch of Theorem 3.4. Let z1, . . . , zN ∈ Z be an ar-
bitrary set of problem instances. Since each dual function
u∗zi is piecewise-constant with at most t pieces, there are
M ≤ Nt intervals I1, . . . , IM partitioning R where for any
interval Ij and any instance zi, u∗zi(ρ) is constant across all
ρ ∈ Ij . Given these intervals, we partition the algorithm se-
lectors in F into at most Mκ sets so that within any one
set, all selectors map to the same κ (or fewer) intervals. Fo-
cusing on the selectors within one set F0 of the partition, we
prove that the number of ways the utility functions uf across
f ∈ F0 can labels the instances z1, . . . , zN is upper bounded
by the number of ways the multi-class projection functions
f̄ across f ∈ F0 can label the instances. We can then use the
Natarajan dimension of F̄ to bound the number of ways the
functions in UF label the instances z1, . . . , zN .

Theorem 3.4 and Equation (2) imply that with probability
1− δ over the draw S ∼ DN , for any selector f ∈ F ,∣∣∣∣∣ 1

N

∑
z∈S

uf(z)(z)− E
z∼D

[
uf(z)(z)

]∣∣∣∣∣
= Õ

(
H

√
1

N

(
d̄+ κ+ log

1

δ

))
. (3)

This theorem quantifies a fundamental tradeoff: as the port-
folio size increases, we can hope to obtain better and bet-
ter empirical performance

∑
z∈S uf(z)(z) but the general-

ization error Õ
(
H
√(

d̄+ κ
)
/N
)

will worsen.

12227

We now prove that Theorem 3.4 is tight up to logarithms.
The following theorem illustrates that even if the class of al-
gorithm selectors is extremely simple (in that the Natarajan
dimension of F̄ is 0), if the portfolio size (that is, the num-
ber κ of parameters mapped to) is large, we cannot hope to
avoid overfitting. The full proof is in the full version (Bal-
can, Sandholm, and Vitercik 2020).

Theorem 3.5. For any κ, d̄ ≥ 2, there is a class of functions
U = {uρ : ρ ∈ R} and a class of selectors F such that:

1. Each selector f ∈ F maps to ≤ κ parameter settings.
2. Each dual function u∗z is piecewise-constant with 1 dis-

continuity,
3. The Natarajan dimension of F̄ is at most d̄, and
4. The pseudo-dimension of UF is Ω

(
κ+ d̄

)
.

Proof sketch. Let Z = (0, 1]. For each parameter setting
ρ ∈ R, define uρ(z) = 1{z≤ρ}. Let κ, d̄ ≥ 2 be two ar-
bitrary integers. We split this proof into two cases: d̄ ≥ κ
and κ > d̄. In both cases, we construct a class of selectors
F that satisfies the properties in the theorem statement and
we prove that Pdim (UF) ≥ max

{
κ, d̄
}

= Ω
(
κ+ d̄

)
. We

sketch the proof of the case where κ > d̄.
We begin by partitioning Z = (0, 1] into κ intervals

Z1, . . . , Zκ, where Zi =
(
i−1
κ , iκ

]
. For each set C ⊆ [κ], we

define an selector fC : Z → R as follows. For any z ∈ Z , let
i be the index of the interval z lies in, i.e., z ∈ Zi. If i ∈ C,
we map fC(z) = i

κ and if i 6∈ C, we map fC(z) = i
κ −

1
2κ .

Let F = {fC : C ⊆ [κ]}. The multi-class projection of F̄ is
extremely simple: its Natarjan dimension is 0. Moreover, the
set S =

{
1
κ ,

2
κ , . . . ,

κ−1
κ , 1

}
is shattered by UF because—at

a high level—each selector fC maps each element z ∈ S to
a parameter just above z or just below z, which allows the
function class UF to shatter S .

In the proof of Theorem 3.5, each performance function
uρ maps to {0, 1}, so we effectively prove a lower bound
on the VC dimension of UF . Classic results from learning
theory imply the generalization error of learning a selector

f ∈ F can therefore be as large as Ω̃
(
H
√(

d̄+ κ
)
/N
)
,

which matches Equation (3) up to logarithmic factors.

4 Application of Theory to Algorithm
Selectors

We now instantiate Theorem 3.4 for several commonly-used
classes of algorithm selectors. In each of the case studies,
there is a feature mapping φ : Z → Rm that assigns feature
vectors φ(z) ∈ Rm to problem instances z ∈ Z .

4.1 Linear Performance Models
We begin by providing guarantees for algorithm selectors
that use a linear performance model. These have been used
extensively in computational research (Xu et al. 2008; Xu,
Hoos, and Leyton-Brown 2010). To define this type of se-
lector, let ρ = (ρ1, . . . ρκ) be a set of κ distinct parameter

settings. For each i ∈ [κ], define a vector wi ∈ Rm and let

W =

 . . .

w1
. . . wκ
. . .

be a matrix containing all κ weight vectors. The dot
product wi · φ(z) is meant to estimate the perfor-
mance of the algorithm parameterized by ρi on in-
stance z. We define the algorithm selector fρ,W (z) =
ρi where i = argmaxj∈[κ] {wj · φ(z)}, which selects
the parameter setting with best predicted performance.
We define the class of algorithm selectors FL =
{fρ,W : W ∈ Rm×κ,ρ ∈ Rκ}. To define the class F̄L, for
each matrix W ∈ Rm×κ, let gW : Z → [κ] be a func-
tion where gW (z) = argmaxi∈[κ] {wi · φ(z)} . By defini-
tion, F̄L = {gW : W ∈ Rm×κ}, so F̄L is the well-studied
m-dimensional linear class which has a Natarajan dimen-
sion of O(mκ) (Shalev-Shwartz and Ben-David 2014). This
fact implies the following corollary.
Corollary 4.1. Suppose the dual functions are piecewise-
constant with at most t pieces. The pseudo-dimension of
UFL =

{
z 7→ uf(z) : f ∈ FL

}
isO(κm log(κm)+κ log t).

4.2 Regression Tree Performance Models
We now analyze algorithm selectors that use a regression
tree as the performance model. These have proven power-
ful in computational research (Hutter et al. 2014). A regres-
sion tree T ’s leaf nodes partition the feature space Rm into
disjoint regions R1, . . . , R`. In each region Ri, a constant
value ci is used to predict the algorithm’s performance on
instances in the region. The internal nodes of the tree define
this partition: each performs an inequality test on some fea-
ture of the input. We use the notation hT (z) to denote tree
T ’s prediction of the algorithm’s performance on instance z.
Formally, hT (z) equals the constant value corresponding to
the region of the tree’s partition to which φ(z) belongs.

An algorithm selector can be defined using a regression
tree performance model as follows. Let ρ = (ρ1, . . . , ρκ) be
a set of κ parameter settings. For each ρi, let Ti be a tree
that is meant to predict the performance of the algorithm pa-
rameterized by ρi, and let T = (T1, . . . , Tκ) be the set of
all κ trees. We define the algorithm selector fρ,T (z) = ρi
where i = argmaxj∈[κ]

{
hTj (z)

}
. The class of algorithm

selectors FR consists of all functions fρ,T across all pa-
rameter vectors ρ ∈ Rκ and all κ-tuples of regression trees
T = (T1, . . . , Tκ). The full proof of the following lemma is
in the full version (Balcan, Sandholm, and Vitercik 2020).
Lemma 4.2. Suppose we limit ourselves to building regres-
sion trees with at most ` leaves. Then the Natarajan dimen-
sion of F̄R is O(`κ log(`κm)).

Proof sketch. For each κ-tuple of regression trees T =
(T1, . . . , Tκ), let gT : Z → [κ] be a function where gT (z) =
argmaxi∈[κ] {hTi(z)}. By definition, the set F̄R consists of
the functions gT across all κ-tuples of regression trees T
with at most ` leaves. Let z1, . . . , zN ∈ Z be a set of prob-
lem instances. Our goal is to bound the number of ways the

12228

functions gT can label these instances. A single regression
tree induces a partition of theseN problem instances defined
by which leaf each instance is mapped to as we apply the
tree’s inequality tests. The key step in this proof is bound-
ing the total number of partitions we can induce by varying
the tree’s inequality tests. We then generalize this intuition
to bound the number of partitions κ regression trees can in-
duce as we vary all their parameters. Once the partition of
each regression tree is fixed, the tree with the largest predic-
tion for each problem instance depends on the relative order-
ing of the constants at the trees’ leaves. There is a bounded
number of possible relative orderings, and we aggregate all
of these bounds to prove the lemma statement.

Corollary 4.3. Suppose the dual functions are piecewise-
constant with at most t pieces and we limit ourselves
to building regression trees with at most ` leaves. Then
Pdim (UFR) = O(`κ log(`κm) + κ log t).

This pseudo-dimension bound reflects the end-to-end na-
ture of our analysis, since the guarantee bounds the general-
ization error of both selecting the portfolio and training the
regression tree performance model. This is why the bound
grows with both the size of the portfolio (κ) and the com-
plexity of the regression trees (` and m).

4.3 Clustering-Based Algorithm Selectors
We now provide guarantees for clustering-based algorithm
selectors (Kadioglu et al. 2010). This type of selector clus-
ters the feature vectors φ(z1), . . . , φ(zN) ∈ Rm and chooses
a good parameter setting for each cluster. On a new instance
z, the selector determines which cluster center is closest to
φ(z) and runs the algorithm using the parameter setting as-
signed to that cluster. More formally, let ρ = (ρ1, . . . , ρκ)
be a set of parameter settings and let x1, . . . ,xκ ∈ Rm be a
set of vectors. We define the matrix

X =

 . . .

x1
. . . xκ
. . .

 ,

where each xi represents a cluster center. We define the se-
lector fρ,X(z) = ρi with i = argminj∈[κ]

{
‖xj − φ(z)‖p

}
for some `p-norm with p ≥ 1, and the class FC =
{fρ,X : ρ ∈ Rκ, X ∈ Rm×κ} . This lemma’s proof is in the
full version (Balcan, Sandholm, and Vitercik 2020).
Lemma 4.4. For any p ∈ [1,∞), the Natarajan dimension
of F̄C is O(mκ log(mκp)).

Proof sketch. For each matrix X , let gX : Z → [κ] be de-
fined such that gX(z) = argmini∈[κ]

{
‖xi − φ(z)‖pp

}
. By

definition, F̄C = {gX : X ∈ Rm×κ}. Let z1, . . . , zN ∈ Z
be a set of problem instances. Our goal is to bound the num-
ber of ways the functions gX can label these instances as we
vary X ∈ Rm×κ. We do so by analyzing, for each instance
zi, the boundaries in Rm×κ where if we shift X from one
side of the boundary to the other, the column in X closest
to φ (zi) changes. We show that these boundaries are de-
fined by multi-dimensional polynomials. We bound the total

number of regions these boundaries induce in Rm×κ, which
implies a bound on the Natarajan dimension of F̄C .

Lemma 4.4 and Theorem 3.4 imply the following bound.

Corollary 4.5. If the dual functions are piecewise-constant
with at most t pieces, then Pdim (UFC) = Õ (mκ+ κ log t).

5 Learning Procedure with Guarantees
We use the results from the previous section to provide guar-
antees for the high-level learning procedure from Section 2:

1. Draw a training set of problem instances S ∼ DN .

2. Use S to select a set of at most κ configurations P̂ ⊆ R.

3. Use S to learn an algorithm selector f̂ ∈ F that maps
problem instances z ∈ Z to parameter settings f̂(z) ∈ P̂ .

Our guarantees depend on the quality of the portfolio P̂
and selector f̂ , as formalized by the following definition.

Definition 5.1. Given a training set S ⊆ ZN and parameters
α ∈ (0, 1], β ∈ [0, 1], and ε ∈ [0, 1], we say the portfolio P̂
and the algorithm selector f̂ are (α, β, ε)-optimal if:

1. The portfolio P̂ is nearly optimal over the training set:

1

N

∑
z∈S

max
ρ∈P̂

uρ(z) ≥ α max
P⊂R:|P|≤κ

1

N

∑
z∈S

max
ρ∈P

uρ(z)−β.

(The maximization means that performance is measured
with respect to an oracle that selects an optimal algorithm
parameter ρ from the portfolio for each instance.)

2. The algorithm selector f̂ returns high-performing param-
eter settings from the set P̂ in the sense that

1

N

∑
z∈S

uf̂(z)(z) ≥
1

N

∑
z∈S

max
ρ∈P̂

uρ(z)− ε. (4)

For example, when algorithmic performance as a func-
tion of the parameters is piecewise constant, there are
only a finite number of meaningfully different parame-
ter values to choose among—one per piece. Then, since∑
z∈S maxρ∈P̂ uρ(z) is a submodular function of the port-

folio P̂ , we can use a greedy algorithm to select P̂ , and we
obtain α = 1 − 1

e and β = 0, as we prove in the full ver-
sion (Balcan, Sandholm, and Vitercik 2020). Alternatively,
integer programming could be used to select the optimal
portfolio from the finite set of candidate parameter values,
in which case we would obtain α = 1 and β = 0. Moreover,
the value ε can be calculated directly from the training set.

The following theorem bounds the difference between the
expected performance of the selector f̂ and an oracle that se-
lects an optimal selector and an optimal portfolio. The proof
is in the full version (Balcan, Sandholm, and Vitercik 2020).

Theorem 5.2. Suppose that each dual function u∗z is piece-
wise constant with at most t pieces. Given a training set
S ⊆ Z of size N , suppose we learn an (α, β, ε)-optimal

12229

portfolio P̂ ⊂ R and algorithm selector f̂ : Z → P̂ in F .
With probability 1− δ over the draw S ∼ DN ,

E
z∼D

[
uf̂(z)(z)

]
≥ α max

P:|P|≤κ
E
[
max
ρ∈P

uρ(z)

]
− ε− β − Õ

(
H

√
d̄+ κ

N

)
,

where d̄ is the Natarajan dimension of F̄ .

Proof sketch. First, let P∗ be the optimal portfolio in the
sense that P∗ = argmaxP⊂R:|P|≤κ Ez∼D [maxρ∈P uρ(z)] .
We use a Hoeffding bound to relate the expected perfor-
mance of P∗ under the oracle algorithm selector and its av-
erage performance over the training set. We then use Defi-
nition 5.1 to relate the latter quantity to the average perfor-
mance of the learned selector f̂ over the training set. Finally,
we use Theorem 3.4 to relate the average performance of f̂
to its expected performance. Putting all of these bounds to-
gether, we prove the theorem statement.

We can obtain symmetric guarantees when our goal is to
minimize rather than maximize a performance measure.

6 Experiments
We provide experiments that illustrate the tradeoff we inves-
tigated from a theoretical perspective in the previous sec-
tions: as we increase the portfolio size, we can hope to in-
clude a well-suited parameter setting for any problem in-
stance, but it becomes increasingly difficult to avoid over-
fitting. We illustrate this in the context of integer program-
ming algorithm configuration. We configure CPLEX, one of
the most widely used commercial solvers. CPLEX uses the
branch-and-cut (B&C) algorithm (branch-and-bound with
cutting planes, primal heuristics, preprocessing, etc.) to
solve integer programs (IPs). We tune a parameter ρ ∈ [0, 1]
of CPLEX that controls its variable selection policy2 and
has been studied extensively in prior research (Gauthier and
Ribière 1977; Bénichou et al. 1971; Beale 1979; Linderoth
and Savelsbergh 1999; Achterberg 2009; Balcan et al. 2018).
We leave CPLEX’s other techniques on and unchanged. We
provide a more detailed overview of CPLEX and the pa-
rameter we tune in the full version (Balcan, Sandholm, and
Vitercik 2020). B&C partitions the IP’s feasible region, find-
ing locally optimal solutions within the sets of the partition,
and eventually verifies that the best solution found so far is
globally optimal. It organizes this partition as a tree. As in
prior research (Balcan et al. 2018; Gupta et al. 2020; Zarpel-
lon et al. 2020), our goal is to find parameter settings lead-
ing to small trees—and thereby fast run time—so we define
uρ(z) to be the size of the tree B&C builds. We aim to learn
a portfolio P̂ and selector f̂ resulting in small expected tree
size E

[
uf̂(z)(z)

]
.

2We override the default variable selection of CPLEX 12.8.0.0
using the C API. All experiments were run on a 64-core machine
with 512 GB of RAM, a m4.16xlarge Amazon AWS instance, and
a cluster of m4.xlarge Amazon AWS instances.

Distribution over IPs. We analyze a distribution over IPs
formulating the combinatorial auction winner determination
problem, which we generate using the Combinatorial Auc-
tion Test Suite (Leyton-Brown, Pearson, and Shoham 2000).
We use the “arbitrary” generator with 200 bids and 100
goods, resulting in IPs with around 200 variables, and the
“regions” generator with 400 bids and 200 goods, resulting
in IPs with around 400 variables. We define a heterogeneous
distributionD as follows: with equal probability, we draw an
instance from the “arbitrary” or “regions” distributions. To
assign features to these IPs, we use all the features developed
in prior research by Leyton-Brown, Pearson, and Shoham
(2000) and Hutter et al. (2014), resulting in 140 features.

Experimental procedure. We first learn a portfolio of
size 10 in the following way. We draw a training set of M =
1000 IPs z1, . . . , zM ∼ D and solve for the dual functions
u∗z1 , . . . , u

∗
zM—which measure tree size as a function of the

parameter ρ—using the algorithm described in Appendix
D.1 of the paper by Balcan et al. (2018). These functions are
piecewise-constant with at most t pieces, for some t ∈ N.
Therefore, there are at most Mt parameter settings leading
to different algorithmic performance over the training set.
Let P̄ be this set of parameter settings. We use a greedy
algorithm to select 10 parameter settings from P̄ . First,
we find a parameter setting ρ1 which minimizes average
tree size over the training set: ρ1 ∈ argmin

∑M
i=1 uz∗i (ρ).

Then, we find a parameter setting ρ2 that minimizes aver-
age tree size when the better of ρ1 or ρ2 is used: ρ2 ∈
argmin

∑M
i=1 min

{
uz∗i (ρ), uz∗i (ρ1)

}
. We continue greed-

ily until we have a portfolio P̂ = {ρ1, . . . , ρ10}.
We then use a regression forest to select among parameter

settings in the portfolio P̂ . Prior research (Hutter et al. 2014)
has illustrated that regression forests can be strong predic-
tors of B&C runtime. Here, we use them to predict B&C
tree size. A regression forest is a set F = {T1, . . . , TM} of
regression trees (reviewed in Section 4.2). On an input IP z,
the regression forest’s prediction, denoted hF (z), is the aver-
age of the trees’ predictions: hF (z) = 1

M

∑M
i=1 hTi(z). We

learn regression forests F1, . . . , F10 for each of the 10 pa-
rameter settings in the portfolio P̂ . We then define the algo-
rithm selector f̂(z) = ρi where i = argminj∈[10]

{
hFj (z)

}
.

To learn the regression forest, we draw a training set
z1, . . . , zN ∼ D of IPs (with N specified below). For
each parameter setting ρi ∈ P̂ and IP zj , we compute
uρi (zj), the size of the tree B&C builds using the param-
eter setting ρi. We then train the forest Fi corresponding
to the parameter setting ρi using the labeled training set
{(z1, uz1 (ρi)) , . . . , (zN , uzN (ρi))}. We use Python’s de-
fault scikit-learn regression forest (Pedregosa et al. 2011).

In Figure 1a, we plot the performance of the regression
forests as both the training set and portfolio grow. For a
fixed training set size N , we train the regression forests
F1, . . . , F10 using the method described above. We then
evaluate performance as a function of the portfolio size κ.
Specifically, for each κ ∈ [10], we define a selector f̂κ(z) =
ρi where i = argminj∈[κ]

{
hFj (z)

}
. We drawNt = 104 test

12230

(a) Plot with portfolio sizes 1 through 10. (b) Legend for Figures 1a and 1c. (c) Plot with portfolio sizes 1 through 20.

Figure 1: In Figures 1a and 1c, we plot the multiplicative tree size improvement we obtain as we increase both the portfolio
size along the horizontal axis and the size of the training set, denoted N . Fixing a training set size and letting v̂κ be the average
tree size we obtain over the test set using a portfolio of size κ (see Equation (5)), we plot v̂κ/v̂1. In Figure 1a, the portfolio size
ranges from 1 to 10 and the training set size N ranges from 100 to 200,000. In Figure 1c, the portfolio size ranges from 1 to
20 and the training set size ranges from 100 to 1000. In Figure 1a, we also plot a similar curve for the test performance of the
oracle algorithm selector, as well as the training performance of the learned algorithm selector when N = 2 · 105.

instances St ∼ DNt . The test performance of f̂κ is

v̂κ =
1

Nt

∑
z∈St

uf̂κ(z) (z) . (5)

In Figure 1a, we plot the multiplicative performance im-
provement we obtain as we increase κ. Specifically, we plot
v̂κ/v̂1. These are the blue solid (N = 102), orange dashed
(N = 103), green dotted (N = 104), and purple dashed
(N = 2 · 105) lines. By the iterative fashion we constructed
the portfolio, v̂1 is the performance of the best single param-
eter setting, so v̂1 is already highly optimized.

We plot a similar curve for the test performance of the
oracle algorithm selector which always selects the optimal
parameter setting from the portfolio. Specifically, for each
portfolio size κ ∈ [10], let f∗κ be the oracle algorithm se-
lector f∗κ(z) = argminρ1,...,ρκuρi(z). Given a test set St ∼
DNt , we define the average test performance of f∗κ as

v∗κ =
1

Nt

∑
z∈St

uf∗
κ(z) (z) .

The blue dotted line equals v∗κ/v
∗
1 as a function of κ.

Finally, when the training set is of size N = 2 · 105,
we provide a similar curve for the training performance of
the learned algorithm selectors f̂κ. Letting z1, . . . , zN be the
training set, we denote the average training performance as

ṽκ =
1

N

N∑
i=1

uf∗
κ(zi) (zi) .

The yellow solid line is ṽκ/ṽ1 as a function of κ.
In Figure 1c, we plot v̂κ/v̂1 as a function of the portfo-

lio size κ for larger portfolio sizes ranging from 1 to 20. We
greedily extend the portfolio P̂ to include an additional 20
parameter settings. We then train 20 regression forests us-
ing freshly drawn training sets of size 100 and 1000. This
plot illustrates the fact that as we increase the portfolio size,
overfitting causes test performance to worsen.

Discussion. Focusing first on test performance using the
largest training set size N = 2 · 105, we see that test per-
formance continues to improve as we increase the portfolio
size, though training and test performance steadily diverge.
This illustrates the tradeoff we investigated from a theoret-
ical perspective in this paper: as we increase the portfolio
size, we can hope to include a well-suited parameter setting
for every instance, but the generalization error will worsen.
Figure 1c shows that for a given training set size, there is a
portfolio size after which test performance actually starts to
get strictly worse, as our theory predicts. In other words, we
observe overfitting: the selector has strong average perfor-
mance over the training set but poor test performance.

7 Conclusions
We provided guarantees for learning a portfolio of param-
eter settings in conjunction with an algorithm selector for
that portfolio. We provided a tight (up to log factors) bound
on the number of samples sufficient and necessary to en-
sure that the selector’s average performance on the train-
ing set generalizes to its expected performance on the real
unknown problem instance distribution. Our guarantees ap-
ply in the widely-applicable setting where the algorithm’s
performance on any input problem instance is a piecewise-
constant function of its parameters. Our theoretical bounds
indicate that even with an extremely simple algorithm selec-
tor, we cannot hope to avoid overfitting in the worst-case if
the portfolio is large. Thus, there is a tradeoff when increas-
ing the portfolio size, since a large portfolio allows for the
possibility of including a strong parameter setting for every
instance, but this potential for performance improvement is
overshadowed by a worsening propensity towards overfit-
ting. We concluded with experiments illustrating this trade-
off in the context of integer programming. A direction for
future research is to understand how the diversity of a port-
folio impacts its generalization error, since algorithm port-
folios are often expressly designed to be diverse.

12231

Acknowledgments
This material is based on work supported by the Na-
tional Science Foundation under grants CCF-1535967,
CCF-1733556, CCF-1910321, IIS-1617590, IIS-1618714,
IIS-1718457, IIS-1901403, and SES-1919453; the ARO un-
der awards W911NF1710082 and W911NF2010081; the
Defense Advanced Research Projects Agency under co-
operative agreement HR00112020003; an AWS Machine
Learning Research Award; an Amazon Research Award; a
Bloomberg Research Grant; a Microsoft Research Faculty
Fellowship; an IBM PhD fellowship; and a fellowship from
Carnegie Mellon University’s Center for Machine Learning
and Health.

References
Achterberg, T. 2009. SCIP: solving constraint integer pro-
grams. Mathematical Programming Computation 1(1): 1–
41.
Balcan, M.-F. 2020. Data-Driven Algorithm Design. In
Roughgarden, T., ed., Beyond Worst Case Analysis of Algo-
rithms. Cambridge University Press.
Balcan, M.-F.; DeBlasio, D.; Dick, T.; Kingsford, C.; Sand-
holm, T.; and Vitercik, E. 2021. How much data is sufficient
to learn high-performing algorithms? In Proceedings of the
Annual Symposium on Theory of Computing (STOC).
Balcan, M.-F.; Dick, T.; Sandholm, T.; and Vitercik, E. 2018.
Learning to Branch. In International Conference on Ma-
chine Learning (ICML).
Balcan, M.-F.; Nagarajan, V.; Vitercik, E.; and White, C.
2017. Learning-Theoretic Foundations of Algorithm Con-
figuration for Combinatorial Partitioning Problems. Confer-
ence on Learning Theory (COLT) .
Balcan, M.-F.; Sandholm, T.; and Vitercik, E. 2020. Gen-
eralization in portfolio-based algorithm selection. arXiv
preprint arXiv:2012.13315 .
Beale, E. 1979. Branch and bound methods for mathemati-
cal programming systems. Annals of Discrete Mathematics
5: 201–219.
Bénichou, M.; Gauthier, J.-M.; Girodet, P.; Hentges, G.;
Ribière, G.; and Vincent, O. 1971. Experiments in mixed-
integer linear programming. Mathematical Programming
1(1): 76–94.
Garg, V.; and Kalai, A. 2018. Supervising Unsupervised
Learning. In Proceedings of the Annual Conference on Neu-
ral Information Processing Systems (NeurIPS).
Gauthier, J.-M.; and Ribière, G. 1977. Experiments
in mixed-integer linear programming using pseudo-costs.
Mathematical Programming 12(1): 26–47.
Gupta, P.; Gasse, M.; Khalil, E.; Mudigonda, P.; Lodi, A.;
and Bengio, Y. 2020. Hybrid models for learning to branch.
In Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS).
Gupta, R.; and Roughgarden, T. 2017. A PAC approach to
application-specific algorithm selection. SIAM Journal on
Computing 46(3): 992–1017.

Haussler, D. 1992. Decision theoretic generalizations of the
PAC model for neural net and other learning applications.
Information and computation 100(1): 78–150.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm runtime prediction: Methods & evaluation. Arti-
ficial Intelligence 206: 79–111.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
2010. ISAC—Instance-Specific Algorithm Configuration.
In Proceedings of the European Conference on Artificial In-
telligence (ECAI).
Leyton-Brown, K. 2003. Resource allocation in competitive
multiagent systems. Ph.D. thesis, Stanford University.
Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000. To-
wards a Universal Test Suite for Combinatorial Auction Al-
gorithms. In Proceedings of the ACM Conference on Elec-
tronic Commerce (ACM-EC), 66–76. Minneapolis, MN.
Linderoth, J.; and Savelsbergh, M. 1999. A computational
study of search strategies for mixed integer programming.
INFORMS Journal of Computing 11(2): 173–187.
Liu, S.; Tang, K.; Lei, Y.; and Yao, X. 2020. On Performance
Estimation in Automatic Algorithm Configuration. In AAAI
Conference on Artificial Intelligence (AAAI).
Natarajan, B. K. 1989. On learning sets and functions. Ma-
chine Learning 4(1): 67–97.
Núñez, S.; Borrajo, D.; and López, C. L. 2015. Automatic
construction of optimal static sequential portfolios for AI
planning and beyond. Artificial Intelligence 226: 75–101.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12: 2825–2830.
Sandholm, T. 2013. Very-Large-Scale Generalized Combi-
natorial Multi-Attribute Auctions: Lessons from Conduct-
ing $60 Billion of Sourcing. In Neeman, Z.; Roth, A.; and
Vulkan, N., eds., Handbook of Market Design. Oxford Uni-
versity Press.
Shalev-Shwartz, S.; and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
University Press.
Vapnik, V.; and Chervonenkis, A. 1971. On the uniform
convergence of relative frequencies of events to their prob-
abilities. Theory of Probability and its Applications 16(2):
264–280.
Xu, L.; Hoos, H.; and Leyton-Brown, K. 2010. Hydra:
Automatically Configuring Algorithms for Portfolio-Based
Selection. In AAAI Conference on Artificial Intelligence
(AAAI).
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32(1): 565–606.
Zarpellon, G.; Jo, J.; Lodi, A.; and Bengio, Y. 2020. Param-
eterizing Branch-and-Bound Search Trees to Learn Branch-
ing Policies. arXiv preprint arXiv:2002.05120 .

12232

