
A New Bounding Scheme for Influence Diagrams

Radu Marinescu1, Junkyu Lee2, Rina Dechter2

1 IBM Research Europe
2 University of California Irvine

radu.marinescu@ie.ibm.com, junkyul@uci.edu, dechter@ics.uci.edu

Abstract

Influence diagrams provide a modeling and inference frame-
work for sequential decision problems, representing the proba-
bilistic knowledge by a Bayesian network and the preferences
of an agent by utility functions over the random variables
and decision variables. Computing the maximum expected
utility (MEU) and the optimizing policy is exponential in
the constrained induced width and therefore is notoriously
difficult for larger models. In this paper, we develop a new
bounding scheme for MEU that applies partitioning based
approximations on top of the decomposition scheme called
a multi-operator cluster DAG for influence diagrams that is
more sensitive to the underlying structure of the model than
the classical join-tree decomposition of influence diagrams.
Our bounding scheme utilizes a cost-shifting mechanism to
tighten the bound further. We demonstrate the effectiveness of
the proposed scheme on various hard benchmarks.

Introduction
Influence diagrams (IDs) (Howard and Matheson 1984) are
a powerful formalism for reasoning with sequential deci-
sion making problems under uncertainty. They involve both
chance or random variables, where the outcome is determined
randomly based on the values assigned to the other variables,
and decision variables, which the decision maker can chose
the value of, based on observations of some other variables.
Uncertainty is represented (like in Bayesian networks) by
a collection of conditional probability distributions, one for
each chance variable. The overall value of an outcome is rep-
resented as the sum of a collection of utility functions. Solv-
ing an ID is finding the maximum expected utility (MEU) and
the corresponding optimal policy for each decision, subject
to the history of observations and previous decisions.

Computing the MEU has long been recognized as one of
the most difficult inference task over graphical models. There-
fore, a significant research effort has been dedicated over
the past years to developing efficient bounding schemes for
MEU. The most common approaches use either information
relaxation techniques that reorder the chance and decision
variables to form a simpler model that yields an upper bound
on the original MEU (Nilson and Holhe 2011) or reformulate
the MEU into a Marginal MAP (MMAP) query on a related

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graphical model and apply standard approximation schemes
for MMAP (Liu and Ihler 2012). More recently, a class of
decomposition bounds has emerged as a powerful approxi-
mation scheme for MEU. These methods apply partitioning
schemes such as mini-buckets (Dechter and Rish 2003) or
weighted mini-buckets (Liu and Ihler 2011) to a join-tree
or join-graph decomposition of the ID and employ various
cost-shifting mechanisms to tighten the bounds further in
an anytime manner (Lee, Ihler, and Dechter 2018; Lee et al.
2019). They were developed within the framework of valua-
tion algebras (Shenoy 1992; Maua, de Campos, and Zaffalon
2012; Moral 2018) that define combination and marginaliza-
tion operators over pairs of probability and utility functions
called potentials (Jensen, Jensen, and Dittmer 1994).

Contribution: In this paper, we take the above bound-
ing ideas and apply them on top of a more effective de-
composition scheme called a multi-operator cluster DAG
(or MCDAG) decomposition for influence diagrams (Pralet,
Schiex, and Verfaillie 2006, 2009) instead of the tradi-
tional tree-decomposition (Jensen, Jensen, and Dittmer 1994).
MCDAGs were introduced as an alternative to the classical
Shenoy-Shafer architecture (Shenoy and Shafer 1990) for
influence diagrams in order to avoid the manipulation of
probability-utility potentials and to exploit further the under-
lying structure encoded by the functions of the model. More
specifically, given an influence diagram and its MCDAG de-
composition we develop a mini-bucket approximation to the
messages passed along the MCDAG and show how to tighten
the generated bounds further using weighted elimination and
cost-shifting techniques. To the best of our knowledge this is
the first time that such partitioning-based approximations are
used together with MCDAG decompositions. Experimental
results on difficult benchmarks show that in many cases the
proposed approach outperforms the current best bounding
schemes for influence diagrams by a large margin in terms of
the quality of the bounds produced.

Background
Influence Diagrams
An influence diagram (ID) (Howard and Matheson 1984)
is defined by a tuple I = 〈X,D,P,U〉, where X =
{X1, . . . , Xn} is a set of chance variables which specify the
uncertain decision environment and D = {D1, . . . , Dm} is a

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12158



set of decision variables which specify the possible decisions
to be made in the domain. The chance variables are further di-
vided into observable meaning they will be observed during
execution, or unobservable. As in Bayesian networks (Pearl
1988), each chance variable Xi ∈ X is associated with a con-
ditional probability table (CPT) Pi = P (Xi|pa(Xi)), where
Pi ∈ P and pa(Xi) ⊆ X∪D\{Xi}. Each decision variable
Dk ∈ D has a parent set pa(Dk) ⊆ X∪D\{Dk}, denoting
the variables whose values will be known at the time of the
decision and may affect directly the decision. Non-forgetting
is typically assumed for an ID, meaning that a decision node
and its parents are parents to all subsequent decisions. The
utility functions U = {U1, . . . , Ur} are defined over subsets
of variables Q = {Q1, . . . , Qr}, Qi ⊆ X∪D, called scopes.
They are assumed to be additive, thus defining a global utility
function U =

∑r
j=1 Uj that captures the agent’s preferences.

The decision variables in an ID are typically assumed to be
temporally ordered (aka regularity). Let D1, D2, ..., Dm be
the order in which the decisions are to be made. The chance
variables can be partitioned into a collection of disjoint sets
I0, I1, . . . , Im. For each k, where 0 < k < m, Ik is the set of
chance variables that are observed between Dk and Dk+1. I0

is the set of initial evidence variables that are observed before
D1. Im is the set of chance variables left unobserved when the
last decision Dm is made. This induces a strict partial order
≺ over X ∪D, given by: I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dm ≺ Im
(Jensen, Jensen, and Dittmer 1994).

A policy for an ID is a list of decision rules ∆ =
(δ1, . . . , δm) consisting of one rule for each decision vari-
able. A decision rule for the decision Dk ∈ D is a mapping
δk : Ωpa(Dk) → ΩDk

, where for a set S ⊆ X∪D, ΩS is the
Cartesian product of the individual domains of the variables
in S. Given a utility function U , a policy ∆ yields a utility
function [U ]∆ : ΩX → R that involves no decision variables,
by assigning their values using ∆. The expected utility given
policy ∆ is EU∆ =

∑
X[(
∏n
i=1 Pi ×

∑r
j=1 Uj)]∆. Solving

an ID means finding an optimal policy that maximizes the
expected utility, i.e., to find argmax∆EU∆. The maximum
expected utility (MEU) can be shown to be equal to:∑

I0

max
D1

· · ·
∑
Im−1

max
Dm

∑
Im

 n∏
i=1

Pi ×
r∑
j=1

Uj

 (1)

Variable Elimination Several exact methods have been pro-
posed over the past decades for solving IDs using local com-
putations (Shachter 1986; Tatman and Shachter 1990; Shenoy
1992; Jensen, Jensen, and Dittmer 1994; Dechter 2000b).
These methods adapted classical variable elimination (VE)
techniques, which compute a type of marginalization over a
combination of local functions, in order to handle the multi-
ple types of information involved in influence diagrams. The
alternation of

∑
and max marginalizations, which do not

commute in general, prevents from eliminating variables in
any ordering. Therefore, the computation dictated by Eq. 1
must be performed along a constrained elimination ordering
that respects ≺, namely the reverse of the elimination order-
ing is some extension of ≺ to a total order (Jensen, Jensen,
and Dittmer 1994; Dechter 2000b). The complexity of VE is
thus time and space exponential in the constrained induced

width (i.e., the induced width of the constrained elimination
order) (Dechter 2000b).

Example 1. Figure 1 shows a simple influence diagram
with 3 decisions (D0, D2, D4) and 2 chance variables
(C1, C3). There are 2 probabilistic functions (P (C1|C3),
P (C3)) and 4 utility functions (u1(D0), u2(D0, C1, D4),
u3(D2, C3), u4(D2, D4)), respectively. It is easy to see
that the maximum expected utility can be found by solv-
ing: maxD0

∑
C1

maxD2

∑
C3

maxD4
P (C1|C3) · P (C3) ·

(u1(D0) + u2(D0, C1, D4) + u3(D2, C3) + u4(D2, D4)).

Existing Bounding Schemes for Influence Diagrams
We next overview briefly several of the most effective
schemes for bounding the MEU.

Mini-Bucket Elimination (MBE-ID) (Dechter 2000a)
extends the original partitioning scheme (Dechter and Rish
2003) to upper bound the MEU. The scheme avoids the
spaces and time complexity of exact variable elimination by
partitioning large buckets into smaller subsets, called mini-
buckets, each containing at most i (called i-bound) distinct
variables. The mini-buckets are processed separately, either
by summation or maximization depending on whether the
bucket variable is a chance or a decision variable.

Join-Graph Decomposition (JGD-ID) (Lee, Ihler, and
Dechter 2018) extends the generalized dual decomposition
bounds (GDD) originally developed for Marginal MAP (Ping,
Liu, and Ihler 2015) to the MEU task using the framework
of valuation algebras (Shenoy 1992; Maua, de Campos, and
Zaffalon 2012; Moral 2018). This results in a class of de-
composition upper bounds that can be optimized through
iterative cost-shifting updates. However, unlike GDD for
MMAP, these bounds are non-convex and often difficult or
slow to optimize, particularly for large clique sizes.

Weighted Mini-Buckets (WMB-ID) (Lee et al. 2019) ex-
tends the weighted mini-bucket scheme (Liu and Ihler 2011;
Ihler et al. 2012; Marinescu, Dechter, and Ihler 2014) to the
MEU task. Given a constrained elimination order, WMB-ID
generates bounds for each variable conditioned on past histo-
ries, observations and decisions. It also applies a stage-wise
cost-shifting procedure to minimize the bound locally dur-
ing each approximate elimination step, based on optimizing
a simplified upper bound on the unprocessed remainder of
the model. The algorithm was shown to produce the tightest
bounds compared to existing methods (Lee et al. 2019).

Multi-Operator Cluster DAG Decompositions
The Multi-operator Cluster DAG (MCDAG) decomposition
(Pralet, Schiex, and Verfaillie 2006) was introduced as an
alternative to the strong join-tree decomposition for influ-
ence diagrams (Jensen, Jensen, and Dittmer 1994). MCDAGs
may often have smaller induced widths than strong join-trees
which in turn may yield exponential gains for variable elim-
ination algorithms. For a given ID I = 〈X,D,P,U〉, the
MCDAG reorganizes the computation defined by Eq. 1 into
a DAG of computation nodes that exploits reordering free-
dom in the elimination order as well as the normalization
conditions on conditional probability distributions.

12159



(a) Influence diagram (b) MCDAG decomposition

Figure 1: A simple influence diagram and its MCDAG decomposition.

DEFINITION 1 (computation node). An atomic computation
node n is a scoped function f ∈ P ∪ U. The value of n
is val(n) = f and its scope is sc(n) = sc(f). A computa-
tion node is either an atomic computation node or a triple
(Sov,~, N), where Sov is a sequence of operator-variable
pairs opX where op ∈ {

∑
,max}, ~ ∈ {+,×} is an as-

sociative and commutative operator with an identity, and
N is a set of computation nodes. The value of n is given
by val(n) = Sov(~n′∈Nval(n′)) and its scope is given by
sc(n) =

⋃
n′∈N sc(n

′) \ {X|opX ∈ Sov}.
A computation node (Sov,~, N) defines a sequence of

marginalizations on a combination of computation nodes
with a specific operator. Clearly, given I = 〈X,D,P,U〉,
the value of Eq. 1 is equal to the value of the computation
node n0 = (Sov0,+, {(∅,×,P ∪ {ui}), ui ∈ U}), where
Sov0 =

∑
I0

maxD1
. . .
∑

Im−1
maxDm

∑
Im

is the initial
sequence of operator-variable pairs defined by I.

Building MCDAGs The basic idea is to refine the root
computation node n0 by applying three types of rewriting
rules to the elimination sequence defined by Sov0, namely:
(1) decomposition rules which decompose the structure us-
ing a duplication mechanism, (2) recomposition rules which
reveal freedoms in the elimination order, and (3) simplifi-
cation rules which remove useless computations by using
normalization conditions. For sum-marginalization, we use
a decomposition rule D∑, a recomposition rule R∑, and
two simplification rules S1∑ and S2∑, respectively. For max-
marginalization there is only a decomposition rule Dmax and
a recomposition rule Rmax. These rules are applied succes-
sively from right to left to each operator-variable pair opX
in Sov0 as follows. If opX =

∑
X , then rule D∑ is applied

once followed by RΣ on each of the newly created com-
putation nodes. If RΣ is applied then simplification rules
S1

Σ and then S2
Σ are applied until they cannot be applied

anymore. If opX = maxX , then Dmax is applied once fol-
lowed by Rmax. Identical computation nodes can be eas-
ily identified and merged to reuse identical computations.
Applying the rules in the order described converges to a

unique DAG of mono-operator computation nodes looking
like (maxS ,+, N), (

∑
S ,×, N) and (∅,×, N), respectively

(see also the supplementary material).

DEFINITION 2 (MCDAG). A multi-operator cluster DAG
(MCDAG) is a DAG where each vertex c (called a cluster) is
labeled with four elements: a set of variables V (c), a set of
scoped functions Ψ(c) taking values in a set E, a set of child
clusters ch(c) and a pair of operators (⊕,⊗) on E such that
(⊕,⊗, E) is a commutative semiring (where ⊕ ∈ {

∑
,max}

and ⊗ ∈ {×,+}).

Variable Elimination Given an MCDAG M, the value
of a cluster n ∈ M is given by val(n) =
⊕V (n)\V (pa(n)((⊗ψ∈Ψ(n)ψ) ⊗ (⊗c∈ch(n)val(n))). The
value ofMwhich is equivalent to Eq. 1 is the value of its root
cluster and it can be computed by variable elimination (VE)
(Pralet, Schiex, and Verfaillie 2006). Specifically, the clusters
inM send messages to their parents. Whenever a cluster n
has received all messages val(v) from all its children, n can
compute its value val(n) and send it to its parents. Therefore,
messages go from leaves to the root, and the value computed
by the root cluster is the MEU. The complexity of VE is time
and space exponential in the induced width s∗ ofM (Pralet,
Schiex, and Verfaillie 2006). The induced width of M is
defined by s∗ = maxn∈R w

∗(n) whereR is the set of nodes
inM looking like n = (maxS ,+, N) or n = (

∑
S ,×, N)

and w∗(n) is the induced width of the graph G(n) = (V, E)
for the elimination of the variables in S (Pralet, Schiex, and
Verfaillie 2006). The vertices in V correspond to variables
in sc(N) =

⋃
n′∈N sc(n

′) and an edge in E connects two
vertices whose variables appear in a scope sc(n′), n′ ∈ N .

Example 2. Figure 1(b) shows the MCDAG of the ID
from Figure 1. Algorithm VE starts with cluster n8 send-
ing message val(n8) =

∑
C3
P (C3) · P (C1|C3) =

λ8(C1) to its parents n5 and n6 which subsequently com-
pute their values as val(n5) = λ8(C1) · u4(D2, D4) =
λ5(C1, D2, D4) and val(n6) = λ8(C1) · u2(D0, C1, D4) =
λ6(D0, C1, D4), respectively. Next, cluster n7 sends mes-
sage val(n7) =

∑
C3
P (C3) · P (C1|C3) · u3(D2, C3) =

12160



λ7(C1, D2) to its parent, while cluster n4 computes its
value as val(n4) = maxD2 maxD4 λ5(C1, D2, D4) +
λ6(D0, C1, D4) + λ7(C1, D2) = λ4(D0, C1). Subsequently,
we have val(n3) =

∑
C1
λ4(D0, C1) = λ3(D0), val(n2) =

u1(D0) and val(n1) = maxD0 u1(D0)+λ3(D0). The latter
is the MEU. The induced width of the MCDAG is 3.

A Weighted Mini-Bucket Approximation for
MCDAG Decompositions

In many practical situations however, the induced width of
the MCDAG may still be too large for variable elimination to
be effective. Therefore, we develop next a new scheme that
applies a partitioning-based approximation to the messages
propagated in the MCDAG together with cost-shifting to
generate an improved upper bound on the MEU.

Approximation of Cluster-to-Cluster Messages
We will first illustrate the scheme using several simple exam-
ples and then present the general algorithm.

Consider again the MCDAG from Figure 1(b) and as-
sume that due to memory restrictions we can process at
most 2 variables when computing a new cluster-to-cluster
message. Looking for example at the empty cluster n5, we
can no longer multiply the functions λ8(C1) – the mes-
sage received from its child n8 and u4(D2, D4). There-
fore, we must send them separately, as a compound mes-
sage {λ8(C1), u2(D2, D4)}, to its parent n4 while ensuring
that they will be combined by multiplication. Similarly, at
cluster n7, we avoid processing more than 2 variables by
pushing the summation inside multiplication and therefore
send to n4 the compound message {λ1

7(C1), λ2
7(D2)} whose

components are to be multiplied together, where λ1
7(C1) =∑

C3
P (C3) · P (C1|C3) and λ2

7(D2) =
∑
C3
u3(D2, C3).

On the other hand, cluster n4 processes the messages
received from its children by maxD2

maxD4
(λ8(C1) ·

u4(D2, D4) +λ8(C1) ·u2(D0, C1, D4) +λ1
7(C1) ·λ2

7(D2)).
In this case, maximization is pushed inside summation yield-
ing the following approximation: val(n4) ≤ maxD2 λ

1
7(C1)·

λ2
7(D2) + (maxD4 λ8(C1) · u4(D2, D4) + maxD4 λ8(C1) ·
u2(D0, C1, D4)) = maxD2 λ

1
7(C1) · λ2

7(D2) + λ8(C1) ·
λ1

4(D2) + λ8(C1) · λ2
4(D0, C1) ≤ λ8(C1) · λ2

4(D0, C1) +
maxD2 λ

1
7(C1) · λ2

7(D2) + maxD2 λ8(C1) · λ1
4(D2) =

λ8(C1) · λ2
4(D0, C1) + α · λ1

7(C1) + β · λ8(C1), where
α = maxD2

λ2
7(D2) and β = maxD2

λ1
4(D2), respectively.

Subsequently, n4 sends to its parent a compound message
{λ8(C1) ·λ2

4(D0, C1), α ·λ1
7(C1), β ·λ8(C1)} ensuring that

its components are combined by summation.
Therefore, the basic idea behind our approach is to approx-

imate the larger cluster-to-cluster messages by sets of smaller
functions called compound messages while ensuring that
their components are combined in the corresponding clusters
either by multiplication or by summation. It is important to
emphasize that unlike Marginal MAP where maximization is
followed by summation and functions are combined only by
multiplication, in the case of MCDAGs the sum clusters alter-
nate with max clusters. Furthermore, these clusters combine
their corresponding functions in different ways, namely sum
clusters use multiplication while max clusters use summation.

Thus, if the components of the compound messages are not
combined appropriately then the scheme is not guaranteed to
correctly upper bound the MEU.

We define formally the two types of compound messages
that will be propagated between the clusters of an MCDAG.

DEFINITION 3 (π-message, σ-message). A π-message is a
compound message defined by a set of functions {f1, . . . , fk}
that must be combined by multiplication, i.e., π =

∏k
i=1 fi.

A σ-message is a compound message defined by a set of π-
messages {π1, . . . , πl} that must be combined by summation,
i.e., σ =

∑l
j=1 πj . Their scopes are defined by vars(π) =⋃k

i=1 vars(fi) and vars(σ) =
⋃l
j=1 vars(πj).

We next show in detail how to approximate the values com-
puted by clusters of the form (

∑
S ,×, N) and (maxS ,+, N)

(also called SUM and MAX clusters). For simplicity and with-
out loss of generality we assume in the subsequent derivations
that S contains a single variable, i.e., S = {X}.

Processing a SUM Cluster: Let n = (
∑
X ,×, N) be a

SUM cluster where N = {f1, f2, . . . , fn, π1, π2, . . . , πm,
σ1, σ2, . . . , σp}, that is N contains functions, π- and σ-
messages, respectively. In this case, the cluster function is
F =

∏n
i=1 fi ·

∏m
j=1 πj ·

∏p
k=1 σk. Since × distributes over

+, we can write
∏p
k=1 σk = (π1

1 + · · ·+ π1
l1

)× · · · × (πp1 +

· · · + πplp) = (π1
1 · π2

1 · · ·π
p
1 + · · · + π1

l1
· π2

l2
· · ·πplp) and

subsequently rearrange F as a sum of products of functions,
namely F = (P ·π1

1 ·π2
1 · · ·π

p
1)+ · · ·+(P ·π1

l1
·π2
l2
· · ·πplp),

where P =
∏n
i=1 fi ·

∏m
j=1 πj . Let K =

∏p
k=1 lk be the

number of products in F and let Ft be the set of functions
involved in the t-th product of F . Given a parameter i (also
called an i-bound), we can approximate val(n) by apply-
ing a mini-bucket partitioning to each of the products in F
separately, thus generating the following σ-message:

val(n) =
∑
X

F =
∑
X

K∑
t=1

∏
f∈Ft

f =
K∑
t=1

∑
X

∏
f∈Ft

f

≤
K∑
t=1

M∏
q=1

∑
X

∏
f∈Qt

q

f

(2)

where Qt = {Qt1, . . . , QtM} is a partitioning of Ft with M
mini-buckets, where each mini-bucket Qtq ∈ Qt contains at
most i distinct variables. Clearly, if n = (

∑
S ,×, N) is a leaf

SUM cluster (e.g., cluster n7 in Figure 1(b)) then N contains
only functions and therefore Eq. 2 yields a π-message.

Example 3. For illustration, let n = (
∑
A,×, N) be

a SUM cluster where N = {f1(A,B), π(A,B,C),
σ(A,B,C)}, such that π(A,B,C) = h1(A,B) · h2(A,C)
and σ(A,B,C) = g1(A,B)·g2(A,C)+g3(A,B)·g4(A,C),
respectively. Using distributivity and rearranging the terms
we can write F = f1(A,B) · h1(A,B) · h2(A,C) ·
g1(A,B) · g2(A,C) + f1(A,B) · h2(A,C) · g3(A,B) ·
g4(A,C). For an i-bound of 2, we get the following approx-
imation: val(n) ≤ (

∑
A f1(A,B) · h1(A,B) · g1(A,B)) ·

12161



Algorithm 1 MCDAG-MBE(i)

Require: ID I = (X,D,P,U), i-bound i
1: LetM be the MCDAG of I (C1 – root cluster ofM)
2: for all clusters Cj ∈M from leaves to the root do
3: if Cj is a SUM cluster (

∑
S ,×, N) then

4: for all variables X ∈ S do
5: Let N+x = {φ|φ ∈ N,X ∈ vars(φ)}
6: σX = APPROX-SUM(i, (

∑
X ,×, N+x))

7: Update N = (N \N+x) ∪ {σX}
8: if X is last variable in S then
9: Set cluster value val(Cj) = σX

10: else if Cj is a MAX cluster (maxS ,+, N) then
11: for all variables X ∈ S do
12: Let N+x = {φ|φ ∈ N,X ∈ vars(φ)}
13: σX = APPROX-MAX(i, (maxX ,+, N

+x))
14: Update N = (N \N+x) ∪ {σX}
15: if X is last variable in S then
16: Set cluster value val(Cj) = σX
17: else
18: σ = APPROX-EMPTY((∅,×, N))
19: Set cluster value val(Cj) = σ

20: Send message val(Cj) to Cj’s parents inM
21: return val(C1)

(
∑
A h2(A,C) · g2(A,C)) + (

∑
A f1(A,B) · h1(A,B) ·

g3(A,B)) · (
∑
A ·h2(A,C) · g4(A,C)) = λ1(B) · λ2(C) +

λ3(B) · λ4(C). Therefore, the σ-message is σ = {π1, π2}
where π1 = {λ1(B), λ2(C)} and π2 = {λ3(B), λ4(C)}.

Processing a MAX Cluster: Consider next a MAX clus-
ter n = (maxX ,+, N) with N = {f1, . . . , fn, π1, . . . , πm,
σ1, . . . , σp} as before. In this case, we have that F =∑n
i=1 fi +

∑m
j=1 πj +

∑p
k=1 σk =

∑n
i=1 fi +

∑p
k=0 σk,

where σ0 =
∑m
j=1 πj . Given an i-bound i, we can approx-

imate val(n) by applying a multi-stage partitioning that
pushes max inside summation as well as multiplication, thus
generating a σ-message as follows:

val(n) = max
X
F ≤ (max

X

n∑
i=1

fi) + (max
X

p∑
k=0

σk)

≤ (
M∑
q=1

max
X

∑
f∈Qq

f) + (

p∑
k=0

max
X

σk)

≤
M∑
q=1

max
X

∑
f∈Qq

f +

p∑
k=0

Lk∏
l=1

max
X

∏
f∈Qkl

f

(3)

where Q = {Q1, . . . QM} is a mini-bucket partitioning of
the functions {f1, . . . , fn}, andQk = {Qk1, . . . , QkLk

} is a
mini-bucket partitioning of the functions in σk, respectively.

Example 4. Consider the MAX cluster n = (maxA,+, N)
such that N = {f1(A,B), f2(A,C), π(A,B,C,D),
σ(A,B,C,D)}, π(A,B,C,D) = h1(A,B) ·h2(C,D) and

σ(A,B,C,D) = g1(A,B) ·g2(A,C)+g3(A,B) ·g4(C,D),
respectively. First, we have F = f1(A,B) + f2(A,C) +
h1(A,B) · h2(C,D) + g1(A,B) · g2(A,C) + g3(A,B) ·
g4(C,D)). Then, assuming a mini-bucket i-bound of 3, we
can apply the multi-stage mini-bucket partitioning from Eq.
3 and generate the following approximation: val(n) ≤
maxA(f1(A,B)+f2(A,C))+maxA h1(A,B)·h2(C,D)+
maxA g1(A,B) · g2(A,C) + maxA g1(A,B) · g4(C,D) =
λ1

1(B,C)+λ1
2(B)·h2(C,D)+λ1

3(B,C)+λ1
4(B)·g4(C,D),

where λ1
1(B,C) = maxA f1(A,B) + f2(A,C), λ1

2(B) =
maxA h1(A,B), λ1

3(B,C) = maxA g1(A,B) · g2(A,C)
and g1

4(B) = maxA g3(A,B), respectively.

Processing an Empty Cluster: Let n = (∅,×, N) be an
empty cluster with N as before. In this case, we just use
the distributivity property to create a σ-message σ = (P ·
π1

1 · π2
1 · · ·π

p
1) + · · · + (P · π1

l1
· π2

l2
· · ·πplp), where P =∏n

i=1 fi ·
∏m
j=1 and σk = (πk1 + · · ·+ πklk), for 1 ≤ k ≤ p.

The Mini-Bucket Approximation for MCDAGs
Algorithm 1 presents the mini-bucket approximation for
MCDAGs, called MCDAG-MBE(i). Let I = 〈X,D,P,U〉
be the input ID andM be an MCDAG decomposition. Given
an i-bound i, the mini-bucket algorithm processes each clus-
ter Cj ∈ M in a bottom up manner, from leaves to the
root, by a variable elimination procedure that computes new
compound messages and sends them to Cj’s parents inM.
Specifically, if Cj is a SUM cluster labeled (

∑
S ,×, N) then

N contains all the messages received from Cj’s children and
consists in general of input probability and utility functions,
π- and σ-messages, respectively. The variables in S are elim-
inated one by one as follows. Let X be the current variable.
We denote by N+x the set of N ’s elements that mention X
in their scope. Function APPROX-SUM implements Eq. 2 and
eliminates X using the i-bound i to generate the σ-message
σX that is added back toN . IfX is the last variable in S then
σX is sent to all of Cj’s parents inM. Alternatively, if Cj
is a MAX cluster labeled (maxS ,+, N) then all variables in
S are eliminated one by one using function APPROX-MAX
that implements Eq. 3 and generates the corresponding σ-
messages. Furthermore, if Cj is an empty cluster, then func-
tion APPROX-EMPTY simply uses the distributivity property
of × over + to compute the corresponding σ-message that
is subsequently passed to Cj’s parents. Finally, after the root
cluster C1 is processed, its value val(C1) represents an upper
bound on the exact MEU value of I and is returned.
THEOREM 1 (correctness, complexity). Given an influence
diagram I, algorithm MCDAG-MBE(i) is correct, namely it
computes an upper bound on the MEU of I . Its complexity is
time and space exponential in the i-bound i only.

Tightening the Upper Bound
Weighted mini-buckets (Liu and Ihler 2011; Ihler et al. 2012;
Marinescu, Dechter, and Ihler 2014) improve the naïve mini-
bucket bound by using Hölder’s inequality as well as cost-
shifting (or reparameterization) via moment-matching op-
erations between mini-buckets. We show next how to ex-
tend these ideas to MCDAG-MBE(i) yielding a new scheme

12162



Figure 2: Average relative gap to the tightest upper bound for grid, random and pomdp benchmarks.

called MCDAG-WMB-MM(i) (weighted mini-buckets with
moment-matching) that can produce improved upper bounds.

Cost-Shifting for SUM Clusters Let n = (
∑
X ,×, N)

be a SUM cluster. Recall from Eq. 2 that we rewrite F , the
combination of functions and messages in N , as a sum of
products of functions, and subsequently approximate each
product separately. Let Pk =

∏
j f

k
j be the k-th product of

functions in F and let Q = {Qk1, . . . , QkR} be its mini-
bucket partitioning. Assuming that ψkr =

∏
f∈Qkr

f is
the function of the r-th mini-bucket Qkr, we assign weight
wkr > 0 to each mini-bucket Qkr such that

∑
r wkr = 1

and perform a regular moment-matching reparameterization,

namely ψkr = ψkr ·
(
µ
µr

)wkr

, where µr =
∑
Yr

(ψkr)
1/wkr ,

µ =
∏
r(µr)

wkr and Yr = vars(Qkr) \ {X}, as is typi-
cally done in the case of sum-product elimination (Marinescu,
Dechter, and Ihler 2014). After reparameterization, each mini-
bucket is subsequently processed by weighted elimination
to compute λkr = (

∑
X(ψkr)

1/wkr )wkr which is used to
generate the final σ-message that upper bounds val(n).

Cost-Shifting for MAX Clusters In this case, we perform
a multi-stage mini-bucket partitioning that involves both max-

sum and max-product eliminations (see Eq. 3) and therefore
the cost-shifting scheme attempts to match the max-marginals
across the mini-buckets of each of the partitionings. Specifi-
cally, for the max-product stage, let Pk =

∏
j fj be a product

of functions and let Qk = {Qk1, . . . , QkR} its mini-bucket
partitioning where ψkr =

∏
f∈Qkr

f . We reparameterize

ψkr as ψkr = ψkr ·
(
µ
µr

)
, where µr = maxYr ψkr and µ =

(
∏
r µr)

1/R and Yr = vars(Qkr) \ {X}. Similarly, for the
max-sum stage, the mini-bucket function is ψkr =

∑
ψ∈Qkr

and we reparameterize ψkr by ψkr = ψkr−µr + 1
Rµ, where

µr = maxYr
ψkr and µ =

∑
r µr, respectively.

Experiments
We evaluate empirically the performance of our bounding
scheme on a variety of difficult benchmarks for IDs. All
experiments were run on a 2.6GHz CPU with 64GB of RAM.

Benchmarks and Algorithms For our purpose, we con-
sidered three random problem domains: (1) grid which
consists of random m-by-m grid IDs with d decisions and
m2 − d chance variables, (2) random which consists of
random IDs with c chance variables and d decisions, and
(3) pomdp which consists of random POMDPs with s state

12163



algorithm instance i=2 i=6 i=10 instance i=2 i=10 i=18
MBE maze_a_d2 1.23E+20 8.86E+02 4.86 sys1_s=10_t=3 2.09E+34 2.38E+18 7.70E+13
MCDAG-MBE c=14,d=2 6.30E+20 1.14E+03 9.21 c=79,d=30 2.82E+24 2.88E+09 2.60E+06
WMB w*=11 5813.91 5.37 0.35 w*=60 1.02E+10 8.37E+07 4.34E+06
MCDAG-WMB-MM s*=10,k=9 16.13 1.12 0.21 s*=58,k=3 3.44E+07 8.79E+03 4.31E+02
MBE maze_a_d4 6.96E+40 6.47E+06 2.59E+03 sys1_s=10_t=4 1.72E+46 3.01E+26 1.11E+19
MCDAG-MBE c=26,d=4 2.92E+45 4.04E+09 3.42E+03 c=102,d=40 1.93E+35 3.79E+14 1.39E+10
WMB w*=21 2.73E+08 2.30E+03 8.38 w*=80 6.59E+13 2.87E+11 3.04E+08
MCDAG-WMB-MM s*=20,k=9 4362.69 11.23 1.07 s*=78,k=3 1.18E+11 2.68E+06 3.98E+04
MBE maze_a_d6 6.92E+60 1.27E+14 6.27E+06 sys1_s=10_t=5 1.38E+58 5.43E+30 6.27E+22
MCDAG-MBE c=38,d=6 1.35E+73 5.41E+18 7.32E+08 c=125,d=50 1.33E+46 3.18E+19 9.12E+13
WMB w*=31 1.96E+13 2.79E+05 365.84 w*=100 1.80E+17 7.67E+13 4.34E+11
MCDAG-WMB-MM s*=30,k=9 3.10E+05 241.10 7.60 s*=98,k=3 4.09E+14 1.36E+09 1.46E+07
MBE maze_a_d8 2.14E+82 3.34E+19 8.28E+12 sys1_s=10_t=6 1.01E+70 4.72E+36 1.71E+26
MCDAG-MBE c=50,d=8 1.66E+106 6.80E+28 1.93E+16 c=148,d=60 9.14E+56 8.80E+23 1.37E+17
WMB w*=41 6.19E+17 1.03E+08 1.25E+04 w*=120 3.86E+20 7.16E+16 3.91E+13
MCDAG-WMB-MM s*=40,k=9 7.94E+08 5.68E+03 193.86 s*=118,k=3 2.49E+18 1.04E+12 2.23E+09

Table 1: Results on the maze (left) and sysadmin (right) problem instances.

variables per time step and d time steps (or decisions). We
generated problem instances for each domain as follows. For
grid, we generated a 10-by-10 grid DAG (m = 10) and
then randomly selected d ∈ {8, 12, 16} variables to act as
decisions. For random, we generated random DAGs with
c ∈ {50, 100, 150} chance variables and d ∈ {10, 20, 30} de-
cisions, respectively. For pomdp, we set the number of state
variables s to 10 per stage (so that we had 4 observed and
6 hidden variables, respectively) and varied the number of
decisions from 8 to 16, respectively. In all cases, the variables
had 2 values in their domains and we generated d random
binary utility functions such that each decision variable was
included in the scope of at least one utility function. The
utility values were randomly sampled between 0 and 1. We
generated a total of 90 instances (30 instances per domain).

In addition, we also experimented with two realistic plan-
ning domains called maze and sysadmin, respectively.
The maze problems are influence diagrams that model the ac-
tion selection of an agent traversing a maze containing walls
and open spaces (Horsch and Poole 1998). The sysadmin
problems optimize the decisions of a system administrator
maintaining a network of computers (Guestrin et al. 2003).

We evaluated algorithms MCDAG-MBE(i) and MCDAG-
WMB-MM(i) and compared them with the standard mini-
buckets MBE(i) (Dechter 2000a) and the recent weighted
mini-buckets WMB(i) (Lee et al. 2019). The latter was shown
to outperform the join-graph dual decomposition scheme
JGD-ID(i) from (Lee, Ihler, and Dechter 2018). All algo-
rithms are parameterized by the mini-bucket i-bound and use
a min-fill based elimination ordering (Kjaerulff 1990).

Results In Figure 2 we plot the average relative gap ρ =
(U −U∗)/U with respect to the tightest upper bound (U∗) as
a function of the mini-bucket i-bound for the grid, random
and pomdp domains with {8,16}, {10,30} and {8,16} de-
cisions, respectively. Each data point is an average over 10
random instances generated for that particular domain and the
shaded areas represent±1 standard deviations from the mean.

We also record the average constrained induced width (w∗)
of the min-fill ordering and the average induced width (s∗) of
the corresponding MCDAG decomposition. We see that on
grids and pomdp problems MCDAG-WMB-MM(i) was
able to compute the tightest upper bounds at all reported i-
bounds which shows the benefit of exploiting the MCDAG
instead of the traditional tree-decomposition. However, on
random problems which contain a large number of decision
variables, we see that the picture is reversed with WMB(i)
producing tighter bounds than MCDAG-WMB-MM(i). In
this case, the multi-stage relaxation defined by Eqs. 2 and
3 leads to poor quality bounds and the moment-matching
reparameterization is not powerful enough to tighten them.

Table 1 shows the upper bounds obtained on maze and
sysadmin problem instances for different values of the
i-bound. For each instance we also report the number of
chance variables (c), the number of decisions (d) as well as
the maximum domain size (k). We see again that in both do-
mains MCDAG-WMB-MM(i) produced the tightest bounds.
In many cases these bounds were several orders of magnitude
tighter than those computed by the other competitors. This
demonstrates conclusively the benefit of partitioning based
approximations and cost-shifting over MCDAGs instead of
traditional strong join-tree decompositions for IDs.

Conclusion
The paper revisits the MCDAG decomposition for influence
diagrams and proposes a new mini-bucket approximation
scheme for bounding the MEU. MCDAGs are more sensi-
tive to the underlying problem structure than join-trees often
yielding smaller induced width decompositions which in turn
may lead to partitionings that yield more accurate bounds. We
also show how to tighten further the proposed mini-bucket
bounds using a simple moment-matching reparameterization
scheme. Our experiments on a variety of difficult bench-
mark problems demonstrate the effectiveness of the proposed
bounds compared with existing state-of-the-art approxima-
tion schemes for influence diagrams.

12164



Acknowledgements
We thank the reviewers for their valuable feedback. This work
was supported in part by the NSF grant IIS-2008516.

References
Dechter, R. 2000a. An anytime approximation for optimizing
policies under uncertainty. In Workshop of Decision Theoretic
Planning in (AIPS-2000).

Dechter, R. 2000b. A new perspective on algorithms for opti-
mizing policies under uncertainty. In Artificial Intelligence
Planning Systems (AIPS), 72–81.

Dechter, R.; and Rish, I. 2003. Mini-buckets: A general
scheme of approximating inference. Journal of ACM 50(2):
107–153.

Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S. 2003.
Efficient solution algorithms for factored MDPs. Journal of
Artificial Intelligence Research 19(1): 399–468.

Horsch, M. C.; and Poole, D. 1998. An anytime algorithm
for decision making under uncertainty. In Uncertainty in
Artificial Intelligence (UAI), 246–255.

Howard, R.; and Matheson, J. 1984. Influence diagrams.
In Readings on the Principles and Applications of Decision
Analyis, 721–762.

Ihler, A.; Flerova, N.; Dechter, R.; and Otten, L. 2012. Join-
graph based cost-shifting schemes. In Uncertainty in Artifi-
cial Intelligence (UAI), 397–406.

Jensen, F.; Jensen, V.; and Dittmer, S. 1994. From influ-
ence diagrams to junction trees. In Uncertainty in Artificial
Intelligence (UAI), 367–363.

Kjaerulff, U. 1990. Triangulation of graph-based algorithms
giving small total space. Technical Report, University of
Aalborg, Denmark .

Lee, J.; Ihler, A.; and Dechter, R. 2018. Join Graph Decom-
position Bounds for Influence Diagrams. In Uncertainty in
Artificial Intelligece (UAI), 1053–1062.

Lee, J.; Marinescu, R.; Dechter, R.; and Ihler, A. 2019. A
Weighted Mini-Bucket Bound for Solving Influence Dia-
grams. In Uncertainty in Artificial Intelligece (UAI), 393–
400.

Liu, Q.; and Ihler, A. 2011. Bounding the partition function
using Holder’s inequality. In International Conference on
Machine Learning (ICML), 849–856.

Liu, Q.; and Ihler, A. 2012. Belief propagation for structured
decision making. In 523–532, ed., Uncertainty in Artificial
Intelligence (UAI).

Marinescu, R.; Dechter, R.; and Ihler, A. 2014. AND/OR
search for marginal MAP. In Uncertainty in Artificial Intelli-
gence (UAI), 563–572.

Maua, D.; de Campos, C.; and Zaffalon, M. 2012. Solving
Limited Memory Influence Diagrams. Journal of Artificial
Intelligence Research (JAIR) 44: 211–229.

Moral, S. 2018. Divergence measures and approximate algo-
rithms for valuation based systems. In Information Process-
ing and Management of Uncertainty in Knowledge-Based
Systems, 591–602.
Nilson, D.; and Holhe, M. 2011. Computing bounds on
expected utilties for optimal policies based on limited infor-
mation. In Dinar Research Report.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. ISBN 0934613737.
Ping, W.; Liu, Q.; and Ihler, A. 2015. Decomposition bounds
for Marginal MAP. In Advances in Neural Information Pro-
cessing Systems (NIPS), 3267—-3275.
Pralet, C.; Schiex, T.; and Verfaillie, G. 2006. From Influence
Diagrams to Multi-Operator Cluster DAGs. In Uncertainty
in Artificial Intelligece (UAI), 393–400.
Pralet, C.; Schiex, T.; and Verfaillie, G. 2009. Sequential
Decision-Making Problems—Representation and Solution.
Wiley. ISBN 978-1-84821-174-2.
Shachter, R. 1986. Evaluating influence diagrams. Opera-
tions Research 34(6): 871–882.
Shenoy, P. 1992. Valuation-based systems for Bayesian deci-
sion analysis. Operations Research 40(1): 463–484.
Shenoy, P.; and Shafer, G. 1990. Axioms for probability
and belief-function propagation. In Uncertainty in Artificial
Intelligence (UAI), 169–178.
Tatman, J.; and Shachter, R. 1990. Dynamic programming
and influence diagrams. IEEE Transactions on Systems, Man,
and Cybernetics 20(1): 365–379.

12165


