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Abstract
We propose a new framework to learn non-parametric graph-
ical models from continuous observational data. Our method
is based on concepts from information theory in order to
discover independences and causality between variables: the
conditional and multivariate mutual information (such as
(Verny et al. 2017) for discrete models). To estimate these
quantities, we propose non-parametric estimators relying on
the Bernstein copula and that are constructed by exploiting
the relation between the mutual information and the cop-
ula entropy (Ma and Sun 2011; Belalia et al. 2017). To our
knowledge, this relation is only documented for the bivari-
ate case and, for the need of our algorithms, is here extended
to the conditional and multivariate mutual information. This
framework leads to a new algorithm to learn continuous non-
parametric Bayesian networks. Moreover, we use this estima-
tor to speed up the BIC algorithm proposed in (Elidan 2010)
by taking advantage of the decomposition of the likelihood
function in a sum of mutual information (Koller and Fried-
man 2009). Finally, our method is compared in terms of per-
formances and complexity with other state of the art tech-
niques to learn Copula Bayesian Networks and shows su-
perior results. In particular, it needs less data to recover the
original structure and generalizes better on data that are not
sampled from Gaussian distributions.

1 Introduction
Modeling multivariate continuous distributions is a task of
central interest in statistics and machine learning with many
applications in science and engineering. In general, high-
dimensional distributions are difficult to manipulate and
may lead to intractable computations. Bayesian networks
(BNs) exploit conditional independences between random
variables to reduce the complexity of a joint probability
distribution by expressing it as a set of conditional prob-
ability distributions (CPDs) of lower dimension. These in-
dependences are encoded by a Directed Acyclic Graph
(DAG) (Koller and Friedman 2009) and to each node is
associated a CPD. The representation of CPD is complex
and led to numerous and very different solutions: discretiza-
tion, parametric representation (for instance using the Gaus-
sian hypothesis), approximation using truncated basis func-
tions (Shenoy and West 2011; Langseth et al. 2012), etc.
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On the other hand, copula function allows to model the
dependence structure between continuous variables, ruling
out the marginal behavior of each variable. From a construc-
tive perspective, this allows to dissociate the choice of the
marginals from the choice of the dependence structure. In
practice, however, copulas are limited to a few variables and
constructing or manipulating high-dimensional ones is diffi-
cult.

The Copula Bayesian Network model (CBN) (Elidan
2010) takes advantage of both copula theory and BNs to
model continuous high-dimensional multivariate distribu-
tions. Whereas there have been many attempts to merge the
two frameworks such as the pair-copula construction (Czado
2010), the Vine model (Bedford, Cooke et al. 2002) or the
cumulative distribution network (Huang 2009), the CBN
model is the most attractive since it uses the same graphi-
cal language as a classical BN.

This paper focuses on learning continuous graphical mod-
els from data. While there is many learning algorithm in
the discrete case (Neapolitan et al. 2004), they can hardly
be extended to the continuous models (Romero, Rumı́, and
Salmerón 2006). This is mainly due to the number of param-
eters of these models which makes the computing of scores
or statistics difficult. They can be applied for simpler mod-
els such as the linear Gaussian model (Lauritzen and Wer-
muth 1989), but the model itself lacks of expressiveness. For
the reason given in the last paragraph, the CBN model gives
access to similar learning techniques as for discrete BNs.
Score based (Elidan 2010) and constraint-based (Lasserre,
Lebrun, and Wuillemin 2020) methods have been proposed
to learn a CBN structure from data. The latter, named CPC,
relies on a PC-algorithm and has shown better performances
than the former which relies on a BIC score and a local
search optimization. However, it is well-known (Colombo
and Maathuis 2014) that such constraint-based methods suf-
fer from the need of an ordering over the variables and can
lead to significantly different results. In the discrete case, the
MIIC algorithm (Verny et al. 2017) avoid this ordering by
driving the algorithm with a ranking relying on the mutual
information.

The contributions of this paper are the following. First, we
extend the link between the copula entropy and the mutual
information proved in (Ma and Sun 2011) to the conditional
and three-point mutual information. We then describe non-
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parametric estimators of these quantities based on the em-
pirical Bernstein copula. Next, we use these estimators (i)
to speed up the BIC algorithm presented in (Elidan 2010)
using the decomposition of the likelihood function in a sum
of mutual information and (ii) to propose a new learning al-
gorithm for non-parametric CBN. Finally, a benchmark is
made on synthetic data between these methods and the CPC
algorithm in terms of structural scores and time complexity.

The paper is organized as follows. Section 2 reviews the
necessary concepts about copulas and presents the CBN
model. Section 3 extends the link between mutual informa-
tion and copula entropy and then introduces the estimators
that are used by our continuous version of the MIIC algo-
rithm and the fastened version of the BIC algorithm in Sec-
tion 4. These methods are compared with the CPC algorithm
in Section 5. Section 6 concludes the paper.

2 Copula Bayesian Networks
Consider a random vector X = (X1, . . . , XD) whose com-
ponents Xi take values xi from domains Ωi. A BN structure
G is a DAG whose nodes X = {X1, . . . , XD} represent
random variables. Let Pai and NDi respectively denote the
parents and the non-descendants of Xi in G. A multivariate
probability distribution P over variables X, is said to factor-
ize according to G, if it can be written as

P (X1, . . . , XD) =

D∏
i=1

P (Xi|Pai). (1)

Thus, G encodes the set of independencies:

I(G) = {(Xi ⊥ NDi|Pai)}. (2)

A BN is a pair B = (G, P ) where G is defined as previ-
ously and P is a joint probability distribution factorizing
over G. To each nodeXi of the BN structure is associated its
corresponding Conditional Probability Distribution (CPD)
P (Xi|Pai) that appears in the factorization of P . CPDs
are usually represented via conditional probability tables in
the discrete case whereas there is no general model for the
continuous case. The linear Gaussian model (Lauritzen and
Wermuth 1989) f(xi|pai) = N (βi0 + βTi pai;σ

2
i ) allows

fast probabilistic computations and estimations but lacks of
expressiveness. On the other side, models based on mixtures
of functions (Langseth et al. 2012) are expressive but hard
to learn.

The CBN model introduced in (Elidan 2010),
parametrized the CPDs with copula functions whose
definition is now given:
Definition 1 (Copula) Let U = {U1, . . . , UD} be a ran-
dom vector whose components Ui are uniformly distributed
on I. AD-dimensional copula function is a (cumulative) dis-
tribution function on ID :

C(u1, . . . , uD) = P(U1 ≤ u1, . . . , UD ≤ uD)

As a distribution function on ID with uniform marginals, the
copula respects the following properties:

1. C(u1, . . . , uD) = 0 if there exists i such that ui = 0,

2. C(1, . . . , 1) = 1,
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Figure 1: Two-dimensional Gaussian copula with a correla-
tion parameter ρ12 = 0.8 (plots obtained using numerical
integration).

3. C(1, . . . , ui, . . . , 1) = ui.

The relation between the joint distribution and its univariate
marginals is a central result of copula theory (Sklar 1959):
Theorem 1 (Sklar 1959) Let F be any multivariate distri-
bution function over a random vector X and Fi its one-
dimensional marginal distributions 1. There exists a copula
function C such that

F (x1, . . . , xD) = C (F1(x1), . . . , FD(xD)) . (3)

Furthermore, if each Fi is continuous then C is unique.
Sklar’s theorem may be used to construct new copulas from
known multivariate distributions by inverting (3) :

C(u1, . . . , uD) = F (F−1
1 (u1), . . . , F−1

d (uD))

where ui = F (xi). Taking F = Φρ, the multivariate stan-
dard Gaussian distribution with correlation matrix ρ, we ob-
tain the Gaussian copula (Nelsen 2007) (see Figure 1) :

CG(u1, . . . , uD) = Φρ(φ
−1(u1), . . . , φ−1(uD))

where φ is the univariate standard Gaussian distribution.
The copula density function is obtained by derivation of C:
c(u1, . . . , uD) = ∂DC(u1,...,uD)

∂u1...∂uD
. Similarly, deriving equa-

tion (3) leads to the following corollary:
Corollary 1.1 Let f be any multivariate density function
over X and c its copula density. The copula density relates
the joint density to its 1-dimensional marginals fi:

f(x1, . . . , xD) = c (F1(x1), . . . , FD(xD))
D∏
i=1

fi(xi). (4)

This formula generalizes the case of independent variables
where the joint distributions may be decomposed as a prod-
uct of its marginals: f(x) =

∏D
i=1 f(xi). Then, as the

marginals encode the individual behavior of each variables,
the copula function and its density encode the dependence
between random variables. This is interesting from a con-
structive perspective since the choice of marginals can be
separated from the choice of the dependence structure. This
leads to the definition of a CBN as given by (Elidan 2010) :

1When it is clear from the context, the index i will be dropped
in order to alleviate the notations.
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Definition 2 (CBN) A Copula Bayesian Network is a
triplet C = (G,ΘC ,Θf ) that encodes the joint den-
sity f(x). ΘC is a set of local copula density functions
ci (F (xi), {F (paiki)}), where ki = |pai|, and Θf is a set
of marginal densities fi. To each node of G, a copula and a
marginal function is associated. f(x) then factorizes as

f(x) =
D∏
i=1

Rci(F (xi), {F (paiki)})f(xi), (5)

where Rci(F (xi), {F (paiki)}) =
ci(F (xi),{F (paiki

)})
ci({F (paiki

)}) .

An example of CBN is given on figure 2.

X1

c1(u1) = 1

f(x1)

X2

c2(u2, u1)

f(x2)

X3

c3(u3, u1)

f(x3)

Figure 2: A CBN with three variables. ∀i, f(xi) is a
marginal density and ci(.) is a copula. The joint density is:
f(x1, x2, x3) = f(x1)c2(F (x2), F (x1))f(x2)c3(F (x3), F (x2))f(x3)

3 Copula and Continuous Information
Theory

It has been shown that continuous mutual information is the
negative copula entropy (Ma and Sun 2011). We generalize
this relation for multivariate and conditional mutual infor-
mation and use it to define estimators that will be used in the
next section to implement a continuous MIIC.

Before introducing the mutual information, we recall the
definitions of differential and relative entropy.
Definition 3 (Differential entropy) The differential en-
tropy h over a set S ⊆X of variables is given by:

h(S) = −
∫

ΩS

f(s) log f(s)ds.

Definition 4 (Relative entropy) The relative entropy
D(f ||g) between two densities f and g is defined by

D(f ||g) =

∫
ΩX

f(x) log
f(x)

g(x)
dx. (6)

The mutual information is defined as the relative entropy be-
tween the joint density and its marginals.
Definition 5 (Mutual information) The mutual informa-
tion between two random variables Xi and Xj is given by:

I(Xi;Xj) = D(f(xi, xj)||f(xi)f(xj))

=

∫∫
Ωi×Ωj

f(xi, xj) log
f(xi, xj)

f(xi)f(xj)
dxidxj . (7)

As a consequence, since D(f ||g) ≥ 0 (Cover and Thomas
2012), the mutual information is also positive. Moreover,

it is vanishing if and only if the variables are independent
which makes it a good measure of dependence. Various de-
pendence measures such as Spearman’s rho or Kendall’s
tau are functionals of the copula density (Genest and Favre
2007). The mutual information makes no exception as it is
the negative copula entropy(Ma and Sun 2011):
Definition 6 (Copula entropy) The copula entropy hc of a
random vector U is given by:

hc(U) = −
∫

[0,1]|U|
c(U) log c(U)du (8)

Theorem 2 The mutual information is the negative copula
entropy

I(Xi, Xj) = −hc(Xi, Xj). (9)
We now extend this relation to the conditional mutual infor-
mation whose definition is given by:
Definition 7 (Conditional mutual information) The con-
ditional mutual information betweenXi andXj conditioned
on a set of variables U ⊆X is defined by:

I(Xi;Xj |U) = EU [D(f(xi, xj |u)||f(xi|u)f(xj |u)]

=

∫∫∫
Ωi×Ωj×ΩU

f(xi, xj ,u)

× log

(
f(xi, xj ,u)f(u)

f(xi,u)f(xj ,u))

)
dxidxjdu.

By its definition, the conditional mutual information is pos-
itive using the positiveness of the relative entropy. It is
straightforward to show from its definition that

I(Xi;Xj |U) =

h(Xi,U) + h(Xj ,U)− h(Xi, Xj ,U)− h(U). (10)

Using the following lemma proved in (Ma and Sun 2011),
Lemma 3 The differential entropy can be written as the sum
of the entropy of each variable and the copula entropy:

h(X1, . . . , XD) =
D∑
i=1

h(Xi) + hc(X1, . . . , XD) (11)

the relation between conditional information and copula en-
tropy is easily obtained.
Theorem 4 The conditional mutual information is related
to the copula entropy by:

I(Xi;Xj |U) =hc(Xi,U) + hc(Xj ,U)

− hc(Xi, Xj ,U)− hc(U) (12)

The definition of mutual information has been extended to a
set of variables by (McGill 1954):

I(X1; . . . ;XD) =
∑
T⊆X

(−1)|T |+1h(T ).

Especially, the case n = 3 called three-point information
and which is of interest for the next section, is given by:

I(Xi;Xj ;Xk) = h(Xi) + h(Xj) + h(Xk)

− h(Xi, Xj)− h(Xi, Xk)− h(Xj , Xk)

+ h(Xi, Xj , Xk). (13)
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One important remark is that the generalized mutual infor-
mation is no longer positive and can be negative. It turns out
that the negativity of the mutual information between three
variables is the signature of a v-structure in the associated
graph. As with conditional mutual information, we want to
relate the three-point information to the copula entropy and
more precisely, to the conditional three-point information.

Looking closely to 7, 10 and 13, it can be proved that the
three-point information verify the relation

I(Xi;Xj ;Xk) = I(Xi;Xj)− I(Xi;Xj |Xk).

This is sometimes taken as a definition of the three-point
information and is used here to define the conditional three-
point information:

Definition 8 (Conditional three-point information) The
conditional three-point information is defined as:

I(Xi;Xj ;Xk|U) = I(Xi;Xj |U)− I(Xi;Xj |Xk,U)

Replacing I(Xi;Xj |U) by (12) and using the same relation
with {Xk,U} in place of U, the sought result can be derived
for the conditional three-point information:

Theorem 5 The conditional three-point information is re-
lated to the copula entropy by:

I(Xi;Xj ;Xk|U) =

hc(Xi,U) + hc(Xj ,U) + hc(Xk,U)

− hc(Xi, Xj ,U)− hc(Xi, Xk,U)− hc(Xj , Xk,U)

+ hc(Xi, Xj , Xk,U)− hc(U). (14)

In the case where U = ∅ ,it simplifies into

I(Xi;Xj ;Xk) = hc(Xi, Xj , Xk)− hc(Xi, Xj)

− hc(Xj , Xk)− hc(Xi, Xk) (15)

Finally, all the previous quantities can be estimated from a
data set of size M using the following estimator of the cop-
ula entropy:

ĥc(X) = −
M∑
m=1

ĉ(x[m]) log(ĉ(x[m])), (16)

where ĉ can be any copula model estimated from the data.
In order to obtain a non-parametric estimator, the empirical
Bernstein copula (Sancetta and Satchell 2004) will be used
in our version of MIIC but an alternative version using esti-
mated Gaussian copula will be used for comparison.

4 Learning Copula Bayesian Networks
CBNs share the same graphical interpretation of indepen-
dences than classical BNs (i.e. the d-separation), allowing
to use similar techniques to learn their structures from data.
These algorithms can be roughly divided into two classes:
score-based and constraint- based methods. Score based
methods view the learning task as a model selection and is
guided by a scoring function to measure how well the model
fits the data. However, the set of DAG structures being su-
perexponential in the number of nodes, local search methods

are needed to maximize the score. Constraint-based meth-
ods on the other hand consider the graph as a set of con-
ditional independences (2) and use CI tests to obtain infor-
mation about the underlying structure. The MIIC algorithm
presented in this section is a hybrid method that follows a
constraint-based outline mixed with an information theoretic
score. This score allows to avoid the arbitrary ordering over
the variables that is made in constraint-based methods, and
which can lead to different results.

Improving Continuous BIC (CBIC)
In (Elidan 2010), a score-based method is used to learn the
structure of a CBN. The proposed score is the well-known
Bayesian information criterion (BIC) (Schwarz 1978). Its
expression on a CBN structure G is given by :

SBIC(G : D) = `(D : θ̂,G)− 1

2
log(M)|ΘG |,

where ` is the log-likelihood, θ̂ are the maximum likelihood
parameters estimators (MLE) and |ΘG | is the number of free
parameters associated with the graph structure. Using the
factorization of the joint density (5), we have :

`(D : G) =
M∑
m=1

D∑
i=1

logRi (ui[m], πi1[m], . . . , πiki [m])

where ui = F (xi) and πij = F (paij). The Rci ’s are com-
puted using Gaussian copula parametrized by a correlation
matrix Σ. Finding directly the MLE for Σ may be difficult in
high dimension and this is why a proxy is used. It relies on
the relation Σij = sin(π2 τij) between Kendall’s tau τij and
correlation matrix Σij that holds for every elliptical distri-
bution (Lindskog, McNeil, and Schmock 2003). Finally, the
BIC score is maximized using a TABU list algorithm with
random restarts (Glover and Laguna 1998). The downside
of this technique is that the score needs to be computed over
the entire graph every time a local modification is done. As
an improvement of this algorithm, we propose here to re-
place the factor Ri by its expression in the likelihood func-
tion which gives:

`(D : θ̂,G) = M
D∑
i=1

Î(Xi;Pai),

where Î(Xi;Pai) = ĥc(Xi,Pai)−ĥc(Pai). This last equa-
tion allows to compute the variation of the score for each
operation made during the local search in the graph space,
hence avoiding to compute it over the entire graph (see p.818
of (Koller and Friedman 2009) for more details).

Continuous PC Algorithm (CPC)
The PC algorithm introduced by (Spirtes et al. 2000) can be
divided in three main steps : skeleton learning, v-structure
search and constraint propagation. The skeleton search con-
sists in removing edges from the complete non-oriented
graph on X. To do so, a Conditional Independence (CI) test
is used between pairs of connected variables (Xi, Xj) given
a subset S of their common neighbors Adj(Xi, Xj). If it
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is found that Xi ⊥ Xj |S, S is then noted Sepset(Xi, Xj)
and the edge is removed from the graph. The tests are made
by increasing size l = |S| of conditioning set until all adja-
cency sets in the current graph are smaller than l. Once this
first step completed, triplets Xi−Xk−Xj such that Xi and
Xj are not neighbors and Xk is not in Sepset(Xi, Xj), are
oriented as v-structures: Xi → Xk ← Xj . Finally, the re-
maining non-oriented edges are oriented under the constraint
that no new v-structures are added into the graph unless it
implies adding an oriented cycle. The order in which the
pairs of variables and their adjacency sets are processed is
not unique. Yet, it has a direct effect on the skeleton search
and the separating sets. Indeed, the skeleton is updated af-
ter each edge removal and the adjacency sets of variables
that are treated after may change.Thus, changing the order
can lead to different CI tests. For additional information on
the PC algorithm, see page 84 of (Spirtes et al. 2000) and
(Colombo and Maathuis 2014). A continuous version rely-
ing on a non-parametric CI test, named CPC, has been pro-
posed in (Lasserre, Lebrun, and Wuillemin 2020) to learn
CBN structures.

A New Learning Algorithm for CBN: Continuous
MIIC (CMIIC)
MIIC algorithm consists in the same three main steps than
the CPC algorithm: skeleton learning, v-structure orienta-
tion and constraint propagation. However, it makes use of
mutual information in order to rank the nodes and overcome
the problem of the ordering discussed in the case of the
PC-algorithm. It has been shown to be more efficient than
constraint-based method in the discrete case (Verny et al.
2017) and we are extending it to continuous data.

The starting point of the algorithm is the likelihood func-
tion which has to be slightly adapted to the continuous case:

L(D|G) =
M∏
m=1

fG(x[m]) = exp
(
−MĤ(f, fG)

)
where MĤ(f, fG) = −

∑M
m=1 log fG(x[m]) is the Monte-

Carlo estimator of the cross-entropy between the model den-
sity fG and the true density f that generated the data defined
as:

H(f, fG) = Ef [− log fG(X)] = −
∫

ΩX

f(x) log fG(x)dx.

The rank is then derived from the decomposition of the
cross-entropy over the structure G and by computing ratio
of likelihood function. Only its expression is reported here
and the interested reader might find details about its origin
in (Affeldt, Verny, and Isambert 2016). The rank is based
on the probability for the triplet (Xi, Xj , Xk) to not be a
v-structure conditioned on U:

Pnv(Xi;Xj ;Xk|U) =
(

1 + e−MI(Xi;Xj ;Xk|U)
)−1

and the probability that its base is Xi and Xj :

Pb(Xi, Xj ;Xk|U) =
1

1 + e−MI(Xi;Xk|U)

e−MI(Xi;Xj |U) + e−MI(Xj ;Xk|U)

e−MI(Xi;Xj |U)

Algorithm 1: MIIC algorithm (Verny et al. 2017)
Input: Data setD
Result: Structure G

1 G ← complete undirected graph on X;
// Skeleton search

2 forall Edge (Xi, Xj) do
3 if I′(Xi;Xj) < 0 then
4 Delete edgeXi −Xj fromG;
5 Sepset(Xi,Xj)← {};
6 else
7 Xk ← arg maxAdj(Xi,Xj)

r(Xi, Xj ;Xk|{});

8 while There exists an edge (Xi, Xj) with r(Xi, Xj ;Xk|U) do
9 for Top edge (Xi, Xj) with highest rank r(Xi, Xj ;Xk|U) do

10 Expand contributing set: U← U ∪ {Xk};
11 if I′(Xi, Xj |U) ≤ 0 then
12 Delete edgeX − Y fromG;
13 Sepset(Xi,Xj)← U;

14 else
15 Xk ← arg maxAdj(Xi,Xj)

r(Xi, Xj ;Xk|U);

16 Sort the list of ranks r(Xi, Xj ;Xk|U);

// V-structure search

17 Sort list L of unshielded triplesXi −Xk −Xj in decreasing order of
|I′(Xi;Xj ;Xk|U)|;

18 repeat
19 Take (Xi, Xk, Xj) ∈ L with highest |I′(Xi;Xj ;Xk|U)| on

whichR0 orR1 operation rule can be applied;
20 if I′(Xi;Xj ;Xk|U) < 0 then
21 If (Xi, Xk, Xj) has no diverging orientation, apply

R0 : {Xi −Xk −Xj & not(Xi −Xj)&Xk /∈
Sepset(Xi,Xj)} ⇒ {Xi → Xk ← Xj}

22 else
23 If (Xi, Xk, Xj) has one converging orientation, applyR1 :

{Xi → Xk −Xj & not(Xi −Xj)} ⇒ {Xk → Xj}
24 Apply new orientations to all other (X′i, X

′
k, X

′
j) ∈ L;

25 until no additional orientation can be obtained;

Combining these two probabilities, the pairs of node
(Xi, Xj) with the most likely contribution from a third node
Xk can be ranked according to:

r(Xi, Xj ;Xk|U) =

max
Xk∈X

(min [Pnv(Xi;Xj ;Xk|U), Pb(Xi, Xj ;Xk|U)]) .

MIIC algorithm is listed on (1). The conditional two-
point and three-point mutual information terms appearing
in the previous probabilities are computed using the equa-
tions and the copula entropy estimator of Section (3). Our
estimators for conditional and three-point information are
computed on finite size data sets and are then biased. For
this reason, corrections based on criteria such than Normal-
ized Maximum Likelihood (NML)(Shtar’kov 1987), Max-
imum Description Length (MDL) (Rissanen 1978) or BIC
(Koller and Friedman 2009) are used in the discrete case.
However, the first two criteria cannot be extended to con-
tinuous variables since there are diverging when taking the
continuous limit. As for BIC, it cannot be applied to our
case since it is only defined for parametric models. Con-
sequently, we have decided to use a parameter α such that
I ′(Xi;Xj |U) = I(Xi;Xj |U)−α and I ′(Xi;Xj ;Xk|U) =
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I(Xi;Xj ;Xk|U) + α. The fact that we add α in the case of
three-point information means that we favor non v-structure
over v-structure since a negative value of three-point infor-
mation leads to a v-structure in the graph. This parameter
can be considered as a confidence threshold : the more α de-
creases (and the more accurate is our test), the more data are
needed to decide the independence. The value α = 0.01 has
been proved experimentally to be a good compromise be-
tween the data needed to learn independences and the confi-
dence of the test.

5 Experimental Results
This section compares the results obtained from CBIC,
CPC and CMIIC methods. Two models of copulas, Gaus-
sian and Bernstein, are used to estimate the copula entropy
with MIIC. This leads to two versions of the algorithm that
will be denoted G-CMIIC and B-CMIIC. The comparison
is made in terms of performances using F-score and struc-
tural Hamming distance and in terms of time complexity.
These experiments have been carried out using the libraries
aGrUM (Gonzales, Torti, and Wuillemin 2017) and Open-
TURNS (Baudin et al. 2015) to respectively build graphical
models and model continuous multivariate distributions.

Simulation Setup
The algorithms have been tested on data generated ei-
ther from the ALARM network structure (Beinlich et al.
1989) in order to have a real-world structure, or from ran-
dom Bayesian networks for more generality. The random
Bayesian networks have been generated following (Ide and
Cozman 2002) which proposes to build a MCMC converg-
ing to a uniform distribution on the set of DAGs with a de-
sired number of nodes and arcs. For a given dimension D,
a random graph contains 1.2 × D arcs. Once a structure is
selected (ALARM or random), the local copulas of the CBN
are parametrized using three models: Gaussian, Student and
Dirichlet. These models have been chosen in order to build
worst-case scenarios for our algorithm and compare its per-
formances with parametric ones when dealing with Gaussian
or Student data. In turn, the Dirichlet copula has been chosen
in order to challenge our algorithm because of its restrained
support.The three models have been parametrized such that
it induces strong correlations between variables (correlation
matrices having off-diagonal parameters set to 0.8, Dirich-
let copula with α = (1/D, 2/D, . . . , 1)). Figure (3) shows
two-dimensional samples obtained using these parametriza-
tions. The CBNs are then sampled using the forward sam-
pling procedure described in (Koller and Friedman 2009).

Skeleton Performances
The structural performances of the four learning algorithms
have been computed by comparing the skeleton of the
learned graph with the skeleton of the reference structure
that have been used to generate the data. Precision (P) is
the proportion of learned edges that are actually in the ref-
erence structure while recall (R) is the proportion of edges
that are in the reference structure that have been recovered.
The F-score is then defined as F = 2PR/(P + R). If the
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Figure 3: Samples from Gaussian, Student and Dirichlet
copula densities. The correlation parameter of the Gaus-
sian copula is set to ρ = 0.8, the Student copula is taken
with ν = 5 degrees of freedom and correlation param-
eter ρ = 0.8, the Dirichlet copula parameters are set to
α = (1/3, 2/3, 1).
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Figure 4: Evolution of the F-score for CBIC, CPC, G-CMIIC
and B-CMIIC methods with respect to the size of the dataset.
The results are averaged over 5 restarts with different data
sets generated from the ALARM network structure.

reference skeleton has been perfectly retrieved, the value of
the F-score is 1. Figures 4 and 5 show the results for the
ALARM networks and MCMC generated structures. As it
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Figure 5: Evolution of the F-score for CBIC, CPC, G-CMIIC
and B-CMIIC methods with respect to the dimension of the
random graphs. The results are averaged over 2 different ran-
dom graphs of the same dimension and over 5 different data
sets of size M = 10000.

can be observed, G-CMIIC converges faster than the other
algorithms but B-CMIIC and CPC converge approximately
to the same value. Surprisingly, G-CMIIC conserves good
results even for Dirichlet data. The CBIC method however
is less performing compared to the three others whatever the
generative model.

CPDAG Performances
In order to score the oriented structure, structural hamming
distance (Colombo and Maathuis 2014) is used. This met-
ric works on the completed partially directed acyclic graphs
(CPDAG) that represents the Markov class equivalence of
the DAG, that is all the graphs which represents the same
set of independences(Koller and Friedman 2009). It counts
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Figure 6: Evolution of the SHD for CBIC, CPC, G-CMIIC
and B-CMIIC methods with respect to the size of the dataset.
The results are averaged over 5 restarts with different data
sets generated from ALARM network structure.

the number of elementary operations that are needed to re-
cover the original structure from the estimated one. These
operations consist of edge insertions, deletions and flipping.
Figure 6 and 7 show the results for the ALARM network and
random structures.

These results are similar to those obtained for the skele-
ton. The Gaussian G-CMIIC method recovers almost per-
fectly the CPDAG in the case of Gaussian and Student gen-
erative models and faster than the other techniques. How-
ever, its performances are quite low in the case of Dirich-
let data. B-CMIIC on the other hand performs equally well
whatever the generative model, illustrating the power of a
non-parametric method. In the case of small structures, CPC
seems to converge to the same value as the CMIIC methods
but needs a lot more data. Its performances decrease when
the dimension grows. As for CBIC method, its results are
poor compared to the other techniques and in addition de-
crease for high dimensions

Time Complexity
The learning times have been computed for the four methods
as a function of the dimension of the random graphs and for
data sets of sizeM = 10000. The results are shown on figure
8. The learning time of the B-MIIC algorithm is the most
important despite its good structural performances. G-MIIC
on the other hand is the fastest and as such, should be used
when the Gaussian assumption is known to be valid. On the
contrary, when no information is available, B-CMIIC should
be used due to its better results on any distribution.

6 Conclusion and Future Works
The CBN model makes use of copula functions to
parametrize the CPDs of a continuous BN. The BN rep-
resentation on the other hand, limits the size of the cop-
ula functions which can be hard to manipulate for high di-
mensions. Furthermore, the CBN structure represents the
same graphical independences than a classical BN. With
some adaptations, this allows the use of the same learning
techniques that are used for discrete data. In this regard,
we proposed a continuous MIIC algorithm which lies be-
tween score-based and constraint-based methods. It required
us to extend the link between mutual information and cop-
ula entropy to the conditional and three-point information.
This extension led us to build non-parametric estimators of
these quantities by use of the empirical Bernstein copula.
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Figure 7: Evolution of the SHD for CBIC, CPC, G-CMIIC
and B-CMIIC methods with respect to the dimension of the
random graphs. The results are averaged over 2 different ran-
dom graphs of the same dimension and over 5 different data
sets of size M = 10000.

The experimental section illustrated the superiority of non-
parametric methods over parametric ones when the model
that generated the data is far from the estimated model.
Moreover the lack of an arbitrary order allowed our algo-
rithm to learn better results with less data than the CPC
method. However, as it is often the case, the non-parametric
methods are slower to learn and if information about the
model is known, parametric methods should be preferred as
illustrated by the Gaussian version of CMIC. All the source
files to manage and learn CBNs with the CMIIC method
can be find in the experimental plugin (anonymized) which
is part of the OpenTURNS library and makes use of the
aGrUM library.

While our results are very encouraging, the theoretical
ground of the corrective parameter α is not satisfying. In
place, a continuous score penalty could be used but dis-
crete ones are either diverging in the continuous limit (NML,
MDL) or only extendable for parametric models (BIC). A
more promising idea would be to extend the estimator of mu-
tual information introduced in (Belalia et al. 2017) to condi-
tional and three-point information. This estimator being dis-
tributed according to a standard distribution in the limit of
large samples, p-values could be used to quantify the con-
fidence in independences. Finally, these results have been
obtained through the use of generated data and have to be
completed using real world data.
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Figure 8: Learning time in seconds for CBIC, CPC, G-
CMIIC and B-CMIIC methods with respect to the dimen-
sion of the random graphs. The results are averaged over 2
different random graphs of the same dimension and over 5
different data sets of size M = 10000.

Code Availability
The source code of our algorithms and tests are respectively
available on the GitHub repositories openturns/otagrum and
MLasserre/otagrum-experiments.
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