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Abstract

In the influence maximization (IM) problem, we are given
a social network and a budget k, and we look for a set of k
nodes in the network, called seeds, that maximize the expected
number of nodes that are reached by an influence cascade gen-
erated by the seeds, according to some stochastic model for
influence diffusion. Extensive studies have been done on the
IM problem, since his definition by Kempe, Kleinberg, and
Tardos (2003). However, most of the work focuses on the non-
adaptive version of the problem where all the & seed nodes
must be selected before that the cascade starts. In this paper we
study the adaptive IM, where the nodes are selected sequen-
tially one by one, and the decision on the i-th seed can be based
on the observed cascade produced by the first i — 1 seeds. We
focus on the full-adoption feedback in which we can observe
the entire cascade of each previously selected seed and on
the independent cascade model where each edge is associated
with an independent probability of diffusing influence.

Previous works showed that there are constant upper bounds
on the adaptivity gap, which compares the performance of
an adaptive algorithm against a non-adaptive one, but the
analyses used to prove these bounds only works for specific
graph classes such as in-arborescences, out-arborescences,
and one-directional bipartite graphs. Our main result is the first
sub-linear upper bound that holds for any graph. Specifically,
we show that the adaptivity gap is upper-bounded by v + 1,
where 7 is the number of nodes in the graph. Moreover we
improve over the known upper bound for in-arborescences
from 2e/(e — 1) ~ 3.16 to 2¢2/(¢ — 1) ~ 2.31. Finally, we
study a-bounded graphs, a class of undirected graphs in which
the sum of node degrees higher than two is at most @, and
show that the adaptivity gap is upper-bounded by va + O(1).
Moreover, we show that in O-bounded graphs, i.e. undirected
graphs in which each connected component is a path or a
cycle, the adaptivity gap is at most 3¢>/(e3 — 1) ~ 3.16.

To prove our bounds, we introduce new techniques to relate
adaptive policies with non-adaptive ones that might be of their
own interest.

Introduction

In the Influence Maximization (IM) problem, we are given
a social network, a stochastic model for diffusion of influ-
ence over the network, and a budget &, and we ask to find a
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set of k nodes, called seeds, that maximize their spread of
influence, which is the expected number of nodes reached
by a cascade of influence diffusion generated by the seeds
according to the given diffusion model. One of the most stud-
ied model for influence diffusion is the Independent Cascade
(IC), where each edge is associated with an independent
probability of transmitting influence from the source node
to the tail node. In the IC model the spread of influence is
a monotone submodular function of the seed set, therefore a
greedy algorithm guaranteesa 1 — é approximation factor for
the IM problem (Kempe, Kleinberg, and Tardos 2015). Since
his definition (Domingos and Richardson 2001; Richardson
and Domingos 2002) and formalization as an optimization
problem (Kempe, Kleinberg, and Tardos 2003, 2015), the
IM problem and its variants have been extensively investi-
gated, motivated by applications in viral marketing (Chen,
Wang, and Wang 2010), adoption of technological innova-
tions (Goldberg and Liu 2013), and outbreak or failure de-
tection (Leskovec et al. 2007). See Chen, Lakshmanan, and
Castillo (2013); Li et al. (2018) for surveys on the IM prob-
lem.

Recently, Golovin and Krause (2011) initiated the study of
the IM problem under the framework of adaptive optimiza-
tion, where, instead of selecting all the seeds at once at the
beginning of the process, we can select one seed at a time and
observe, to some extent, the portion of the network reached
by a new selected seed. The advantage is that the decision
on the next seed to choose can be based on the observed
spread of previously selected seeds, usually called feedback.
Two main feedback models have been introduced: in the full-
adoption feedback the whole spread from each seed can be
observed, while in the myopic feedback one can only observe
the direct neighbors of each seed.

Golovin and Krause considered the Independent Cascade
model and showed that, under full-adoption feedback, the
objective function satisfies the property of adaptive submod-
ularity (introduced in the same paper) and therefore a greedy
algorithm achieves a 1 — é approximation for the adaptive
IM problem. They also conjectured that there exists a con-
stant factor approximation algorithm for the myopic feed-
back model, which has been indeed found by Peng and Chen

(2019) who proposed a % (1 - é)-approximation algorithm.

However, the approximation ratio for the adaptive IM prob-



lem, which compares a given adaptive algorithm with an
optimal adaptive one, does not measure the benefits of im-
plementing adaptive policies over non-adaptive ones. To this
aim, Chen and Peng (Chen and Peng 2019; Peng and Chen
2019) introduced the adaptivity gap, which is the supremum,
over all possible inputs, of the ratio between the spread
of an optimal adaptive policy and that of an optimal non-
adaptive one. In (Peng and Chen 2019), Peng and Chen con-
sidered independent cascade model with myopic feedback
and showed that the adaptivity gap is between % and 4
for any graph. In (Chen and Peng 2019), the same authors
showed some upper and lower bounds on the adaptivity gap
in the case of full-adoption feedback, still under independent
cascade, for some particular graph classes. Specifically, they
showed that the adaptivity gap is in the interval [-%;, eZTel]
for in-arborescences and it is in the interval [ﬁ, 2] for out-
arborescences. Moreover, it is equal to ﬁ in one-directional
bipartite graphs. In order to show these bounds, they fol-
lowed an approach introduced by Asadpour and Nazerzadeh
(2016) which consists in transforming an adaptive policy into
a non-adaptive one by means of multilinear extensions, and
constructing a Poisson process to relate the influence spread
of the non-adaptive policy to that of the adaptive one. For
general graphs and full-adoption feedback, the only known
upper bounds on the adaptivity gap are linear in the size of
the graph and can be trivially derived.

In this paper, we consider the independent cascade model
with full-adoption feedback, and show the first sub-linear
upper bound on the adaptivity gap that holds for general
graphs. In detail we show that that the adaptivity gap is at
most [1n!/3], where 7 is the number of nodes in the graph.

Moreover, we tighten the upper bound on the adaptivity gap

262 2e
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for in-arborescences by showing that it is at most = =
Using similar techniques we study the adaptivity gap of a-
bounded graphs, which is the class of undirected graphs
where the sum of node degrees higher than two is at most
a. We show that the adaptivity gap is upper-bounded by
va + O(1), which is smaller that O (n'/?) for several graph
classes. In O-bounded graphs, i.e. undirected graphs in which

each connected component is a path or a cycle, the adaptivity

gap is at most :fj .

To prove our bounds, we introduce new techniques to con-
nect adaptive policies with non-adaptive ones that might be
of their own interest (further details are given in paragraph
“General outline of the proof technique” in Section ). In
particular, we resort to a simple and randomized hybrid non-
adaptive policy, that is not based on the Poisson process and
the multi-linear extensions, which instead represent the main
probabilistic tools adopted by (Asadpour and Nazerzadeh
2016; Chen and Peng 2019)).

Related Work

Influence Maximization. Several studies based on general
graphs (Lowalekar, Varakantham, and Kumar 2016; Mihara,
Tsugawa, and Ohsaki 2015; Schoenebeck and Tao 2019;
Tang, Xiao, and Shi 2014) have been conducted since the
seminal paper by Kempe, Kleinberg, and Tardos (2015).
Schoenebeck and Tao (2019) studied the influence maxi-
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mization problem on undirected graphs and proves that it is
APX-hard for both the independent cascade and the linear
threshold problem. Borgs et al. (2014) propose an efficient
algorithm that runs in quasilinear time and still guarantees an
approximation factor of 1 — é — ¢, for any € > 0. Tang, Xiao,
and Shi (2014) propose an algorithm which is experimen-
tally close to the optimal one under the independent cascade
model. Mihara, Tsugawa, and Ohsaki (2015) consider un-
known graphs for the influence maximization problem and
devises an algorithm which achieves a fraction between 0.6
and 0.9 of the influence spread with minimal knowledge of
the graph topology. Extensive literature reviews on influence
maximization and its machinery is provided by Chen, Lak-
shmanan, and Castillo (2013) and Li et al. (2018).

Several works on the adaptive influence maximization
problem (Cautis, Maniu, and Tziortziotis 2019; Han et al.
2018; Sun et al. 2018; Tang et al. 2019; Tong and Wang
2019; Tong et al. 2017; Vaswani and Lakshmanan 2016;
Yuan and Tang 2017) evolved after the concept introduced
by Golovin and Krause (2011), and explore the adaptive opti-
mization under different feedback models. The myopic model
(in which, one can only observe the nodes influenced by the
seed nodes) has been studied in (Peng and Chen 2019; Salha,
Tziortziotis, and Vazirgiannis 2018). Sun et al. (2018) cap-
ture the scenario in which, instead of considering one round,
the diffusion process takes over T rounds, and a seed set of at
most k nodes is selected at each round. The authors designed
a greedy approximation algorithm that guarantees a con-
stant approximation ratio. Tong et al. (2020) introduce a new
version of the adaptive influence maximization problem by
adding a time constraint. Other than the classic full-adoption
and myopic feedback model, Yuan and Tang (2017), and
Tong and Wang (2019), have also introduced different feed-
back models that use different parameters to overcome the
need of submodularity to guarantee a good approximation.
Han et al. (2018) propose a framework which uses existing
non-adaptive techniques to construct a strong approximation
for a generalization of the adaptive influence maximization
problem in which in each step a batch of node is selected.

Adaptivity Gaps. Adaptivity gaps for the problem of max-
imizing stochastic monotone submodular functions have
been studied by Asadpour and Nazerzadeh (2016). A se-
ries of work studied adaptivity gaps for a two-step adap-
tive influence maximization problem (Badanidiyuru et al.
2016; Rubinstein, Seeman, and Singer 2015; Seeman and
Singer 2013; Singer 2016). Gupta et al. (Gupta, Nagarajan,
and Singla 2016, 2017) worked on the adaptivity gaps for
stochastic probing. A recent line of studies has been con-
ducted (Chen and Peng 2019; Chen et al. 2020; Peng and
Chen 2019) which focuses on finding the adaptivity gaps on
different graph classes using the classical feedback models.
Peng and Chen (2019) confirmed a conjecture of Golovin
and Krause (2011), which states that the adaptive greedy al-
gorithm with myopic feedback is a constant approximation of
the adaptive optimal solution. They show that the adaptivity
gap of the independent cascade model with myopic feedback
belongs to [ %, 4]. Chen et al. (2020) introduced the greedy



adaptivity gap, which compares the performance of the adap-
tive and the non-adaptive greedy algorithms. They show that
the infimum of the greedy adaptivity gap is 1 — é for every
combination of diffusion and feedback models. The most re-
lated work to our results is that of Chen and Peng (2019).
Chen and Peng (2019) derive upper and lower bounds on the
adaptivity gap under the independent cascade model with
full-adoption feedback, when the considered graphs are in-
arborescences, out-arborescences, or one-directional bipar-
tite graphs. In particular, they show that the adaptivity gaps
of in-arborescences and out-arborescences are in the inter-
vals [e%l, 627‘3]] and [e%l, 2], respectively, and they provide
a tight bound of —%; on the adaptivity gap of one-directional
bipartite graphs.

Organization of the Paper

In Section we give the preliminary definitions and notations
which this work is based on. Sections — are devoted to the
main technical contribution of the paper (i.e., adaptivity gaps
of in-arborescences, general graphs, and @-bounded graphs).
In Section, we highlight some future research directions. Due
to the lack of space, some missing proofs are deferred to the
full version of this work.

Preliminaries

For two integers h and k, h < k,let [k]y, := {h,h+1,...,k}
and [k] := [k];.

Independent Cascade Model. In the independent cas-
cade model (IC), we have an influence graph G = (V =
[n], E, (Puv)(u,v)eE), where p,, € [0,1] is an activation
probability associated to each edge (u,v) € E. Given a set
of seed nodes S C V which are initially active, the diffusion
process in the IC model is defined in ¢ > 0 discrete steps
as follows: (i) let A; be the set of active nodes which are
activated at each step t > 0; (ii) Ag := §; (iii) given a step
t > 0, for any edge (u,v) such that u € A,, node u can ac-
tivate node v with probability p,, independently from any
other node, and, in case of success, v is included in A;,1; (iv)
the diffusion process ends at a step » > 0 such that A, = 0,
i.e., no node can be activated at all, and | J,, A, is the in-
fluence spread, i.e., the set of nodes activated/reached by the
diffusion process.

The above diffusion process can be equivalently defined
as follows. The live-edge graph L = (V,L(E)) of G is a
random graph made from G, where L(E) C E is a sub-
set of edges such that each edge (u,v) € E is included in
L(E) with probability p,,,, independently from the other
edges. Given a live-edge graph L, let R(S,L) := {v e V :
there exists a path from u to v in L for some u € S}, i.e., the
set of nodes reached by nodes in S in the live-edge graph L.
Informally, if S is the set of seed nodes, and L is a live-edge
graph, R(S, L) equivalently denotes the set of nodes which
are reached/activated by the above diffusion process. Given
a set of seed nodes S, the expected influence spread of S is
defined as o (S) := EL[|R(S, L)|].
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Non-adaptive Influence Maximization. The non-
adaptive influence maximization problem under the IC
model is the computational problem that, given an influence
graph G and an integer k > 1, asks to find a set of seed
nodes S C V with |S| = k such that o-(S) is maximized.

Adaptive Influence Maximization. Differently from the
non-adaptive setting, in which all the seed nodes are activated
at the beginning and then the influence spread is observed,
an adaptive policy activates the seeds sequentially in k steps,
one seed node at each step, and the decision on the next seed
node to select is based on the feedback resulting from the
observed spread of previously selected nodes. The feedback
model considered in this work is full-adoption: when a node
is selected, the adaptive policy observes its entire influence
spread.

An adaptive policy under the full-adoption feedback model
is formally defined as follows. Given a live-edge graph L, the
realisation ¢y, : V. — 2V associated to L assigns to each
node v € V the value ¢ (v) := R({v}, L), i.e., the set of
nodes activated by v under a live-edge graph L. Given a set
S C V,apartial realisation s : S — 2V is the restriction to §
of some realisation, i.e., there exists a live-edge graph L such
that ¢ (v) = ¢ (v) for any v € S. Given a partial realisation
S — 2V letdom(y) =S, i.e., dom(y) is the domain of
partial realisation ¥, let R(y) := U, eg ¥ (v), 1.e., R(y) is the
set of nodes reached/activated by the diffusion process when
the set of seed nodes is S, and let f(¥) := |[R(¥)|. A partial
realisation Y’ is a sub-realisation of ¥ (or, equivalently, ' C
W), if dom(y’) € dom(y) and ¥’ (v) = y(v) for any v €
dom(y¥’). We observe that a partial realisation ¢ can be
equivalently represented as {(v, R({v},L)) : v € dom(¥)}
for some live-edge graph L.

An adaptive policy 7 takes as input a partial realisation ¢
and, either returns anode 7 () € V and activates it as seed, or
interrupts the activation of new seed nodes, e.g., by returning
a string () := STOP. An adaptive policy 7 can be run as
in Algorithm 1. The expected influence spread of an adaptive
policy x is defined as o () = EL[f(¥«,)]. i.e., it is the
expected value (taken on all the possible live-edge graphs) of
the number of nodes reached by the diffusion process at the
end of Algorithm 1. We say that || = k if policy & always
return a partial realisation ¥, . with |dom (¥ » )| = k. The
adaptive influence maximization problem under the IC model
is the computational problem that, given an influence graph
G and an integer k > 1, asks to find an adaptive policy n
that maximizes the expected influence spread o () subject
to constraint || = k.

Adaptivity gap. Given an influence graph G and an inte-
ger k > 1, let OPTN (G, k) (resp. OPT4(G, k)) denote the
optimal value of the non-adaptive (resp. adaptive) influence
maximization problem with input G and k. Given a class of
influence graphs G and an integer k > 1, the k-adaptivity
gap of G is defined as

OPTA(G, k)

AG(Q,k) = Sup W(Gk),

GegGg



Algorithm 1 Adaptive algorithm

Require: an influence graph G and an adaptive policy 7;
Ensure: a partial realisation;

1: let L be the live-edge graph;

2: lety =0 (i.e., ¥ is the empty partial realisation);

3: while 7 (y) # STOP do

4:  v:i=n);

5 ¢ =y U{(v,R{v}, L)}

6: end while

7. return Y, 1 =y,

and measures how much an adaptive policy outperforms a
non-adaptive solution for the influence maximization prob-
lem applied to influence graphs in G, when the maximum
number of seed nodes is k. The adaptivity gap of G is defined
as AG(G) = sup;; AG(G, k). We observe that for k = 1
or n < k the k-adaptivity gap is trivially equal to 1, thus we
omit such cases in the following.

Adaptivity Gap for In-arborescences

An in-arborescence is a graph G = (V, E) that can be con-
structed from a rooted tree T = (V, F), by adding in E an
edge (v,u) if u is a father of v in tree 7. An upper bound
of % ~ 3.16 on the adaptivity gap of in-arborescences has
been provided in (Chen and Peng 2019). In this section we
provide an improved upper bound for such graphs.

Theorem 1. If G is the class of all the in-arborescences,
then

AG(G, k) < 2 <2 3l vkso
T - =2/ T e2—1 T T
Let G = (V = [n]E, (puv)(u,v)eE) be an in-

arborescence, where n > k is the number of nodes. To show
the claim of Theorem 1, we need some preliminary notations
and lemmas. Given a partial realisation ¥, and anode i € [n],
let

AGily) :=EL[f (¥ U {GE R} L)) = f(W)ly <€ ¢L],

i.e., A(i|y) is the expected increment of the influence spread
due to node i when the observed partial realisation is . We
have the following claim (from (Golovin and Krause 2011)),
holding even for general graphs, whose proof is trivial.

Claim 1. Adaptive Submodularity, (Golovin and Krause
2011) Let G be an arbitrary influence graph. For any par-
tial realisations W, ' of G such that y C ', and any node
i ¢ R(y'), we have that A(i|y’) < A(i|y).

An adaptive policy « is called randomized if, for any par-
tial realisation i, node 7 () is not selected deterministically
(in general), but randomly (according to a probability distri-
bution p,, depending on ). Given a vector y = (y1,...,Yn)
such that y; € [0, 1] for any i € [n], we say that P(rr) = y if
the probability that each node i belongs to dom (¥ 1) is yi,
where i . is the partial realisation returned by Algorithm
1 with policy 7. Let OPT4(G,y) be the optimal expected
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influence spread o () over all the randomized adaptive poli-
cies & such that P(xr) = y.!

Let 7 be an optimal adaptive policy for the adaptive
influence maximization problem (with |7*| = k), and let
x = (x1,...,Xx,) be the vector such that P(n*) = x. As
|7*| = k, we have that };c[,) xi = k.

For any t € [k]o, let S; be the optimal set of ¢ seed
nodes in the non-adaptive influence maximization problem,
i.e., such that OPTn (G,t) = Er(JR(S;,L)|). Let ¢, 1. be
the random variable denoting the sub-realisation of ¢ such
that dom(y, 1) = S;. Let p be the random variable equal to
node i € [n] with probability x;/k. Observe that the above
random variable is well-defined, as 3¢ [, (xi/k) = k/k = 1.
For any ¢ € [k], let ;1 be the random variable denoting
the sub-realisation of ¢, such that dom (Y, ;1) = Si-1U{p}.

General outline of the proof technique. We observe that
Yp.1,L 1s the partial realisation coming from the following Ay-
brid non-adaptive policy: initially, we activate the first  — 1
seed nodes as in the optimal non-adaptive solution guaran-
teeing an expected influence spread of OPTy (G, t—1); then,
we randomly choose a node v according to random variable
p and we select v as #-th seed node (if not already selected
as seed). We use this hybrid non-adaptive policy as a main
tool to obtain an improved upper bound on the adaptivity gap
for in-arborescences. In Lemma 1, holding even for general
graphs, we relate the hybrid non-adaptive policy and the opti-
mal non-adaptive solution, with the optimal adaptive policy.
Lemma 1, together with Lemma 2 (that is similar to Lemma
3.8 in (Chen and Peng 2019)), is used in the main proof of
the theorem to relate O PTy (G, t) with OPT (G, k) for any
t € [k], and this leads to our upper bound.

The proof structure of Lemma 1 exhibits some similari-
ties with Lemma 6 of (Asadpour and Nazerzadeh 2016) and
Lemma 3.3 of (Chen and Peng 2019), but in their approach,
they relate non-adaptive policies based on the Poisson pro-
cess and multi-linear extensions, with the optimal adaptive
policy. One disadvantage of the Poisson process adopted in
(Chen and Peng 2019) is that the number X of seed nodes
selected by the corresponding non-adaptive policy is equal
to k under expectation (i.e., E(X) = k), and determining
the expected influence spread w.r.t. random variable X has
implied a further loss in the final upper bound (see Lemma
3.9 and inequality (21) of Theorem 3.1 in (Chen and Peng
2019)). Instead, by using the hybrid-non-adaptive policy, we
guarantee that the number of selected seed nodes at each step
t € [k] is exactly equal to ¢, independently from the consid-
ered random execution. This property allow us to avoid the
expectations w.r.t. the number of selected seed nodes, and
this leads to a further improvement of the resulting upper
bound on the adaptivity gap.

Lemma 1. Let G be an arbitrary influence graph. For any
t € [k], and any fixed partial realisation ¥ of G such that
Plyi-1. = ¥] > 0, we have OPTA(G, k) < o(R(Y)) + k -

Erp [fWpir) = FWit,)Wi-iL = ¢] .
We observe that, if y is arbitrary, a deterministic policy x

verifying P(7r) = y might not exists, and the introduction of ran-
domization solves this issue.



Proof. We have
k “BLp [f(Wp,t,L) = fWrL) WL = lﬁ]
=k Y Plp=i]-Adly)
]

i€ln
Xi .
=k - A) (1)
ie[n]\R(¥)
= xi - Ail), (2)
ie[n]\R(¢)

where (1) holds since A(i|y) = 0 for any i € R().

Let " = (x{,...x;) be the vector such that x; = 1 if
i € R(¥), and x/ = x; otherwise. As x] > x; for any i € [n]
we have

OPTA(G, k) < OPTA(G, ) < OPTA(G,z'). (3)

Let 7’ be the optimal randomized adaptive policy such
that P(z”) = x’. Policy 7’ selects each node in R(y) with
probability 1, thus we can assume that such seed nodes are
selected at the beginning and that the adaptive policy starts
by observing the resulting partial realisation. Furthermore,
we can assume that, for any partial realisation ’, 7’ does
not select any node i € R(y’), otherwise there is no increase
of the influence spread. Given j € [n], let A’(j) denote the
expected increment of the influence spread when 7’ selects
the j-th seed node (in order of selection, and without con-
sidering in the count the initial seeds of R(y)); analogously,
let A’(j|i) denote the expected increment of the influence
spread when 7’ selects the j-th seed node, conditioned by
the fact that the j-th seed is node i.2 We get

OPTA(G, .’1}/)
= (R()) + D A'(j)
J

=R+ >

J i€[n]\R(y)
Z Z P[the j-th seed node is i] - A’(jli)
ie[n]\R(y) J
Z Z P[the j-th seed node is i]-
ie[n]\R(y) J
Ex [AGiw")|i = 7’ (y”) for some ¢’ 2 ¢ observed at step J]
<o(R(y)) + Z Z P[the j-th seed node is i] - A(i|y)
ie[n\R(y) J

P[the j-th seed node is i] - A’(jli)
= (R(Y)) +

=0 (R(y)) +

4)
Z P[i is selected as seed] - A(i|y)
i€[n]\R(y)
D, iAW)
i€[n]\R(y)

D, A, 5)
ie[n]\R(¥)

=0 (R(y)) +
=0 (R(y)) +
=0 (R(y)) +

2[f an execution of 7" requires less than j steps, we assume that
the increase of the influence spread at step j (that contributes to the
expected values A’(j) and A’(j|i)) is null.
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where (4) holds since A(i|¢") < A(i|ly) for any partial re-
alisation ¢’ 2 ¢ by adaptive submodularity (Claim 1). By
putting together (2), (3), and (5), we get

oc(RW)) +k-Erp [fWprL) = fFWi-r,0)Wi-1.L = ¥]
=r(RW)+ D xi-Aly)
ie[n]\R(¥)
>OPTA(G,x’)
>OPTA(G, k),
thus showing the claim. O
Lemma 2. If the input influence graph G is an

in-arborescence, then o(R(W;-1.)) < fWi-10) +
OPTN (G, t — 1) for any live-edge graph L and t € [k].

Armed with the above lemmas, we can now prove Theo-
rem 1.
Proof of Theorem 1. For any t € [k], we have

k- (OPTN(G,t)—OPTN(G,t-1))

=k - (o(Sr) = o (S-1))

=k - (BL[f We,)] —=ELlf (Wr-1,0)])

>k - (BLpfWp.rn)] —ELlf (Yr-1.0)]) (6)

=k - (ELp[f Wp,e,.)] —=ELplf (Wi-1,0)])

=k - EL,p [f(l//p,t,L) - f('r/’t—l,L)]

=By, 1, [k BrolfWpsr) = f(Wir.0)W-1.L]]

ZE‘/’)‘—I,L [OPTA(G7 k) - O-(R(lv[/t—l,L))] (7)

ZE‘/’:—I,L [OPTA(G’ k) - f(';bt—l,L) - OPTN (G’ r— l)]
(8)

:Elﬁple [OPTA(G’ k)] - E‘//t—l,L [f(wt—l,L)] (9)

—Ey, , [OPTN(G,t - 1)]

ZOPTA(G, k) - O'(St,l) - OPTN(G, t— 1)

=OPTs(G,k) -2 -OPTN(G,t - 1), (10)
where (6) holds since dom (i, 1) is the optimal set of ¢ seed
nodes for the non-adaptive influence maximization problem,
(7) comes from Lemma 1, and (8) comes from Lemma 2.
Thus, by (10), we get k - (OPTn (G,1) —OPTN (G,t—1)) 2
OPTA(G,k) —2-OPTN(G,t — 1), that after some manipu-
lations leads to the following recursive relation:

1 2
OPTy(G.1) 2 -OPTA(G. k)+(1 - %)OPTN(G,t—l),

Ve e [k]. (11)
By applying iteratively (11), we get
1 k-1 2 t
OPTN(G,k) = —- 1—-—) -OPTA(G,k
N(G.k) =z ZO( k) A(G.k)
1-(1-2/k)*
= % -OPTA(G, k),
that leads to
OPT4(G, k) < 2 < 2 2¢?
OPTN(G, k) — 1-(1-2/k)x ~

b}

l—e2 ¢€2-1

and this shows the claim. O



Adaptivity Gap for General Influence Graphs

In this section, we exhibit upper bounds on the k-adaptivity
gap of general graphs. In the following theorem, we first give
an upper bound that is linear in the number of seed nodes.

Theorem 2. Given an arbitrary class of influence graphs G
and k > 2, we get AG(G, k) < k.

In the next theorem we give an upper bound on the adap-
tivity gap that is sublinear in the number of nodes of the
considered graph.

Theorem 3. If G is the class of influence graphs having at
most n nodes, we get AG(G) < [n'/3].

LetG = (V,E, (puv)(u,v)ck) be the input influence graph.
To show Theorem 3, we recall the preliminary notations
considered for the proof of Theorem 1, and we give a further
preliminary lemma.

Lemma 3. Given a set U C 'V of cardinality h > k, we have
o(U) < 2. OPTyN (G, k).

We use Theorem 2 and Lemma 3 to show Theorem 3.

Proof of Theorem 3. We assume w.l.0.g. that k > [n'/3] and
that OPTn (G, k) < ([n'/31)%. Indeed, if k < [n'/3], by
Theorem 2 the claim holds, and if OPTx (G, k) > ([n'/3])?,

OPTA(G.k) 4 1/3
then OPTﬁ(G,k) < OPIN (G S (fnly/l31)2 < [n'/3], and the

claim holds as well. For any ¢ € [k], we have

k- (OPTN(G,t) — OPTN(G,t - 1))
2k (BrplfWo,e,t)] —ELplf(Wi-1,0)])
=By, ., [k BLplf(Wpar) = FWio0)Wi-1.L]]

2By, ,  [OPTA(G, k) = o (R(¥+-1,1))] (12)

:Ewt—l,L [OPTA(G’ k)] - EWt—I,L [O-(R(wtfl,L))]

2By, [OPTA(G, k)] = Ey, , [0c(R(Wk,1))]

>Ey, , [OPTA(G, k)] ~ By, , W . OPTy (G, k)]
(13)

—OPTA(G, k) - w - OPT (G, k)

By RGO
>OPTA(G, k) - W (P2 -1 (14)

=OPTA(G,k) = ([n'*1=1) - Ey, , [IR(Wr.1)I]

=OPTA(G,k) — ([n'/*] = 1) - OPTN (G, k), (15)
where (12) comes from Lemma 1, (13) comes from
Lemma 3, and (14) comes from the hypothesis k£ >
[n'3] and OPTN(G,k) < ([n'31)%. By (15), we get
OPTN(G,t) —OPTN(G,t—1) > (OPTA(G, k) - ([n'/3] -
1) - OPTN (G, k))/k for any ¢ € [k], and by summing such
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inequality over all ¢ € [k], we get
OPTN (G, k)
k
= » (OPTN(G,t) - OPTN(G,t - 1))
t=1
k

)

OPTA(G, k) — ([n']1=1)- OPTN (G, k)

k
=1
=OPTA(G,k) — ([n'*1=1)-OPTN (G, k).  (16)
Finally, (16) implies that OPT4(G,k) < [n'] -
OPTy (G, k), and this shows the claim. O

Adaptivity Gap for Other Influence Graphs

In this section, we extend the results obtained in Theorem 1,
and we get upper bounds on the adaptivity gap of other classes
of influence graphs. In particular, we consider the class of a-
bounded graphs: a class of undirected graphs parametrized
by aninteger @ > 0 thatincludes several known graph topolo-
gies. In the following, when we refer to undirected influence
graphs, we assume that, for any undirected edge {u, v}, there
are two directed edges (u,v) and (v, u) having respectively
two (possibly) distinct probabilities p,,, and p,,.

a-bounded graphs. Given an undirected graph G
(V,E) and a node v € V, let deg, (G) be the degree of
node v in graph G. Given an integer @ > 0, graph G is an
a-bounded graph if 3., cy.4eq, (G)>2 degv(G) < a, ie., the
sum all the node degrees higher than 2 is at most «. In the
following, we exhibit some interesting classes of @-bounded
graphs: (i) the set of 0-bounded graphs is made of all the
graphs G such that each connected component of G is either
an undirected path, or an undirected cycle; (ii) if graph G is
homeomorphic to a star with A edges, then G is a h-bounded
graph; (iii) if graph G is homeomorphic to a parallel-link
graph with i edges, then G is a 2h-bounded graph; (iv) if
graph G is homeomorphic to a cycle with A chords, then G
is a 6h-bounded graph; (v) if graph G is homeomorphic to a
clique with 4 nodes, then G is a h(h — 1)-bounded graph.
In the following, we provide an upper bound on the adap-
tivity gap of @-bounded influence graphs for any o > 0.

> 0, let G be

Theorem 4. Given « the class

of a-bounded influence graphs. Then AG(G,k) <
. 1 Va(e-1)2a+(3e-2)2+3e-2
min {k,%+2+ 1—(1—1/k)k} < 3= for

any k > 2, i.e., AG(G) < va+0(1).

Let G = (V = [n], E, (Puv)(u,v)eE) be an a-bounded in-
fluence graph, and we recall the preliminary notations from
Theorem 1. The proof of Theorem 4 is a non-trivial gen-
eralization of Theorem 1. In particular, the proof resorts to
Theorem 2 to get the upper bound of k, and, by following
the approach of Theorem 1, the following technical lemma
is used in place of Lemma 2 to get the final upper bound.
Lemma 4. When the input influence graph G is an «-
bounded graph with « > 0, we have that o (R(Y;-1,1)) <
FWio,L) + (£ +2) - OPTN (G, k) for any t € [k] and live-
edge graph L.



Proof. GivenasubsetU C V,let dU :={u € U : I(u,v) €
E,v ¢ U}. We have that o (R(¢)) < [R(¥)| + 0 (0R(¥)) =
f)+0o(dR(y)) for any partial realisation . Thus, to show
the claim, it suffices to show that

T(ARW_1 1)) < (% +2) -OPTN (G, k).

Let U C V such that U has at most k connected components.
Let A be the set of connected components containing at least
one node of degree higher than 2, and let B be the set of the
remaining components, i.e., containing nodes with degree in
[2]o only. By definition of A and B, we necessarily have that
|0A] < X\ evideg, (G)>2 degv(G) < a and [0B| < 2k. Thus
|0U| < |0A| + |0B| < a + 2k, and the next claim follows.

Claim 2. Given a subset U C V made of at most k connected
components, then |0U| < a + 2k.

Now, we have that

o (OR(Y:-1,1)) <o(OR(Yk,L))

Sw -OPTN (G, k) a7
S“k 2K OPTN (G ). (18)

where (17) comes from Lemma 3, and (18) holds since
R(Yk,1) contains at most k& connected components and be-
cause of Claim 2. Thus, by (18), the claim of the lemma
follows. O

We can now prove Theorem 4.
Proof of Theorem 4. For any t € [k], we have

k- (OPTy(G,t) — OPTn (G, 1 - 1))
2k - (Epplf(Wpe,0)] —ErLplf(Wi-1,0)])
=By, . [k ErplfWprr) = fWeo1,0)Wi-1,L]]

>Ey, 1, [OPTA(G.K) = o (RWi-1.0))] (19)
>Ey,u |[OPTAG.K) = f(Wi-1.0) = (% +2) OPTw (G, k)]
0)

:EIPH,L [OPTA(Gs k)] - E¢t—l,L [f(l//t—l,L)]

_ (% +2) By, ,, [OPTy (G, k)]

—OPTA(G, k) — o (S,_1) — (% + 2) . OPTy (G, k)

—OPTA(G, k) — (% + 2) - OPTN (G, k) — OPTy (G, 1 - 1),
2n

where (19) comes from Lemma 1 and (20) comes from
Lemma 4. Thus, by (21), we get the following recursive
relation:

OPTN (G, 1) > % (OPTA(G, k) - (% + 2) OPTy (G, k))

+(1—%)OPTN(G,t—l), (22)
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for any t+ € [k]. By applying iteratively (22), we get
OPTN (G, k) 2 +-(OPTA(G, k) — (¢ +2) - OPTN (G, k))-

T (1-4 ! = (OPTA(G.k) - (2 +2) - OPTy (G. k) -

k
(1 - (1 - %) ) that, after some manipulations, leads to

w<g+2+;<g+2+ 1
OPTN (G, k) ~ k 1-(1-1/k)* ~ k l—e!’
(23)
By Theorem 2, we have that %ﬁg’% < k, thus, by (23),
we get ’
()I)TA—(G’k) _min k’g+2+;
OPTN (G, k) k 1-(1-1/k)k
a 1
<minik,—+2+ ———
_mm{ . +2+ o }
—1)2 —7)2 _
S\/4(e 1)2a + (3¢ —2)2 + 3e 2’ o
2(e—-1)
where (24) is equal to the real value of k > 0 such that
k = % +2+ 1—_164 By (24) the claim follows. ]

For the particular case of 0-bounded influence graphs,
the following theorem provides a better upper bound on the
adaptivity gap (the proof is analogue to that of Theorem 1).

Theorem 5. Let G be the class of 0-bounded influence
graphs. Then AG(G,k) < min{k +} <

’ 1-(max{0,1-3/k})k
% ~ 3.16, for any k > 2.

Future Works

The first problem that is left open by our results is the gap
between the constant lower bound provided by Chen and
Peng (2019) and our upper bound on the adaptivity gap for
general graphs. Besides trying to lower the upper bound, a
possible direction could be that of increasing the lower bound
by finding instances with a non constant adaptivity gap. Since
the lower bound given in (Chen and Peng 2019) holds even
when the graph is a directed path, one direction could be to
exploit different graph topologies.

Although in this work we have improved the upper bound
on the adaptivity gap of in-arborescence, there is still a gap
between upper and lower bound, thus another open problem
is to close it. It would be also interesting to find better bounds
on the adaptivity gap of other graph classes, like e.g. out-
arborescences. A further interesting research direction is to
study the adaptivity gap of some graph classes modelling
real-world networks, both theoretically and experimentally.

The study of the adaptive IM problem in the Linear Thresh-
old model is still open, in terms of both approximation ratio
and adaptivity gap. We observe that in this case the objec-
tive function is not adaptive submodular in both myopic and
full-adoption feedbacks and therefore the greedy approach
by Golovin and Krause (2011) cannot be applied.

The techniques introduced in this paper to relate adaptive
policies with non-adaptive ones might be useful to find better
upper bounds on the adaptivity gaps in different feedback
models, like e.g. the myopic one, or in different graph classes.
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