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Abstract

In this paper, we study a two-level ski-rental problem. There
are multiple commodities, each one can be “rented” (paying
for on-demand usage) or “purchased” (paying for life-time
usage). There is also a combo purchase available so that all
commodities can be purchased as a combo. Since the usages
of the commodities in future are not known in advance, to
minimize the overall cost, we design an online algorithm to
decide if we rent a commodity, purchase a commodity, or
make a combo purchase. We first propose a deterministic on-
line algorithm. It can achieve 3 competitive ratio, which is
optimal and tight. Next, we further propose a randomized on-
line algorithm, leading to a eσ

eσ−1
competitive ratio, where σ

is the ratio between the price of a single commodity and the
price of combo purchase. Finally, we apply simulation to ver-
ify the theoretical competitive ratios and evaluate the actual
performance against benchmarks.

Introduction
The ski-rental problem (Karlin, Kenyon, and Randall 2003)
is the dilemma in which a customer trades off between two
payment options without the knowledge of future: rental,
i.e., paying for on-demand usage, and purchase, i.e., paying
for life-time usage at once. Literature has derived the opti-
mal online algorithms with minimized competitive ratio and
it has been applied to different fields such as transportation
system (Karlin, Kenyon, and Randall 2003), cloud systems
(Yang, Pan, and Liu 2019), and energy systems (Lee et al.
2017). However, existing work cannot address many real-
world problems, when options are more complex.

In this paper, we consider the two-level ski-rental prob-
lem (TLSR) when a decision-maker need to trade off be-
tween rental and purchase of multiple instances. (We use the
term instance instead of commodity in the rest of the paper
as users can purchase intangible service, such as mobile data
plans and bus tickets.) For each instance, the decision-maker
can rent it or purchase it (which is called single purchase
in this paper). In addition, the decision-maker can purchase
all instances as a combo purchase at a reduced cost. Please
note that this problem is equivalent to multiple independent
classic ski-rental problems if we ignore the combo purchase.
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Nevertheless, the combo purchase covers all individual pur-
chases, forming a two-level hierarchy. This brings new chal-
lenges to decision-markers as payment options are now cor-
related, and cannot be addressed by existing solutions.

We present a few real-world examples of the TLSR prob-
lem:

1. Mobile data plan reservation with sponsored data.
A user uses multiple apps on a mobile phone, and these apps
generate data traffic. To cover the cost of data usage, the user
has to choose among different payment options provided by
the Internet Service Provider (ISP) and Content Providers
(CPs). Three payment methods are available: 1) Pay-as-you-
go (PAYG). There is no upfront fee and each MB of data
volume incurs a constant fee. 2) Sponsored data plan (SDP).
There is an upfront fee at the beginning and then there is
no more fee on the data generated by a specific app in one
month. 3) All-in-one plan (AIP). There is a (much) higher
upfront fee at the beginning and then there is no more fee on
the data generated by all apps in one month. For this prob-
lem, apps can be viewed as instances. PAYG can be viewed
as rent. The SDP and AIP can be regarded as single purchase
and combo purchase respectively.

2. Bahncard reservation with multiple zones. A trav-
eller frequently takes subways in a city with multiple
zones. Three payment methods are offered: 1) Pay-as-you-
go (PAYG). There is no upfront fee and each travel incurs
a cost. 2) Zone pass. There is an upfront fee and then trav-
els within one zone will be free of charge in one month. 3)
City pass. There is an upfront fee and then travels within all
zones in the city will be free of charge in one month. In this
example, zone pass and city pass can be regarded as single
purchase and combo purchase respectively.

The bahncard/mobile plan in the real world is usually
valid for each calendar month, and they expire at the end
of each calendar month. Therefore, in two different calendar
months, the decisions are independent. The decision on bah-
ncard/mobile plan purchase can be regarded as an individual
two-level ski-rental problem in each calendar month.

Our Contributions. In this paper, we study the TLSR
problem, in which rental, single purchases, and the combo
purchase are available. We propose an optimal deterministic
online algorithm with two fixed thresholds. When the rental
cost of a single instance (resp. all instances) exceeds the
threshold, the single purchase (resp. combo purchase) will
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be made. We claim an exact optimal and tight competitive
ratio of the deterministic algorithm which is asymptotically
close to 3, and the optimal thresholds are derived. In addi-
tion, we further propose a randomized online algorithm, in
which the thresholds are generated with our designed prob-
ability distributions. Our competitive analysis shows that
the competitive ratio of the randomized online algorithm is
eσ

eσ−1 , where σ is the ratio of prices between the single pur-
chase and the combo purchase. This is a neat extension of
the competitive ratio e

e−1 of the classic ski-rental problem.

Related Work

The classic ski-rental problem (Karlin, Kenyon, and Randall
2003; Epstein and Zebedat-Haider 2015) is the dilemma be-
tween rent and purchase without the knowledge of future
(i.e., the future is adversarial). It has been studied by ex-
isting literature. This problem is also known as the Bah-
ncard problem in a public transportation system (Fleischer
2001). There are many studies on the extended versions of
the ski-rental problem in more complicated scenarios. For
example, ski-rental problems with non-linear cost functions
were studied by (Lotker, Patt-Shamir, and Rawitz 2012; Shi
et al. 2018; Fujiwara et al. 2020). (Feldkord, Markarian,
and Meyer Auf der Heide 2017) allowed the rental price to
float with time. (Meyerson 2005) considered that the choices
of purchase are limited in time, and (Hu et al. 2015) fur-
ther studied a two-dimension venison of the problem. (Chen
and Xu 2018) considered the ski-rental problem in a risk-
reward model assuming that the decision-maker is willing
to accept some degree of uncertainty. (Khanafer, Kodialam,
and Puttaswamy 2013) assumed the user knows some in-
formation about the adversary. They constrained the ad-
versary with the first or second moments. (Wang, Li, and
Wang 2020; Kodialam 2019) also considered the predictions
by machine-learning approaches. Some other relevant stud-
ies extended the dimension of some parts of the ski-rental
model. (Ai et al. 2014; Wang, Li, and Wang 2020) consid-
ered multiple shops providing different prices, and the cus-
tomer has to stick with one shop to rent or buy. (Zhang,
Poon, and Xu 2011) generalized the problem by providing
n discount options, and each option has an expiration date.
The longer the plan reserved, the greater the discount. (Zang
et al. 2019) studied a variant of ski-rental problem offering
three purchase options including two single purchases and
one combo purchase. (Zhang and Conitzer 2020) considers
the ski-rental problem with multiple desired resources. The
cost of requiring a new resource is a submodular function of
the set of the resources that have not been purchased.

The above studies are substantially different from our
study in terms of dimensions and hierarchy of choices: In
this work, (1) the number of instances is any K, instead of 1
or 2; (2) the purchase choices form a two-level hierarchy, in
which the combo purchase can further cover all single pur-
chases. This is the first study investigating two-level (single
purchase and combo purchase) and multi-dimensional (mul-
tiple instances with single purchases) ski-rental problem.

Problem Formulation
Overview
The system is operated in continuous time t ∈ [0, T ), where
T remains unknown till the end. The user has K instances,
and each of them could generate demands (usages). The
decision-maker fulfills the demand to choose one of three
charging options to cover each demand: (1) Rental, (2) Sin-
gle purchase, and (3) Combo purchase.
(1) Rental: Each 1 unit amount of demand will incur a cost
of ∆p. Demand of D will incur a rental cost of D∆p. We
assume that demand is an integer value.
(2) Single purchase: At time t, the user can make a single
purchase for one instance k. It will incur an immediate up-
front fee Cs∆p. Then, in [t, T ), the demands generated by
instance k will not incur any further cost. This means that
the purchase is valid from t to the end. We assume that Cs
is the same among different instances.
(3) Combo purchase: At time t, the user can make a combo
purchase for all instances. It will incur an immediate upfront
fee Cc∆p. Then, from [t, T ), the demand generated by all
instances will not incur any further cost.

Without loss of generality, we assume that at most one in-
stance at a time generates a demand. For presentation conve-
nience, such demand is formally defined as a task. The task
is labeled by i = 1, 2, . . . , I in chronological order. Task i
can be presented by a 3-tuple: (d(i), a(i), t(i)), where d(i)
represents the amount of demand generated by task i. a(i)
represents the instance index a(i) ∈ {1, 2, . . . ,K}. t(i) rep-
resents the time when task i arrives. For any task i and task
j, i < j indicates t(i) < t(j).

We assume that users do not have any future informa-
tion about the demand generated by instances (i.e., ad-
versarial environment). For task i, the user only knows
(d(i), a(i), t(i)) at time t(i). This model does not assume
that the sequence of the tasks respects any prior distribution.
Therefore, an online solution is needed.

Since ∆p is the proportional coefficient shared by the
three payment methods, it is regarded as 1 without loss of
generality in the rest of the paper, unless otherwise speci-
fied. We assume Cs � 1, as the price of purchases is much
higher than rental. We assume Cc/Cs ≥ 2 as combo pur-
chase covers wider than single purchase. We also assume
K ≥ 2, indicating the user has at least two instances.

Cost Minimization
We aim to minimize the overall cost, such that each task is
covered by rental, single purchase, or combo purchase.

Let xk (resp. xo) be a 0-1 variable indicating if the single
purchase for instance k (resp. the combo purchase) is made.
Let τk denote the time we make the single purchase for in-
stance k. If the single purchase is never made, τk = ∞. Let
τo denote the time we make a combo purchase. If the combo
purchase is never made, τo =∞.

We aim to minimize the overall cost
∑I
i=1 rental(i) +

Cs
∑K
i=1 xi+Ccxo, where rental(i) is the rental cost of task

i. rental(i) = 0 if it is covered by a purchase (t(i) ≥ τa(i)
or t(i) ≥ τo). Otherwise, it is equal to d(i).
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Online Algorithm and Performance Evaluation
Due to the online setting, we do not know the future, so that
it is not possible to derive the minimum cost as an offline
optimization problem. In this paper, we focus on online al-
gorithm, and evaluate the proposed algorithm by competitive
analysis.

Let s = {(d(i), a(i), t(i))}, i = 1, 2, . . . , I , be any input
sequence of tasks. A deterministic online algorithm ALG is
called c-competitive if it satisfies:

ALG(s) ≤ c · OPT(s) (1)

for all possible input sequences, where ALG(s) is the cost of
algorithm ALG given input sequence s. OPT(s) is the cost
of the optimal offline algorithm when the input s is known
in advance.

The definition of competitive ratio of randomized online
algorithms is defined on the mean performance. A random-
ized online algorithm ALG is called c-competitive if it sat-
isfies:

E(ALG(s)) ≤ c · OPT(s) (2)
for all possible input sequences.

The competitive ratio is equal to or greater than 1, and the
smaller the competitive ratio, the better the performance of
the online algorithm. Our aim is to find the optimal online
algorithm which gives the smallest competitive ratio.

Optimal Deterministic Online Algorithm
In this section, we introduce the deterministic online al-
gorithm and prove that the optimal competitive ratio is
3− 1

Cs
' 3 asCs � 1. We first introduce two important con-

cepts: typical cost and threshold values. Then, we formally
propose the deterministic online algorithm. Finally, we ap-
ply the competitive analysis and show the optimal competi-
tive ratio.

Useful Definitions
Before presenting the deterministic online algorithm, we
first define the typical costs. Suppose current time (now) is
t, the typical cost of instance k at t, ψk(t), is defined as the
rental cost of instance k generated till now, i.e., in [0, t], if we
do not make any purchase now. Please note that although the
task generated exactly at t may not be paid by rent, it is still
counted for the calculation of typical cost at t. The overall
typical cost at t, ψc(t), is defined as the overall rental cost
of all instances till now, i.e., in [0, t], if we do not make any
purchase now.

ψk(t) =
∑

i:0≤t(i)≤t and a(i)=k
task i is not covered by purchase before t

d(i), (3)

ψc(t) =
∑

i:0≤t(i)≤t
task i is not covered by purchase before t

d(i). (4)

We define λs ≤ Cs and λc ≤ Cc as two threshold values.
If the typical cost of instance k reaches λs, we make a single
purchase of instance k. If the overall typical cost reaches λc,
we make a combo purchase.

Algorithm 1: Deterministic Two-level Ski-Rental
Algorithm DTSR(λs, λc)

1 if new arrival of task i: (d(i), a(i), t(i)) then
2 if task is covered by a previous purchase then
3 Repeat from Line 1
4 else
5 Set ψa(i) be the typical cost by (3)
6 if ψa(i) ≥ λs then
7 Make single purchase for instance a(i)
8 Repeat from Line 1
9 Set ψc be the overall typical cost by (4)

10 if ψc ≥ λc then
11 Make combo purchase
12 Repeat from Line 1
13 Pay the task i’s demand by rental
14 Repeat from Line 1

The deterministic online algorithm is shown by Algorithm
1. Its two threshold values λs and λc are input parameters,
and they are fixed until the end.

The algorithm is activated upon the arrival of a task. If
the task has already been covered by a previous purchase
(Lines 2), then the algorithm does nothing. Otherwise, it will
calculate the typical costs ψk and ψc (Lines 5 and 9). If the
typical cost exceeds the threshold value, the algorithm will
make the corresponding purchase (Lines 7 and 11). If not,
the algorithm will cover the task by rental (Line 13).

Please note that the algorithm takes both the current task
and historical rent costs into account when calculates the
typical costs. The main difference between our proposed al-
gorithm and the traditional ski-rental algorithm is that two
threshold values λs and λc are used at the same time, so as
to realize the purchases with hierarchical relationship.

Competitive Analysis
In this subsection, we focus on the performance analysis of
Algorithm 1 and derive the min competitive ratio through
optimizing λs and λc.

Standardizing the Sequence For an input sequence, we
focus on its performance operated by Algorithm 1. Let s
denote a valid input sequence. D(k) is defined as the to-
tal demand (generated in [0, T )) of instance k. We establish
“worse cases” to bound the performance. First, we find that
by moving demand from one instance to another, the cost of
Algorithm 1 may increase but the optimal cost does not, so
that we can derive upper bounds. We have the following two
Lemmas. Let DTSR(s, λs, λc) denote the cost of algorithm
DTSR given input sequence s, λs, and λc:

Lemma 1. Given any λs and λc, for any input sequence
s, if there exists two instances, say instances k and l,
such that D(k) < λs and D(l) < λs, then the com-
petitive ratio of Algorithm 1 will not decrease if we move
min(λs − D(k), D(l)) demand from instance l to instance
k. In other words, let s′ be a sequence as we move min(λs−
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Algorithm 2: Standardizing Algorithm STD(s)

1 Create B instances with 0 demand. B is sufficiently
large.

2 while there exists two instances k and l s.t.
λs < D(l) < Cs and D(k) < λs do

3 move min(λs −D(k), D(l)− λs) demand form
l to k

4 end
5 while there exists two instances k and l s.t.

D(k) < λs and D(l) < λs do
6 move min(D(l), λs −D(k)) demand form l to k
7 end
8 return the outcome sequence sstd

D(k), D(l)) demand from instance l to instance k. We have

DTSR(s, λs, λc)

OPT(s)
≤ DTSR(s′, λs, λc)

OPT(s′)
. (5)

See our tech report (Wu 2020).

Lemma 2. Given any λs and λc, for any input sequence
s, if there exists two instances, say instances k and l, such
that D(k) < λs and Cs > D(l) > λs, then the com-
petitive ratio of Algorithm 1 will not decrease if we move
min(λs − D(k), D(l) − λs) demand from instance l to k.
In other words, let s′ be a sequence as we move min(λs −
D(k), D(l)− λs) demand from instance l to instance k. We
have

DTSR(s, λs, λc)

OPT(s)
≤ DTSR(s′, λs, λc)

OPT(s′)
. (6)

See our tech report (Wu 2020).

By applying the above two Lemmas, we can construct
a standardized sequence by moving demand among the in-
stances, and the competitive ratio is not reduced. Then, we
can focus on analyzing the standardized sequence, which
provides performance bound of any input sequence. The
standardizing algorithm is shown by Algorithm 2.

The standardizing Algorithm 2 first creates B instances
with 0 demand. By doing so, the cost of Algorithm 1 and
the optimal cost does not change. Then, Algorithm 2 repeats
operations in Lemma 2 (Lines 2–4) and Lemma 1 (Lines 5–
7) to get the standardized sequence sstd. Please note that the
algorithm can always find instance k in Line 2 since we have
created sufficient zero-demand instances in Line 1.

We further define sstd = STD(s) to denote sstd is a stan-
dardized sequence of s, and Sstd denote the set of any stan-
dardized sequence.

It is straightforward to show that a standardized sequence
satisfies the following properties

• m instances have demand no less than Cs, where m ≥ 0.

• n instances have demand equal to λs, where n ≥ 0.

• At most 1 instance has demand x in (0, λs).

• All other instances have 0 demand.

From Lemmas 1 and 2, and the above procedure to gen-
erate the standardized sequence, we know Algorithm 2 will
not reduce the competitive ratio. Thus the competitive ratio
of the standardized sequence will not be reduced compared
to the original input sequence. Therefore, it is straightfor-
ward to reach the following Lemma.
Lemma 3. Given λs and λc, s is any input sequence, and
sstd is the standardized sequence generated by s. sstd =
STD(s). Then, we have

DTSR(s, λs, λc)

OPT(s)
≤ DTSR(sstd, λs, λc)

OPT(sstd)
. (7)

In what follows, we can focus to bound the performance
of a standardized sequence instead of an arbitrary sequence.
Since a standardized sequence is also a valid input sequence,
the standardizing procedure does not influence the tightness
of the bound.

Bounding Standardized Sequences For any standardized
sequence, we first investigate the competitive ratio when
λs ≤ D(sstd) and λs ≤ λc. D(sstd) is the total demand
from all instances of sstd.
Lemma 4. Given λs and λc, sstd is any standardized se-
quence. When λs ≤ D(sstd) and λs ≤ λc, the optimal com-
petitive ratio is 3− 1

Cs
.

max
sstd

min
λs,λc

DTSR(sstd, λs, λc)

OPT(sstd)
≤ 3− 1

Cs
. (8)

See our tech report (Wu 2020).
Lemma 4 shows the competitive ratio of Algorithm 1

when λs ≤ D(sstd) and λs ≤ λc. If λs > D(sstd), then
we can find λs, λc such that the competitive ratio is smaller,
so that the adversarial sstd will not let λs > D(sstd) hap-
pen. If λs > λc, we can find an input sequence sstd such
that the competitive ratio is larger, so that we will not choose
λs > λc. (The detailed proof can be found in the proof of
Theorem 1.)

Based on the findings above, the following theorem can
be obtained to give the optimal competitive ratio:
Theorem 1. 3− 1

Cs
' 3 is the optimal and tight competitive

ratio of Algorithm 1 and the optimal thresholds are:

λ∗s = Cs,

λ∗c =
Cs − 1

Cs
Cc + 1.

(9)

See our tech report (Wu 2020).
Please note that we assume Cc/Cs ≥ 2 in this paper. If it

does not hold, i.e., 1 ≤ Cc/Cs < 2, Algorithm 1 still works,
and the bound (8) still holds, but it is no longer tight due to
the construction of the adversary.

Randomized Online Algorithm
We now discuss the randomized online algorithm. When the
values of λs and λc are generated randomly, we obtain the
Algorithm 3. The distribution of λs and λc are designed so
that we can analyze the competitive ratio of Algorithm 3.
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Algorithm 3: Randomized Two-level Ski-Rental Al-
gorithm RTSR

1 Generate λs and λc according to PMFs (10)–(11).
2 if new arrival of task i: (d(i), a(i), t(i)) then
3 Call DTSR(λs, λc)
4 Repeat from Line 2

The probability mass functions (PMFs) of λs and λc are

P(λs = i) , P
(d)
i =

{
1, if i = Cs,

0, otherwise,
(10)

P(λc = i) , P
(o)
i =


aqi−1, if i ∈ [1, Cs − 1],

1− a(1−q)Cs−1

1−q , if i = Cc,

0, otherwise,
(11)

where q , Cc
Cc−1 and a , 3Cc−2

Cc−1 ·
1

(3Cc−2)(eσ−1)+σ(eσ+1)−eσ/Cs , and σ , Cs−1
Cc−1 .

Please note that this distributions will lead to eσ

eσ−1 com-
petitive ratio to be discussed shortly.

One observation is that the λs is equal to Cs with prob-
ability 1. This is derived by the analysis in the proof of
Theorem 2. We do not assume λs is deterministic at the
beginning, but deterministic λs will lead to the nice form
of bound, and will give a local minimum competitive ratio
compared with other PMFs.

Competitive Analysis
We first use a relaxed version of competitive ratio for deter-
ministic λs and λc.

Corollary 1. Given λs and λc, s is any sequence, with total
demand D(s). When λs ≤ D(s) and λs ≤ λc, 1+ Cc

λc−1+Cs
λs

is a upper bound of the competitive ratio.

Note that Corollary 1 states a relaxed upper bound com-
pared with Lemma 4. The bound is

max
s

DTSR(s, λs, λc)

OPT(s)
. (12)

Theorem 2. The competitive ratio of the Algorithm 3 is

E[RTSR(s)]

OPT(s)
≤ eσ

eσ − 1
, (13)

for any sequence s, where σ = Cs−1
Cc−1 '

Cs
Cc

.

Theorem 2 finally concludes the competitive ratio of Al-
gorithm 3. This is a neat extension of the competitive ratio
e
e−1 of the classic ski-rental problem (Manasse 2008).

Evaluation
In this section, we apply simulation to verify the competitive
ratio claimed in Theorems 1 and 2, and further evaluate the
performance of DTSR and RTSR comparing to benchmarks.

Sequence Generation and Simulation Settings
The analytical competitive ratios of DTSR and RTSR have
already been derived. Note that the competitive ratios are
reached under the extreme cases when the environment is
fully adversarial. In this section, there in no need to further
focus on the extreme cases, and we are more interested to
study more practical performance of DTSR and RTSR when
the environment is stochastic.

The input sequence is generated randomly in this simula-
tion. We set the number of instances as 6. For each single se-
quence, we generate S tasks. Each task has a unit demand. S
is uniformly distributed from 1 to 60. The inter-arrival time
of tasks is uniformly distributed in [0, 1]. (In fact, the inter-
arrival time will not influence the optimal costs or the costs
generated by algorithms as long as the tasks follow the same
order.) Each task is randomly assigned an instance, follow-
ing two piratical distributions:

1. Uniform: Tasks are uniformly distributed among all in-
stances.

2. Heavy-tailed: The distribution of tasks among instances is
heavy-tailed. 80% tasks are randomly picked and they are
assigned one of 2 popular instances (with probability 0.5
each). The rest 20% tasks are assigned one of the rest 4
instances (with probability 0.25 each).

We set the unit demand price as 1, combo purchase fee as
Cc = 30, and single purchase fee as Cs = 9. These values
are regarded as default values. Without otherwise specified,
these default values are employed throughout this simula-
tion.

We consider the following benchmarks to compare with
DTSR and RTSR:

• Ski-rental combo purchase only [SRCO]: Using the ran-
domized ski-rental algorithm (Mathieu 2007) by only al-
lowing rental and combo purchase.

• Ski-rental single purchase only [SRSO]: Using the ran-
domized ski-rental algorithm by only allowing rental and
single purchases.

• Random [RND]: The decision is made randomly. How-
ever, once the algorithm makes the combo purchase, there
will be no more rental cost or single purchase cost. Sim-
ilarly, once the algorithm makes a single purchase, there
will be no more rental cost of that instance. To balance the
costs from the three charging options, we set the probabil-
ities using rental as 0.7, single purchase as 0.2, and combo
purchase as 0.1.

We use Python 3.6.8 with numpy 1.18.1 to conduct the
simulation in a laptop with CPU i5-8210Y and Memory 8
GB 2133 MHz LPDDR3.

Competitive Ratio Verification
In this subsection, the competitive ratios are verified. We ob-
tain the competitive ratio by running Algorithms 1 and 3 on
the randomly generated sequences. The deterministic Algo-
rithm 1 runs on 10 sequences (5 uniform sequences and 5
heavy-tailed sequences). The randomized Algorithm 3 runs
on 30 sequences (15 uniform sequences and 15 heavy-tailed
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(a) Competitive ratio of deterministic Algorithm
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(b) Competitive ratio of deterministic Algorithm
1, single purchase price is 9
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(c) Competitive ratio of randomized Algorithm 3,
single purchase price is 9
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(d) Competitive ratio of randomized Algorithm 3,
single purchase price is 12

Figure 1: Competitive ratio verification.

sequences) and the performance at each sequence is aver-
aged over 30 times of randomly distributed λs and λc val-
ues. The results are shown in Fig. 1(a)–1(d). The optimal
offline solution is min(Cc,

∑K
i=1min(Cs, ri)), where ri is

the rental-only cost of instance i.
Fig. 1(a) shows the experimental and theoretical compet-

itive ratios of Algorithm 1 with single purchase price 6. The
combo purchase prices are 20, 25, and 30 respectively from
left to right. The theoretical competitive ratio is shown by
the yellow bar and the experimental values are shown by
the red circles. As the figure shows, the experimental values
are inside the yellow bar, demonstrating that the theoretical
competitive ratio will bound the ratio of real cost and opti-
mal cost. Another observation is that we have some exper-
imental results right on the theoretical value, verifying that
that the theoretical competitive ratio is tight. Fig. 1(b) shows
the simulation results when single purchase price is 9. The
combo purchase prices are 30, 35, and 45 respectively. The
results are similar to Fig. 1(a).

Fig. 1(c) shows the experimental and theoretical compet-
itive ratios of Algorithm 3 with single purchase price 9. The
combo purchase price is from 26 to 30 from left to right. The
experimental results are all inside yellow bars, which indi-
cates that the theoretical competitive values hold. One obser-
vation is that the theoretical competitive ratios are large, but
the actual performance of the algorithm is better. This is be-
cause we did not claim tight competitive ratio of Algorithm
3 in Theorem 2. While the theoretical value increases with
the rise of combo purchase price, the experimental value

does not show this trend. Fig. 1(d) shows the results with
the single purchase price 12. In this case, both the theoreti-
cal and experimental results are better than those shown in
Fig. 1(c). The experimental competitive ratio have averaged
value of about 1.5 and 99% of them are lower than 2. As a
result, we can see that the actual performance of DTSR and
RTSR in stochastic environment is usually much better than
the worst-case performance bounded by competitive ratio.

Performance Comparison of Online Algorithms
In this subsection, we focus on the evaluation of the DTSR
and RTSR, compared with the benchmarks. The experiment
is divided into two groups, one group uses uniform se-
quences, the other group mixes 40% uniform sequences at
the beginning and 60% heavy-tailed sequences later. Each
figure shows the cumulative costs of 200 randomly gen-
erated sequences. Each sequence is run by each algorithm
once. The cumulative cost is normalized by the sum of opti-
mal costs of the 200 sequences, so that we can more clearly
show the ratio of the cost of an algorithm and the optimal
cost. In the figure, coordinate (x, y) indicates the sum cost
of an algorithm of first x sequences divided by the sum opti-
mal cost of the 200 sequences. The value at the y-axis when
x = 200 is actually the realized competitive ratio of the
corresponding algorithm. OPT indicates the optimal offline
algorithm, so that its cumulative normalized cost is 1 when
x = 200. The results are shown in Figs. 2 and 3.

Fig. 2 shows the results for uniform sequences, under dif-
ferent prices of combo purchase. We can show that RTSR
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(a) Uniform, combo purchase price is 20
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(c) Uniform, combo purchase price is 31

Figure 2: Performance of algorithms under uniform sequences.
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(a) Mixed, combo purchase price is 20
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(b) Mixed, combo purchase price is 25
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(c) Mixed, combo purchase price is 33

Figure 3: Performance of algorithms under mixed sequences.

performs the best, followed by SRCO. The performance of
DTSR is worse than SRCO, but better than other two bench-
marks. It demonstrates that RTSR is the most advantageous
algorithm in more realistic stochastic scenarios. For DTSR,
the (3− 1

Cs
)-competitive ratio is reached under the extreme

condition. However, with the uniform sequence, the future
arrival can be partially guessed from the history, DTSR is
too conservative to make purchases, leading to less effective
performance. Nevertheless, RTSR can address this issue as
the threshold values are generated randomly. It leads to more
proactive purchases by probability and thus better mean per-
formance. In sum, RTSR can provide a worst-case theoret-
ical performance bound and its real-world performance in
less adversarial environment is still robust.

Fig. 3 shows the results of the mixed sequences, under
different prices of combo purchase. RTSR performs the best
in all situations, showing its robustness under different set-
tings. However, the performance of other algorithms is not
stable. In Figs. 3(a)–(b), SRCO performs the second best,
and in Fig. 3(c), DRSR performs the second best. It further
demonstrates that RTSR is the most advantageous under a
variety of system settings.

Conclusion

In this paper, we focused on the two-level ski rental problem
dealing with complex payment options in the real world. To
handle this problem, we first proposed an optimal (3− 1

Cs
)-

competitive deterministic algorithm (DTSR). We claimed
that (3 − 1

Cs
) is the tight bound of competitive ratio for

DTSR. Then we further proposed a randomized algorithm
(RTSR) and investigated its theoretical performance by com-
petitive analysis. For the random thresholds used in RTSR,
we derived close-form PMFs and proved that RTSR is eσ

eσ−1 -
competitive, where σ is the ratio between the single purchase
price and the combo purchase price, which is a neat exten-
sion of e

e−1 -competitive in the classical ski-rental problem.
In addition, we applied simulation to verify the theoreti-
cal results and further concluded that the RTSR performs
the best under different settings. For future works, the non-
uniformed single purchase prices can be considered. More-
over, for the more general mobile plan reservation problem,
analysis should be extended to cover the temporal dimen-
sion, as a plan may start and end at any time.
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