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Abstract

This paper develops a new approach for estimating an inter-
pretable, relational model of a black-box autonomous agent
that can plan and act. Our main contributions are a new
paradigm for estimating such models using a rudimentary
query interface with the agent and a hierarchical querying
algorithm that generates an interrogation policy for estimat-
ing the agent’s internal model in a user-interpretable vocab-
ulary. Empirical evaluation of our approach shows that de-
spite the intractable search space of possible agent models,
our approach allows correct and scalable estimation of in-
terpretable agent models for a wide class of black-box au-
tonomous agents. Our results also show that this approach
can use predicate classifiers to learn interpretable models of
planning agents that represent states as images.

1 Introduction
The growing deployment of AI systems ranging from per-
sonal digital assistants to self-driving cars leads to a per-
vasive problem: how would a user ascertain whether an AI
system will be safe, reliable, or useful in a given situa-
tion? This problem becomes particularly challenging when
we consider that most autonomous systems are not designed
by their users; their internal software may be unavailable or
difficult to understand, and it may even change from initial
specifications as a result of learning. Such scenarios feature
black-box AI agents whose models may not be available in
terminology that the user understands. They also show that
in addition to developing better AI systems, we need to de-
velop new algorithmic paradigms for assessing arbitrary AI
systems and for determining the minimal requirements for
AI systems in order to ensure interpretability and to support
such assessments (Srivastava 2021).

This paper presents a new approach for addressing these
questions. It develops an algorithm for estimating inter-
pretable, relational models of AI agents by querying them.
In doing so, it requires the AI system to have only a prim-
itive query-response capability to ensure interpretability.
Consider a situation where Hari(ette) (H) wants a grocery-
delivery robot (A) to bring some groceries, but s/he is unsure
whether it is up to the task and wishes to estimate A’s inter-
nal model in an interpretable representation that s/he is com-
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Figure 1: The agent-assessment module uses its user’s pre-
ferred vocabulary, queries the AI system, and delivers a user-
interpretable causal model of the AI system’s capabilities.
The AI system does not need to know the user’s vocabulary
or modeling language.

fortable with (e.g., a relational STRIPS-like language (Fikes
and Nilsson 1971; McDermott et al. 1998; Fox and Long
2003)). If H was dealing with a delivery person, s/he might
ask them questions such as “would you pick up orders from
multiple persons?” and “do you think it would be alright to
bring refrigerated items in a regular bag?” If the answers
are “yes” during summer, it would be a cause for concern.
Naı̈ve approaches for generating such questions to ascertain
the limits and capabilities of an agent are infeasible.1

We propose an agent-assessment module (AAM), shown
in Fig. 1, which can be connected with an arbitrary AI agent
that has a rudimentary query-response capability: the assess-
ment module connects A with a simulator and provides a
sequence of instructions, or a plan as a query. A executes
the plan in the simulator and the assessment module uses
the simulated outcome as the response to the query. Thus,
given an agent, the assessment module uses as input: a user-
defined vocabulary, the agent’s instruction set, and a com-
patible simulator. These inputs reflect natural requirements
of the task and are already quite commonly supported: AI
systems are already designed and tested using compatible
simulators, and they need to specify their instruction sets in
order to be usable. The user provides the concepts that they

1Just 2 actions and 5 grounded propositions would yield
72×5 ∼ 108 possible STRIPS-like models – each proposition could
be absent, positive or negative in the precondition and effects of
each action, and cannot be positive (or negative) in both precon-
ditions and effect simultaneously. A query strategy that inquires
about each occurrence of each proposition would be not only un-
scalable but also inapplicable to simulator-based agents that do not
know their actions’ preconditions and effects.
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can understand and these concepts can be defined as func-
tions on simulator states.

In developing the first steps towards this paradigm, we as-
sume that the user wishes to estimate A’s internal model as
a STRIPS-like relational model with conjunctive precondi-
tions, add lists, and delete lists, and that the agent’s model
is expressible as such. Such models can be easily trans-
lated into interpretable descriptions such as “under situations
where preconditions hold, if the agent A executes actions
a1, . . . , ak it would result in effects,” where preconditions
and effects use only the user-provided concepts. Further-
more, such models can be used to investigate counterfactuals
and support assessments of causality (Halpern 2016).

This fundamental framework (Sec. 3) can be developed to
support different types of agents as well as various query
and response modalities. E.g., queries and responses could
use a speech interface for greater accessibility, and agents
with reliable inbuilt simulators/lookahead models may not
need external simulators. This would allow AAM to pose
queries such as “what do you think would happen if you
did 〈query plan〉”, and the learnt model would reflect A’s
self-assessment. The “agent” could be an arbitrary entity, al-
though the expressiveness of the user-interpretable vocabu-
lary would govern the scope of the learnt models and their
accuracy. Using AAM with such agents would also help
make them compliant with Level II assistive AI – systems
that make it easy for operators to learn how to use them
safely (Srivastava 2021).

Our algorithm for the assessment module (Sec. 3.1) gen-
erates a sequence of queries (Q) depending on the agent’s
responses (θ) during the query process; the result of the over-
all process is a complete model of A. To generate queries,
we use a top-down process that eliminates large classes of
agent-inconsistent models by computing queries that dis-
criminate between pairs of abstract models. When an ab-
stract model’s answer to a query differs from the agent’s
answer, we effectively eliminate the entire set of possible
concrete models that are refinements of this abstract model.
Sec. 3 presents our overall framework with algorithms and
theoretical results about their convergence properties.

Our empirical evaluation (Sec. 4) shows that this method
can efficiently learn correct models for black-box versions
of agents using hidden models from the IPC 2. It also shows
that AAM can use image-based predicate classifiers to infer
correct models for simulator-based agents that respond with
an image representing the result of query plan’s execution.

2 Related Work
A number of researchers have explored the problem of learn-
ing agent models from observations of its behavior (Gil
1994; Yang, Wu, and Jiang 2007; Cresswell, McCluskey,
and West 2009; Zhuo and Kambhampati 2013). Such action-
model learning approaches have also found practical appli-
cations in robot navigation (Balac, Gaines, and Fisher 2000),
player behavior modeling (Krishnan, Williams, and Martens
2020), etc. To the best of our knowledge, ours is the first ap-
proach to address the problem of generating query strategies

2https://www.icaps-conference.org/competitions

for inferring relational models of black-box agents.
Amir and Chang (2008) use logical filtering (Amir and

Russell 2003) to learn partially observable action models
from the observation traces. LOCM (Cresswell, McCluskey,
and West 2009) and LOCM2 (Cresswell and Gregory 2011)
present another class of algorithms that use finite-state ma-
chines to create action models from observed plan traces.
Camacho and McIlraith (2019) present an approach for
learning highly expressive LTL models from an agent’s ob-
served state trajectories using an oracle with knowledge of
the target LTL representation. This oracle can also gener-
ate counterexamples when the estimated model differs from
the true model. In contrast, our approach does not require
such an oracle. Also, unlike Stern and Juba (2017), our
approach does not need intermediate states in execution
traces. In contrast to approaches for white-box model main-
tenance (Bryce, Benton, and Boldt 2016), our approach does
not require A to know aboutH’s preferred vocabulary.

LOUGA (Kučera and Barták 2018) combines a genetic
algorithm with an ad-hoc method to learn planning oper-
ators from observed plan traces. FAMA (Aineto, Celorrio,
and Onaindia 2019) reduces model recognition to a planning
problem and can work with partial action sequences and/or
state traces as long as correct initial and goal states are pro-
vided. While both FAMA and LOUGA require a postpro-
cessing step to update the learnt model’s preconditions to in-
clude the intersection of all states where an action is applied,
it is not clear that such a process would necessarily converge
to the correct model. Our experiments indicate that such ap-
proaches exhibit oscillating behavior in terms of model ac-
curacy because some data traces can include spurious predi-
cates, which leads to spurious preconditions being added to
the model’s actions. FAMA also assumes that there are no
negative literals in action preconditions.

Bonet and Geffner (2020) present an algorithm for learn-
ing relational models using a SAT-based method when the
action schema, predicates, etc. are not available. This ap-
proach takes as input a predesigned correct and complete di-
rected graph encoding the structure of the entire state space.
The authors note that their approach is viable for problems
with small state spaces. While our method provides an end-
to-end solution, it can also be used in conjunction with such
approaches to create the inputs they need. Khardon and Roth
(1996) address the problem of making model-based infer-
ence faster given a set of queries, under the assumption that
a static set of models represents the true knowledge base.

In contrast to these directions of research, our approach
directly queries the agent and is guaranteed to converge to
the true model while presenting a running estimate of the ac-
curacy of the derived model; hence, it can be used in settings
where the agent’s model changes due to learning or a soft-
ware update. In such a scenario, our algorithm can restart to
query the system, while approaches that derive models from
observed plan traces would require arbitrarily long data col-
lection sessions to get sufficient uncorrelated data.

Incremental Learning Model (Ng and Petrick 2019) uses
reinforcement learning to learn a nonstationary model with-
out using plan traces, and requires extensive training to learn
the full model correctly. Chitnis et al. (2021) present an
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approach for learning probabilistic relational models where
they use goal sampling as a heuristic for generating relevant
data, while we reduce that problem to query synthesis using
planning. Their approach is shown to work well for stochas-
tic environments, but puts a much higher burden on the AI
system for inferring its model. This is because the AI system
has to generate a conjunctive goal formula while maximiz-
ing exploration, find a plan to reach that goal, and correct the
model as it collects observations while executing the plan.

The field of active learning (Settles 2012) addresses the
related problem of selecting which data-labels to acquire
for learning single-step decision-making models using sta-
tistical measures of information. However, the effective fea-
ture set here is the set of all possible plans, which makes
conventional methods for evaluating the information gain
of possible feature labelings infeasible. In contrast, our ap-
proach uses a hierarchical abstraction to select queries to
ask, while inferring a multistep decision-making (planning)
model. Information-theoretic metrics could also be used in
our approach whenever such information is available.

3 The Agent-Interrogation Task
We assume thatH needs to estimateA’s model as a STRIPS-
like planning model represented as a pair M = 〈P,A〉,
where P = {pk1

1 , . . . , p
kn
n } is a finite set of predicates with

arities ki; A = {a1, . . . , ak} is a finite set of parameterized
actions (operators). Each action aj ∈ A is represented as a
tuple 〈header(aj), pre(aj), eff(aj)〉, where header(aj) is
the action header consisting of action name and action pa-
rameters, pre(aj) represents the set of predicate atoms that
must be true in a state where aj can be applied, eff(aj)
is the set of positive or negative predicate atoms that will
change to true or false respectively as a result of execution
of the action aj . Each predicate can be instantiated using
the parameters of an action, where the number of parame-
ters are bounded by the maximum arity of the action. E.g.,
consider the action load truck(?v1, ?v2, ?v3) and predicate
at(?x, ?y) in the IPC Logistics domain. This predicate can
be instantiated using action parameters ?v1, ?v2, and ?v3
as at(?v1, ?v1), at(?v1, ?v2), at(?v1, ?v3), at(?v2, ?v2),
at(?v2, ?v1), at(?v2, ?v3), at(?v3, ?v3), at(?v3, ?v1), and
at(?v3, ?v2). We represent the set of all such possible pred-
icates instantiated with action parameters as P∗.

AAM uses the following information as input. It receives
its instruction set in the form of header(a) for each a ∈ A
from the agent. AAM also receives a predicate vocabulary P
from the user with functional definitions of each predicate.
This gives AAM sufficient information to perform a dialog
withA about the outcomes of hypothetical action sequences.

We define the overall problem of agent interrogation as
follows. Given a class of queries and an agent with an un-
known model which can answer these queries, determine the
model of the agent. More precisely, an agent interrogation
task is defined as a tuple 〈MA,Q,P,AH〉, where MA is
the true model (unknown to AAM) of the agent A being in-
terrogated, Q is the class of queries that can be posed to the
agent by AAM, and P and AH are the sets of predicates and
action headers that AAM uses based on inputs from H and

A. The objective of the agent interrogation task is to derive
the agent modelMA using P and AH . Let Θ be the set of
possible answers to queries. Thus, strings θ∗ ∈ Θ∗ denote
the information received by AAM at any point in the query
process. Query policies for the agent interrogation task are
functions θ∗ → Q ∪ {Stop} that map sequences of answers
to the next query that the interrogator should ask. The pro-
cess stops with the Stop query. In other words, for all an-
swers θ ∈ Θ, all valid query policies map all sequences xθ
to Stop whenever x ∈ Θ∗ is mapped to Stop. This policy is
computed and executed online.

Components of agent models In order to formulate our
solution approach, we consider a model M to be com-
prised of components called palm tuples of the form λ =
〈p, a, l,m〉, where p is an instantiated predicate from the
vocabulary P∗; a is an action from the set of parameter-
ized actions A, l ∈ {pre, eff}, and m ∈ {+,−, ∅}. For
convenience, we use the subscripts p, a, l, or m to denote
the corresponding component in a palm tuple. The presence
of a palm tuple λ in a model denotes the fact that in that
model, the predicate λp appears in an action λa at a lo-
cation λl as a true (false) literal when sign λm is positive
(negative), and is absent when λm = ∅. This allows us to
define the set-minus operation M \ λ on this model as re-
moving the palm tuple λ from the model. We consider two
palm tuples λ1 = 〈p1, a1, l1,m1〉 and λ2 = 〈p2, a2, l2,m2〉
to be variants of each other (λ1 ∼ λ2) iff they differ only
on mode m, i.e., λ1 ∼ λ2 ⇔ (λ1p = λ2p) ∧ (λ1a =
λ2a)∧(λ1l = λ2l)∧(λ1m 6= λ2m). Hence, mode assignment
to a pal tuple γ = 〈p, a, l〉 can result in 3 palm tuple variants
γ+ = 〈p, a, l,+〉, γ− = 〈p, a, l,−〉, and γ∅ = 〈p, a, l, ∅〉.

Model abstraction We now define the notion of abstrac-
tion used in our solution approach. Several approaches
have explored the use of abstraction in planning (Sacerdoti
1974; Giunchiglia and Walsh 1992; Helmert et al. 2007;
Bäckström and Jonsson 2013; Srivastava, Russell, and Pinto
2016). The definition of abstraction used in this work ex-
tends the concept of predicate and propositional domain ab-
stractions (Srivastava, Russell, and Pinto 2016) to allow for
the projection of a single palm tuple λ.

An abstract model is one in which all variants of at least
one pal tuple are absent. Let Λ be the set of all possible palm
tuples which can be generated using a predicate vocabulary
P∗ and an action header set AH . Let U be the set of all con-
sistent (abstract and concrete) models that can be expressed
as subsets of Λ, such that no model has multiple variants of
the same palm tuple. We define abstraction of a model as:

Definition 1. The abstraction of a modelM with respect to
a palm tuple λ ∈ Λ, is defined by fλ : U → U as fλ(M) =
M\ λ.

We extend this notation to define the abstraction of a set of
modelsM with respect to a palm tuple λ as X = {fλ(m) :
m ∈ M}. We use this abstraction framework to define a
subset-lattice over abstract models (Fig. 2(b)). Each node in
the lattice represents a collection of possible abstract mod-
els which are possible variants of a pal tuple γ. E.g., in the
node labeled 1 in Fig. 2(b), we have models corresponding
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Figure 2: (b) Lattice segment explored in random order of
γi ∈ Γ; (a) At each node, 3 abstract models are generated
and 2 of them are discarded based on query responses; (c)
An abstract model rejected at any level is equivalent to re-
jecting 3 models at the level below, 9 models two levels
down, and so on.

to γ+1 , γ−1 , and γ∅1 . Two nodes in the lattice are at the same
level of abstraction if they contain the same number of pal
tuples. Two nodes ni and nj in the lattice are connected if
all the models at ni differ with all the models in nj by a sin-
gle palm tuple. As we move up in the lattice following these
edges, we get more abstracted versions of the models, i.e.,
containing less number of pal tuples; and we get more con-
cretized models, i.e., containing more number of pal tuples,
as we move downward. We now define this model lattice:
Definition 2. A model lattice L is a 5-tuple L =
〈N,E,Γ, `N , `E〉, where N is a set of lattice nodes, Γ is
the set of all pal tuples 〈p, a, l〉, `N : N → 22

Λ

is a node
label function where Λ = Γ × {+,−, ∅} is the set of all
palm tuples, E is the set of lattice edges, and `E : E → Γ is
a function mapping edges to edge labels such that for each
edge ni → nj , `N (nj) = {ξ ∪ {γk}| ξ ∈ `N (ni), γ =
`E(ni → nj), k ∈ {+,−, ∅}}, and `N (>) = {φ} where >
is the supremum containing the empty model φ.

A node n ∈ N in this lattice L can be uniquely identified
by the sequence of pal tuples that label the edges leading to
it from the supremum. As shown in Fig. 2(a), even though
theoretically `N : N → 22

Λ

, not all the models are stored at
any node as at least one is pruned out based on some query
Q ∈ Q. Additionally, in these model lattices, every node has
an edge going out from it corresponding to each pal tuple
that is not present in the paths leading to it from the most ab-
stracted node. At any stage during the interrogation, nodes in
such a lattice are used to represent the set of possible models
given the agent’s responses up to that point. At every step,
our algorithm creates queries online that help us determine
the next descending edge to take from a lattice node; corre-
sponding to the path 0, . . . , i in Fig. 2(b). This also avoids
generating and storing the complete lattice, which can be
doubly exponential in number of predicates and actions.

Form of agent queries As discussed earlier, based onA’s
responses θ, we pose queries to the agent and infer A’s

model. We express queries as functions that map models to
answers. Recall that U is the set of all possible (concrete and
abstract) models, and Θ is the set of possible responses. A
query Q is a function Q : U → Θ.

In this paper, we utilize only one class of queries: plan
outcome queries (QPO), which are parameterized by a state
sI and a plan π. Let P be the set of predicates P∗ in-
stantiated with objects O in an environment. QPO queries
ask A the length of the longest prefix of the plan π that it
can execute successfully when starting in the state sI ⊆
P as well as the final state sF ⊆ P that this execu-
tion leads to. E.g., “Given that the truck t1 and pack-
age p1 are at location l1, what would happen if you ex-
ecuted the plan 〈load truck(p1, t1, l1), drive(t1, l1, l2),
unload truck(p1, t1, l2)〉?”

A response to such queries can be of the form “I can ex-
ecute the plan till step ` and at the end of it p1 is in truck
t1 which is at location l1”. Formally, the response θPO for
plan outcome queries is a tuple 〈`, sF 〉, where ` is the num-
ber of steps for which the plan π could be executed, and
sF ⊆ P is the final state after executing ` steps of the plan.
If the plan π cannot be executed fully according to the agent
model MA then ` < len(π), otherwise ` = len(π). The
final state sF ⊆ P is such thatMA |= π[1 : `](sI) = sF ,
i.e., starting with a state sI ,MA successfully executed first
` steps of the plan π. Thus, QPO : U → N × 2P , where N
is the set of natural numbers.

Not all queries are useful, as some of them might not
increase our knowledge of the agent model at all. Hence,
we define some properties associated with each query to as-
certain its usability. A query is useful only if it can distin-
guish between two models. More precisely, a query Q is
said to distinguish a pair of models Mi and Mj , denoted
asMi

QMj , iff Q(Mi) 6= Q(Mj).

Definition 3. Two modelsMi andMj are said to be distin-
guishable, denoted asMi Mj , iff there exists a query that
can distinguish between them, i.e., ∃Q Mi

QMj .

Given a pair of abstract models, we wish to determine
whether one of them can be pruned, i.e., whether there is
a query for which at least one of their answers is inconsis-
tent with the agent’s answer. Since this is computationally
expensive to determine, and we wish to reduce the number
of queries made to the agent, we first evaluate whether the
two models can be distinguished by any query, independent
of consistency of their response with that of the agent. If the
models are not distinguishable, it is redundant to try to prune
one of them under the given query class.

Next, we determine if at least one of the two distinguish-
able models is consistent with the agent. When comparing
the responses of two models at different levels of abstrac-
tion, we must consider the fact that the agent’s response may
be at a different level of abstraction if the given pair of mod-
els is abstract. Taking this into account, we formally define
what it means for an abstract model Mi’s response to be
consistent with that of agent modelMA:

Definition 4. Let Q be a query such that
Mi

QMj ; Q(Mi) = 〈`i, 〈pi1, . . . , pim〉〉, Q(Mj) =
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(a)MA’s load truck(?p,?t,?l) action (unknown toH)
at(?t,?l),
at(?p,?l)

−→ in(?p,?t),
¬(at(?p,?l))

(b)M1’s load truck(?p,?t,?l) action
at(?t,?l),
at(?p,?l)

−→ in(?p,?t)

(c)M2’s load truck(?p,?t,?l) action
at(?t,?l) −→ in(?p,?t)

(d)M3’s load truck(?p,?t,?l) action
at(?t,?l) −→ ()

Figure 3: load truck actions of the agent modelMA and 3
abstracted modelsM1,M2, andM3. Here X → Y means
that X is the precondition of an action and Y is the effect.

〈`j , 〈pj1, . . . , pjn〉〉, and Q(MA) = 〈`A, 〈pA1 , . . . , pAk 〉〉.
Mi’s response to Q is consistent with that of MA, i.e.,
Q(MA) |= Q(Mi) if `A = len(πQ), len(πQ) = `i and
{pi1, . . . , pim} ⊆ {pA1 , . . . , pAk }.

Using this notion of consistency, we can now reason that
given a set of distinguishable modelsMi andMj , and their
responses in addition to the agent’s response to the distin-
guishing query, the models are prunable if and only if ex-
actly one of their responses is consistent with that of the
agent. Formally, we define prunability as:
Definition 5. Given an agent-interrogation task
〈MA,Q,P,AH〉, two models Mi and Mj are prun-
able, denoted as Mi〈〉Mj , iff ∃Q ∈ Q : Mi

QMj

∧ (Q(MA) |= Q(Mi) ∧ Q(MA) 6|= Q(Mj)) ∨
(Q(MA) 6|= Q(Mi) ∧ Q(MA) |= Q(Mj)).

3.1 Solving the Interrogation Task
We now discuss how we solve the agent interrogation task by
incrementally adding palm variants to the class of abstract
models and pruning out inconsistent models by generating
distinguishing queries.
Example 1. Consider the case of a delivery agent. Assume
that AAM is considering two abstract modelsM1 andM2

having only one action load truck(?p, ?t, ?l) and the pred-
icates at(?p, ?l), at(?t, ?l), in(?p, ?t), and that the agent’s
model is MA (Fig. 3). AAM can ask the agent what will
happen if A loads package p1 into truck t1 at location l1
twice. The agent would respond that it could execute the
plan only till length 1, and the state at the time of this failure
would be at(t1, l1) ∧ in(p1, t1).

Algorithm 1 shows AAM’s overall algorithm. It takes the
agent A, the set of instantiated predicates P∗, the set of all
action headers AH , and a set of random states S as input,
and gives the set of functionally equivalent estimated models
represented by poss models as output. S can be generated in
a preprocessing step given P∗. AIA initializes poss models
as a set consisting of the empty model φ (line 3) representing
that AAM is starting at the supremum> of the model lattice.

In each iteration of the main loop (line 4), AIA maintains
an abstraction lattice and keeps track of the current node in

Algorithm 1 Agent Interrogation Algorithm (AIA)

1: Input: A,AH ,P∗, S
2: Output: poss models
3: Initialize poss models = {φ}
4: for γ in some input pal ordering Γ do
5: new models← poss models
6: pruned models= {}
7: for eachM′ in new models do
8: for each pair {i, j} in {+,−, ∅} do
9: Q,Mi,Mj ← generate query(M′, i, j, γ, S)

10: Mprune ←filter models(Q,MA,Mi,Mj)
11: pruned models← pruned models ∪Mprune

12: end for
13: end for
14: if pruned models is ∅ then
15: update pal ordering(Γ, S)
16: continue
17: end if
18: poss models← new models ×{γ+, γ−, γ∅} \

pruned models
19: end for

the lattice. It picks a pal tuple γ corresponding to one of the
descending edges in the lattice from a node given by some
input ordering of Γ. The correctness of the algorithm does
not depend on this ordering. It then stores a temporary copy
of poss models as new models (line 5) and initialize an
empty set at each node to store the pruned models (line 6).

The inner loop (line 7) iterates over the set of all pos-
sible abstract models that AIA has not rejected yet, stored
as new models. It then loops over pairs of modes (line 8),
which are later used to generate queries and refine mod-
els. For the chosen pair of modes, generate query() is called
(line 9) which returns two models concretized with the cho-
sen modes and a query Q which can distinguish between
them based on their responses.

AIA then calls filter models() which poses the queryQ to
the agent and the two models. Based on their responses, AIA
prunes the models whose responses are not consistent with
that of the agent (line 11). Then it updates the estimated set
of possible models represented by poss models (line 18).

If AIA is unable to prune any model at a node (line 14),
it modifies the pal tuple ordering (line 15). AIA continues
this process until it reaches the most concretized node of the
lattice (meaning all possible palm tuples λ ∈ Λ are refined
at this node). The remaining set of models represents the
estimated set of models forA. The number of resolved palm
tuples can be used as a running estimate of accuracy of the
derived models. AIA requires O(|P∗|×|A|) queries as there
are 2× |P∗|×|A| pal tuples. However, our empirical studies
show that we never generate so many queries.

3.2 Query Generation
The query generation process corresponds to the gener-
ate query() module in AIA which takes a modelM′, the pal
tuple γ, and 2 modes i, j ∈ {+,−, ∅} as input; and returns
the modelsMi =M′ ∪ {γi} andMj =M′ ∪ {γj}, and a
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Algorithm 2 Query Generation Algorithm

1: Input:M′, i, j, γ, S
2: Output: Q,Mi,Mj

3: Mi,Mj ← add palm(M′, i, j, γ)
4: for sI in S do
5: dom, prob← get planning prob (sI ,Mi,Mj)
6: π← planner(dom, prob)
7: Q ← 〈sI , π〉
8: if π then break end if
9: end for

10: return Q,M′ ∪ {γi},M′ ∪ {γj}

plan outcome queryQ distinguishing them, i.e.,Mi
QMj .

Plan outcome queries have 2 components, an initial state
sI and a plan π. AIA gets sI from the input set of random
states S (line 4). Using sI as the initial state, the idea is to
find a plan, which when executed byMi andMj will lead
them either to different states, or to a state where only one
of them can execute the plan further. Later we pose the same
query toA and prune at least one ofMi andMj . Hence, we
aim to prevent the models inconsistent with the agent model
MA from reaching the same final state as MA after exe-
cuting the queryQ and following a different state trajectory.
To achieve this, we reduce the problem of generating a plan
outcome query fromMi andMj into a planning problem.

The reduction proceeds by creating temporary models
M′′i and M′′j . We now discuss how to generate them. We
add the pal tuple γ = 〈p, a, l〉 in modes i and j toM′ to get
M′i andM′j , respectively. If the location l = eff, we add the
palm tuple normally toM′, i.e.,M′m = M′ ∪ 〈p, a, l,m〉,
where m ∈ {i, j}. If l = pre, we add a dummy predicate
pu in disjunction with the predicate p to the precondition of
both the models. We then modify the models M′i and M′j
further in the following way:

M′′m =M′m∪{〈pu, a′, l′,+〉 : ∀a′, l′ 〈a′, l′〉 6∈
{〈a∗, l∗〉: ∃m∗ 〈p, a∗, l∗,m∗〉 ∈ M′}}
∪ {〈pu, a′, l′,−〉 : ∀a′, l′ 〈a′, l′〉 ∈
{〈a∗, l∗〉: l∗=eff ∧∃m∗〈p, a∗, l∗,m∗〉∈M′}}

pu is added only for generating a distinguishing query and
is not part of the modelsMi andMj returned by the query
generation process. Without this modification, an inconsis-
tent abstract model may have a response consistent with A.

We now show how to reduce plan outcome query genera-
tion into a planning problem PPO (line 5). PPO uses condi-
tional effects in its actions (in accordance with PDDL (Mc-
Dermott et al. 1998; Fox and Long 2003)). The model used
to definePPO has predicates from both modelsM′′i andM′′j
represented as PM′′

i and PM
′′
j respectively, in addition to a

new dummy predicate pψ . The action headers are the same
as AH . Each action’s precondition is a disjunction of the pre-
conditions ofM′′i andM′′j . This makes an action applicable
in a state s if eitherM′′i orM′′j can execute it in s. The effect
of each action has 2 conditional effects, the first applies the
effects of bothM′′i andM′′j ’s action if preconditions of both

M′′i andM′′j are true, whereas the second makes the dummy
predicate pψ true if precondition of only one of M′′i and
M′′j is true. Formally, we express this planning problem as
PPO = 〈MPO, sI , G〉, whereMPO is a model with pred-
icates PPO = PM′′

i ∪ PM
′′
j ∪ pψ , and actions APO where

for each action a ∈ APO, pre(a) = pre(aM
′′
i ) ∨ pre(aM

′′
j )

and eff(a) =

(when (pre(aM
′′
i ) ∧ pre(aM

′′
j ))(eff (aM

′′
i ) ∧ eff (aM

′′
j )))

(when ((pre(aM
′′
i ) ∧ ¬pre(aM

′′
j ))∨

(¬pre(aM
′′
i ) ∧ pre(aM

′′
j ))) (pψ)),

The initial state sI = s
M′′

i

I ∧ sM
′′
j

I , where sM
′′
i

I and s
M′′

j

I
are copies of all predicates in sI , and G is the goal formula
expressed as ∃p (pM

′′
i ∧ ¬pM

′′
j ) ∨ (¬pM′′

i ∧ pM
′′
j ) ∨ pψ .

With this formulation, the goal is reached when an ac-
tion inM′′i andM′′j differs in either a precondition (making
only one of them executable in a state), or an effect (leading
to different final states on applying the action). E.g., con-
sider the models with differences in load truck(p1, t1, l1)
as shown in Fig. 3. From the state at(t1, l1) ∧ ¬at(p1, l1),
M2 can execute load truck(p1, t1, l1) but M1 can-
not. Similarly, in state at(t1, l1) ∧ at(p1, l1), executing
load truck(p1, t1, l1) will causeMA andM1 to end up in
states differing in predicate at(p1, l1). Hence, given the cor-
rect initial state, the solution to the planning problem PPO
will give the correct distinguishing plan.
Theorem 1. Given a pair of modelsMi andMj , the plan-
ning problem PPO has a solution iff Mi and Mj have a
distinguishing plan outcome query QPO.

Proof (Sketch). The input to the planning problem PPO
consists of an initial state sI . If the planner can solve PPO
with initial state sI to give a plan π, the distinguishing query
is a combination of sI and π. Similarly, if Mi

QPOMj ,
then giving the initial state sI as part of planning problem
PPO, the plan π will be a solution which is part ofQPO.

3.3 Filtering Possible Models
This section describes the filter models() module in Algo-
rithm 1 which takes as inputMA,Mi,Mj , and the query
Q (Sec. 3.2), and returns the subset Mprune which is not
consistent withMA.

First, AAM poses the query Q toMi,Mj , and the agent
A. Based on the responses of all three, it determines if
the two models are prunable, i.e.,Mi〈〉Mj . As mentioned
in Def. 5, checking for prunability involves checking if re-
sponse to the query Q by one of the models Mi or Mj is
consistent with that of the agent or not.
Theorem 2. Let Mi,Mj ∈ {M+,M−,M∅} be the
models generated by adding the pal tuple γ to M′ which
is an abstraction of the true agent model MA. Suppose
Q = 〈sQI , πQ〉 is a distinguishing query for two distinct
modelsMi,Mj , i.e.Mi

QMj , and the response of mod-
els Mi,Mj , and MA to the query Q are Q(Mi) =

〈`i, 〈pi1, . . . , pim〉〉, Q(Mj) = 〈`j , 〈pj1, . . . , pjn〉〉, and

12029



Q(MA) = 〈`A, 〈pA1 , . . . , pAk 〉〉. When `A = len(πQ),
Mi is not an abstraction of MA if len(πQ) 6= `i or
{pi1, . . . , pim} 6⊆ {pA1 , . . . , pAk }.

Proof (Sketch). Proving by induction, the base case is
adding a single pal tuple 〈p, a, l〉 to an empty model (which
is a consistent abstraction ofMA) resulting in 3 models. The
2 models pruned based on Def. 4 can be shown to be incon-
sistent withMA, leaving out the one consistent model. For
the inductive step, it can be shown that after adding a pal tu-
ple to a consistent model it is not consistent withMA only if
it does not execute the full plan (the precondition is inconsis-
tent), or if the end state reached by the model is not a subset
of the state of the agent (the effect is inconsistent).

If the models are prunable, then the palm tuple being
added in the inconsistent model cannot appear in any model
consistent with A. As we discard such palm tuples at ab-
stract levels (as depicted in Fig. 2 (a)), we prune out a large
number of models down the lattice (as depicted in Fig. 2 (c)),
hence we keep the intractability of the approach in check and
end up asking less number of queries.

3.4 Updating PAL ordering
This section describes the update pal ordering() module
in AIA (line 15). It is called when the query generated
by generate query() module is not executable by A, i.e.,
len(πQ) 6= `A. E.g., consider two abstract modelsM2 and
M3 being considered by AAM (Fig. 3). At this level of ab-
straction, AAM does not have knowledge of the predicate
at(?p, ?l), hence it will generate a plan outcome query with
initial state at(?t, ?l) and plan load truck(p1, t1, l1) to dis-
tinguish betweenM2 andM3. But this cannot be executed
by the agent A as its precondition at(?p, ?l) is not satisfied,
and hence we cannot discard any of the models.

Recall that in response to the plan outcome query we get
the failed action aF = π[`+1] and the final state sF . Since
the query plan π is generated usingMi andMj (which dif-
fer only in the newly added palm tuple), they both would
reach the same state sF after executing first ` steps of π.
Thus, we search S for a state s ⊃ sF where A can exe-
cute aF . Similar to Stern and Juba (2017), we infer that any
predicate which is false in s will not appear in aF ’s precon-
dition in the positive mode. Next, we iterate through the set
of predicates p′ ⊆ s \ sF and add them to sF to check if
A can still execute aF . Thus, on adding a predicate p ∈ p′
to the state sF , if A cannot execute aF , we add p in neg-
ative mode in aF ’s precondition, otherwise in ∅ mode. All
pal tuples whose modes are correctly inferred in this way are
therefore removed from the pal ordering.

Equivalent Models It is possible for AIA to encounter a
pair of models Mi and Mj that are not prunable. In such
cases, the models Mi and Mj are functionally equivalent
and none of them can be discarded. Hence, both the models
end up in the set poss models in line 18 of AIA.

3.5 Correctness of Agent Interrogation Algorithm
In this section, we prove that the set of estimated mod-
els returned by AIA is correct and the returned models are

Domain |P∗| |A| |Q̂| tµ (ms) tσ (µs)
Gripper 5 3 17 18.0 0.2
Blocksworld 9 4 48 8.4 36
Miconic 10 4 39 9.2 1.4
Parking 18 4 63 16.5 806
Logistics 18 6 68 24.4 1.73
Satellite 17 5 41 11.6 0.87
Termes 22 7 134 17.0 110.2
Rovers 82 9 370 5.1 60.3
Barman 83 17 357 18.5 1605
Freecell 100 10 535 2.24† 33.4†

Table 1: The number of queries (|Q̂|), average time per query
(tµ), and variance of time per query (tσ) generated by AIA
with FD. Average and variance are calculated for 10 runs of
AIA, each on a separate problem. †Time in sec.

functionally equivalent to the agent’s model, and no correct
model is discarded in the process.

Theorem 3. The Agent Interrogation Algorithm (algorithm
1) will always terminate and return a set of models, each of
which are functionally equivalent to the agent’s modelMA.

Proof (Sketch). Theorem 1 and Theorem 2 prove that when-
ever we get a prunable query, we discard only inconsis-
tent models, thereby ensuring that no correct model is dis-
carded. When we do not get a prunable query, we in-
fer the correct precondition of the failed action using up-
date pal ordering(), hence the number of refined palm tu-
ples always increases with the number of iterations of AIA,
thereby ensuring its termination in finite time.

4 Empirical Evaluation
We implemented AIA in Python to evaluate the efficacy of
our approach.3 In this implementation, initial states (S, line
1 in Algorithm 1) were collected by making the agent per-
form random walks in a simulated environment. We used
a maximum of 60 such random initial states for each do-
main in our experiments. The implementation assumes that
the domains do not have any constants and that actions and
predicates do not use repeated variables (e.g., at(?v, ?v)),
although these assumptions can be removed in practice with-
out affecting the correctness of algorithms. The implemen-
tation is optimized to store the agent’s answers to queries;
hence the stored responses are used if a query is repeated.

We tested AIA on two types of agents: symbolic agents
that use models from the IPC (unknown to AIA), and sim-
ulator agents that report states as images using PDDLGym.
We wrote image classifiers for each predicate for the latter
series of experiments and used them to derive state represen-
tations for use in the AIA algorithm. All experiments were
executed on 5.0 GHz Intel i9-9900 CPUs with 64 GB RAM
running Ubuntu 18.04.

The analysis presented below shows that AIA learns
the correct model with a reasonable number of queries,
and compares our results with the closest related work,

3Code available at https://git.io/Jtpej
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Figure 4: Performance comparison of AIA and FAMA in
terms of model accuracy and time taken per query with an
increasing number of queries.

FAMA (Aineto, Celorrio, and Onaindia 2019). We use the
metric of model accuracy in the following analysis: the
number of correctly learnt palm tuples normalized with the
total number of palm tuples inMA.

Experiments with symbolic agents We initialized the
agent with one of the 10 IPC domain models, and ran AIA
on the resulting agent. 10 different problem instances were
used to obtain average performance estimates.

Table 1 shows that the number of queries required in-
creases with the number of predicates and actions in the
domain. We used Fast Downward (Helmert 2006) with
LM-Cut heuristic (Helmert and Domshlak 2009) to solve
the planning problems. Since our approach is planner-
independent, we also tried using FF (Hoffmann and Nebel
2001) and the results were similar. The low variance shows
that the method is stable across multiple runs.

Comparison with FAMA We compare the performance
of AIA with that of FAMA in terms of stability of the models
learnt and the time taken per query. Since the focus of our
approach is on automatically generating useful traces, we
provided FAMA randomly generated traces of length 3 (the
length of the longest plans in AIA-generated queries) of the
form used throughout this paper (〈sI , a1, a2, a3, sG〉).

Fig. 4 summarizes our findings. AIA takes lesser time per
query and shows better convergence to the correct model.

Figure 5: PDDLGym’s simulated Sokoban (left) and Doors
(right) environments used for the experiments.

FAMA sometimes reaches nearly accurate models faster, but
its accuracy continues to oscillate, making it difficult to as-
certain when the learning process should be stopped (we in-
creased the number of traces provided to FAMA until it ran
out of memory). This is because the solution to FAMA’s in-
ternal planning problem introduces spurious palm tuples in
its model if the input traces do not capture the complete do-
main dynamics. For Logistics, FAMA generated an incorrect
planning problem, whereas for Freecell and Barman it ran
out of memory (AIA also took considerable time for Free-
cell). Also, in domains with negative preconditions like Ter-
mes, FAMA was unable to learn the correct model. We used
Madagascar (Rintanen 2014) with FAMA as it is the pre-
ferred planner for it. We also tried FD and FF with FAMA,
but as the original authors noted, it could not scale and ran
out of memory on all but a few Blocksworld and Gripper
problems where it was much slower than with Madagascar.

Experiments with simulator agents AIA can also be
used with simulator agents that do not know about pred-
icates and report states as images. To test this, we wrote
classifiers for detecting predicates from images of simulator
states in the PDDLGym (Silver and Chitnis 2020) frame-
work. This framework provides ground-truth PDDL mod-
els, thereby simplifying the estimation of accuracy. We ini-
tialized the agent with one of the two PDDLGym environ-
ments, Sokoban and Doors shown in Fig. 5. AIA inferred the
correct model in both cases and the number of instantiated
predicates, actions, and the average number of queries (over
5 runs) used to predict the correct model for Sokoban were
35, 3, and 201, and that for Doors were 10, 2, and 252.

5 Conclusion
We presented a novel approach for efficiently learning the
internal model of an autonomous agent in a STRIPS-like
form through query answering. Our theoretical and empir-
ical results showed that the approach works well for both
symbolic and simulator agents.

Extending our predicate classifier to handle noisy state de-
tection, similar to prevalent approaches using classifiers to
detect symbolic states (Konidaris, Kaelbling, and Lozano-
Perez 2014; Asai and Fukunaga 2018) is a good direction
for future work. Some other promising extensions include
replacing query and response communication interfaces be-
tween the agent and AAM with a natural language similar to
Lindsay et al. (2017), or learning other representations like
Zhuo, Muñoz-Avila, and Yang (2014).
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