
Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search

Alvaro Velasquez1, Brett Bissey2, Lior Barak2, Andre Beckus1, Ismail Alkhouri2, Daniel Melcer3,
George Atia2

1Information Directorate, Air Force Research Laboratory
2Department of Electrical and Computer Engineering, University of Central Florida

3Department of Computer Science, Northeastern University
{alvaro.velasquez.1, andre.beckus}@us.af.mil, {brettbissey, lior.barak, ialkhouri}@knights.ucf.edu,

melcer.d@northeastern.edu, george.atia@ucf.edu

Abstract

Reinforcement learning and planning have been revolution-
ized in recent years, due in part to the mass adoption of deep
convolutional neural networks and the resurgence of pow-
erful methods to refine decision-making policies. However,
the problem of sparse reward signals and their representation
remains pervasive in many domains. While various reward-
shaping mechanisms and imitation learning approaches have
been proposed to mitigate this problem, the use of human-
aided artificial rewards introduces human error, sub-optimal
behavior, and a greater propensity for reward hacking. In this
paper, we mitigate this by representing objectives as automata
in order to define novel reward shaping functions over this
structured representation. In doing so, we address the sparse
rewards problem within a novel implementation of Monte
Carlo Tree Search (MCTS) by proposing a reward shaping
function which is updated dynamically to capture statistics on
the utility of each automaton transition as it pertains to satis-
fying the goal of the agent. We further demonstrate that such
automaton-guided reward shaping can be utilized to facili-
tate transfer learning between different environments when
the objective is the same.

Introduction
In reinforcement learning and planning settings, a reward
signal over state-action pairs is used to reinforce and deter
positive and negative action outcomes, respectively. How-
ever, from a practical perspective, it is common to have a
high-level objective which can be captured as a language
of what would constitute good behaviors. Such objectives
can be represented via various types of automata. For ex-
ample, the deterministic finite automata we consider in this
paper can represent any regular language and thus afford a
large space of possibilities for defining objectives. If these
objectives are expressed in natural language, there are trans-
lation mechanisms for obtaining the corresponding automa-
ton (Brunello, Montanari, and Reynolds 2019). On the other
hand, there are also approaches for learning the graph struc-
ture of the automaton that represents a given reward signal
(Xu et al. 2020; Gaon and Brafman 2020; Toro Icarte et al.
2019), so such approaches could be used to learn the au-
tomaton structure from a reward signal.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Given an automaton representation of the underlying
agent objective, we investigate how to guide and acceler-
ate the derivation of decision-making policies by leverag-
ing this structured representation. This use of automata al-
lows us to reason about non-Markovian reward signals that
account for the prior state history of the agent, which is
useful and sometimes necessary in domains with sparse re-
wards or partial observability (Toro Icarte et al. 2019). In
particular, we make two main contributions. First, we in-
troduce Automaton-Guided Reward Shaping (AGRS) for
Monte Carlo Tree Search (MCTS) algorithms as a means to
mitigate the sparse rewards problem by leveraging the em-
pirical expected value of transitions within the automaton
representation of the underlying objective. In this sense, ex-
pected value denotes the frequency with which transitions
in the automaton have been observed as part of a trajec-
tory which satisfies the given objective. We integrate the
proposed AGRS within modern implementations of MCTS
that utilize deep reinforcement learning to train Convolu-
tional Neural Networks (CNNs) for policy prediction and
value estimation. Our second contribution entails the use of
the aforementioned automata as a means to transfer learned
information between two problem instances that share the
same objective. In particular, we record the empirical ex-
pected value of transitions in the objective automaton in a
simple environment and use these to bootstrap the learning
process in a similar, more complex environment. We demon-
strate the effectiveness of AGRS within MCTS, henceforth
referred to as MCTSA, by comparing the win-rate curves to
those of a vanilla MCTS baseline on randomized grid-world
problems.

The foregoing is useful as a complement to existing ap-
proaches by reasoning over both the learned representation
of agent-environment dynamics through deep CNNs as well
as the learned representation of the underlying objective via
automata. We argue that this is particularly useful due to
the typically low dimensionality of the automaton that rep-
resents the objective. This means that individual transitions
within the automaton correspond to potentially many differ-
ent transitions within the environment and, hence, within the
Monte Carlo tree. Thus, reward shaping defined over the for-
mer can be used to accelerate learning over many instances
of the latter.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12015



Preliminaries
We assume that the agent-environment dynamics are mod-
eled by a Non-Markovian Reward Decision Process (NM-
RDP), defined below.

Definition 1 (Non-Markovian Reward Decision Process)
A Non-Markovian Reward Decision Process (NMRDP) is a
non-deterministic probabilistic process represented by the
tuple M = (S, s0, A, T,R), where S is a set of states, s0
is the initial state, A is a set of actions, T (s′|s, a) ∈ [0, 1]
denotes the probability of transitioning from state s to state
s′ when action a is taken, and R : S∗ → R is a reward
observed for a given trajectory of states. We denote by
S∗ the set of possible state sequences and A(s) ⊆ A the
actions available in s.

Note that the definition of NMRDP closely resembles that
of a Markov Decision Process (MDP). However, the non-
Markovian reward formulation R : S∗ → R (often denoted
by R : (S × A)∗ × S → R in the literature) depends on
the history of agent behavior. Given an NMRDP, we define
a labeling function L : S → 2AP that maps a state in the
NMRDP to a set of atomic propositions in AP which hold
for that given state. We illustrate this with a simple example
in Figure 1 (left). The atomic propositions AP assigned to
the NMRDP can correspond to salient features of the state
space and will be used to define the transition dynamics of
the objective automaton as defined below.

Definition 2 (Automaton) An automaton is a tuple A =
(Ω, ω0,Σ, δ, F ), where Ω is the set of nodes with initial node
ω0 ∈ Ω, Σ = 2AP is an alphabet defined over a given set
of atomic propositions AP , δ : Ω×Σ→ Ω is the transition
function, and F ⊆ Ω is the set of accepting nodes. For sim-
plicity, we use ω σ−→ ω′ ∈ δ to denote that σ ∈ Σ causes a
transition from node ω to ω′.

Given an automaton A = (Ω, ω0,Σ, δ, F ), a trace is de-
fined as a sequence of nodes ω0

σi1−−→ ωi1
σi2−−→ ωi2

σi3−−→ . . .
starting in the initial node ω0 such that, for each transition,
we have (ωik , σik , ωik+1

) ∈ δ. An accepting trace is one
which ends in some node belonging to the accepting set F .
Such a trace is said to satisfy the objective being represented
by the automaton. For the remainder of this paper, we use
the terms nodes and states to refer to vertices in automata
and NMRDPs, respectively.

Until now, we have used the notion of an atomic propo-
sition set AP in defining the labeling function of an NM-
RDP and the alphabet of an automaton. In this paper, our
focus is on deriving a policy for a given NMRDP such that
it is conducive to satisfying a given objective by leveraging
the automaton representation of the same, where both the
NMRDP and the automaton share the same set of atomic
propositions AP . As a result, an arbitrary transition from
state s to s′ in the NMRDP can cause a transition in the
automaton objective via the observance of atomic proposi-
tions that hold in s′ as determined by the NMRDP labeling
function L. To illustrate the relationship between trajecto-
ries, or sequences of states, in an NMRDP and their cor-
responding traces, or sequences of nodes, in the automa-
ton, recall the example in Figure 1. Note that the policy

¬factory

factory∧wood

¬wood

factory∨¬wood

ω0

ω2

ω1

 

¬factory∧wood

factory

¬factory∧wood

Figure 1: (left) NMRDP consisting of four states
s0, s1, s2, s3 denoting which tile the agent is on, starting
with s0 in the top-right corner and progressing counter-
clockwise. There are four actions a1, a2, a3, a4 correspond-
ing to LEFT, DOWN, RIGHT, UP. The transition func-
tion is deterministic and defined in the obvious way (e.g.
T (s1|s0, a1) = 1). Given a set of atomic propositionsAP =
{wood, factory, house}, we have the following state labels:
L(s0) = {}, L(s1) = {wood}, L(s2) = {house}, L(s3) =
{factory}. That is, the labels correspond to the atomic propo-
sitions that are true in a given state. (right) Automaton
A = (Ω = {ω0, ω1, ω2}, ω0,Σ = 2{wood, factory, house}, δ =

{ω0
¬wood−−−−→ ω0, . . . }, F = {ω1}) corresponding to the ob-

jective that the agent will eventually be on a tile containing
wood and that, if the agent stands on said tile, then it must
eventually reach a tile containing a factory. Transitions visu-
alized with a Boolean formula are used as a shorthand nota-
tion for the sets of atomic propositions that cause that transi-

tion. For example, the transition ω0
¬f∧w−−−−→ ω2 (f for factory

and w for wood) in the automaton is shorthand for transi-
tions (ω0, σ, ω2) ∈ δ such that factory /∈ σ and wood ∈ σ.

π(s0) = a1 (Go LEFT), π(s1) = a2 (Go DOWN), π(s2) =
a3 (Go RIGHT), π(s3) = · (no-op) yields a finite trajectory
of four states (s0, s1, s2, s3) whose corresponding trace in

the automaton is ω0
L(s0)−−−→ ω0

L(s1)−−−→ ω2
L(s2)−−−→ ω2

L(s3)−−−→
ω1, where L(s0) = {}, L(s1) = {wood}, L(s2) =
{house}, L(s3) = {factory}. Since ω1 ∈ F , this policy
leads to a trajectory in the NMRDP which satisfies the ob-
jective. In order to reinforce such behavior and formalize
the foregoing, we utilize a binary reward signal for the
NMRDP denoting whether the underlying automaton ob-
jective has been satisfied by an observed trajectory ~s =
(s0, . . . , st, st+1). Let tr : S∗ → Ω∗ and last : Ω∗ 7→ Ω
denote the mapping of a given trajectory to its correspond-
ing trace and the last node in a trace, respectively. A trace ~ω
is accepting if and only if last(~ω) ∈ F . The reward signal
R : S∗ → {0, 1} is defined in Equation (1) below.

R(~s) =

{
1 last(tr(~s)) ∈ F
0 otherwise

(1)

Note that the use of such a reward signal makes the prob-
lem of finding optimal policies susceptible to sparse re-
wards. Indeed, one can envision many instances where such
a reward is only accessible after a long time horizon, which
can hinder learning. The proposed AGRS will mitigate this
problem by providing artificial intermediate rewards that re-
flect the frequency with which transitions in the automaton
objective have been conducive to satisfying the objective.

12016



Finite-Trace Linear Temporal Logic (LTLf )
A classic problem in formal methods is that of convert-
ing a high-level behavioral specification, or objective, into
a form that is amenable to mathematical reasoning. Indeed,
the foregoing discussion on utilizing automata representa-
tions of objectives subsumes the idea that we have some
means of performing this translation from objective to au-
tomaton. There are various ways to mitigate this problem by
enforcing that the given objective be specified in some for-
mal logic which can then be easily converted into an equiv-
alent automaton. In order to represent the objective of an
agent as an automaton, we choose the formal logic known
as finite-trace Linear Temporal Logic (LTLf ) for its simple
syntax and semantics. This logic is known to have an equiv-
alent automaton representation (De Giacomo, De Masellis,
and Montali 2014; De Giacomo and Vardi 2015; Camacho
et al. 2018a). Other choices include finite-trace Linear Dy-
namic Logic (LDLf ) and regular expressions.

Given a set of atomic propositionsAP , a formula in LTLf
is constructed inductively using the operations p,¬φ, φ1 ∨
φ2,Xφ,Fφ,Gφ, φ1Uφ2, where p ∈ AP and φ, φ1, φ2 are
LTLf formulas. The operators ¬,∨ denote logical negation
and disjunction and X, F, G, U denote the Next, Eventu-
ally, Always, and Until operators, respectively, such that Xφ
(resp. Fφ,Gφ, φ1Uφ) holds iff φ holds in the next time step
(resp. some time in the future, all times in the future, at some
point and φ1 is true until that point). An example LTLf for-
mula is (F wood) ∧ (F wood =⇒ F factory), which cor-
responds to the automaton objective of Figure 1 (right).

For the remainder of this paper, we will use the automa-
ton A of a given LTLf objective to define a reward-shaping
function reflecting the frequency with which individual tran-
sitions in A were part of some accepting trace. In particu-
lar, we integrate this reward-shaping function within MCTS
in order to leverage the power of modern MCTS solvers
and exploit their lookahead property to simulaneously look
ahead in the NMRDP and the automaton objective.

Related Work
Given an infinite-trace LTL objective, reinforcement learn-
ing has been applied to learn controllers using temporal dif-
ference learning (Sadigh et al. 2014), value iteration (Hasan-
beig, Abate, and Kroening 2018), neural fitted Q-learning
(Hasanbeig, Abate, and Kroening 2019), and traditional Q-
learning (Hahn et al. 2019). These approaches reward the
agent for reaching an accepting component of the automa-
ton, but they do not yield intermediate rewards to mitigate
the sparse rewards problem.

More related to our approach is the use of reward ma-
chines (Icarte et al. 2018) as described in Definition 3. These
correspond to automata-based representations of the reward
function. By treating these reward machines as a form of ab-
stract NMRDP, reward shaping functions have been defined
in the literature (Icarte et al. 2018; Camacho et al. 2019).
In particular, note that the nodes and transitions of such au-
tomata can be treated as states and actions in Q-learning and
value iteration approaches. Such methods have been pro-
posed and yield a value for each transition in the automa-

¬a∧¬b

a∧b

a∧¬b

¬a∧b

1

b

¬b

a¬a

ω0ω1ω2

ω3

¬b

b a

1
1

1

b
¬ b ω0ω1

ω2

ω3

ω4

ω5

Figure 2: Simple example automata.

ton. Furthermore, optimal policy invariance (Ng, Harada,
and Russell 1999) can be established for tabular settings.
Definition 3 (Reward Machine) A reward machine is an
automaton given by the tupleA = (Ω, ω0,Σ, δ,R, ρ), where
Ω is the set of nodes with initial node ω0 ∈ Ω, Σ = 2AP is
an alphabet defined over a given set of atomic propositions
AP , δ : Ω × Σ → Ω is the transition function, R is an
output alphabet denoting the possible reward values, and
ρ : Ω× Σ→ R is the output function.

Consider the reward shaping function obtained from per-
forming value iteration over a reward machine representa-
tion of the objective given by the formula φ = (Fa)∧ (Fb),
whose automaton is given in Figure 2 (top). The reward ma-
chine has R = {0, 1} with a reward value of 1 being ob-
served if φ is satisfied. This yields the output transition val-
ues of ρ(ω2, a∧b) = ρ(ω1, b) = ρ(ω3, a) = 1 and ρ = 0 for
all other transitions. Consider value iteration over the func-
tion below as proposed in (Camacho et al. 2019), where ini-
tial values are set to 0.

V (ω) := max
ω′=δ(ω,σ)

ρ(ω, σ) + γV (ω′) (2)

Due to the symmetry of traces ω2 → ω1 → ω0 and
ω2 → ω3 → ω0, the same values would be obtained for each
of those corresponding transitions, which may be an uninfor-
mative reward shaping mechanism in some settings. Indeed,
one can envision arbitrary environments where observing a
followed by b may be much more efficient than observing b
followed by a. However, this type of reward shaping would
not exploit such knowledge.

Another approach using automata for reward shaping was
proposed in (Camacho et al. 2017, 2018b), where instead of
solving a planning problem over a reward machine, reward
shaping is defined over each automaton transition to be in-
versely proportional to the distance between a given node
and an accepting node in the automaton of an LTL objective.
Like the previous example, this introduces some uninforma-
tive and potentially unproductive rewards. Indeed, consider
the LTL objective given by φ = (XXXa)∨ (b∧Xb) whose
automaton is shown in Figure 2 (bottom).

Note that the aforementioned reward shaping will favor
transitions ω4

b−→ ω3, ω3
b−→ ω5 in the automaton over transi-

12017



tions ω4
¬b−→ ω2, ω3

¬b−→ ω1 since the distance to accepting
node ω5 is greater for the latter. However, again we can en-
vision scenarios where rewards defined in this way are unin-
formative. For example, consider an NMRDP where a node
labeled a is three steps away from the initial state, but the
second observance of b is many steps away.

In contrast, we focus on a dynamic reward shaping func-
tion that changes based on observed experience in that each
transition value in the automaton captures the empirical ex-
pected value associated with said transition. This is based
on the experience collected by the agent, thereby implic-
itly reflecting knowledge about the given environment in a
way that the more static reward shaping mechanisms pre-
viously mentioned cannot. MCTS lends itself well for the
adoption of such an approach given that each search tree is
the culmination of many trajectories in the NMRDP and its
corresponding traces in the automaton objective. Thus, tree
search provides a natural way to refine the estimated val-
ues of each automaton transition via simulated experience
before the agent makes a real decision in the environment.
In particular, the lookahead property of MCTS naturally al-
lows the same within a given objective automaton. We ex-
ploit this lookahead in the proposed AGRS function and ap-
ply it within a modern MCTS implementation using deep
CNNs similar to those proposed for the game of Go (Silver
et al. 2016) (Silver et al. 2017), various other board games
(Silver et al. 2018) (Anthony, Tian, and Barber 2017), and
Atari (Schrittwieser et al. 2020).

We also explore the use of our proposed AGRS as a trans-
fer learning mechanism. Despite the tremendous success of
transfer learning in fields like natural language processing
(Devlin et al. 2018) and computer vision (Weiss, Khosh-
goftaar, and Wang 2016), transfer learning in the fields of
reinforcement learning and planning faces additional chal-
lenges due in part to the temporally extended objectives of
the agents and the fact that actions taken by these agents can
affect the probability distribution of future events. The area
of curriculum learning (Narvekar et al. 2020) addresses this
by decomposing the learning task into a graph of sub-tasks
and bootstrapping the learning process over these first. For
example, this may include learning chess by first ignoring all
pawns and other pieces, and progressively adding more com-
plexity as the agent learns good policies. State and action
mappings or embeddings have also been explored for han-
dling transfer between different environments (Taylor and
Stone 2009; Chen et al. 2019). These can also be used to
derive similarity metrics between the state spaces of dif-
ferent environments. In this paper, we avoid the standard
modus operandi of focusing on state spaces or neural net-
work weights to enable transfer learning and instead focus
on commonality found in the underlying goals of the agent
as given by their automaton representation.

Monte Carlo Tree Search with
Automaton-Guided Reward Shaping

For the purposes of the MCTSA algorithm, we are in-
terested in finding a policy for a given NMRDP M =
(S, s0, A, T,R) which satisfies a given LTLf specification

φ whose automaton is defined by A = (Ω, ω0,Σ, δ, F ). As
such, we must establish a connection between the agent-
environment dynamics defined byM and the environment-

objective dynamics defined by A. Let ω
L(s)−−−→ ω′ denote

that the observance of labels, or features, L(s) (e.g., “safe”,
“hostile”, etc.) of state s (e.g., an image) in any trajectory
of M causes a transition from ω to ω′ in A (see Figure 1
for an example). This establishes a connection between the
NMRDP M and the automaton A. In particular, note that
any trajectory of states ~S = (s0, . . . , st) inM has a corre-
sponding trace ~Ω = (ω0, . . . , ωt) in A.

MCTS functions by (a) simulating experience from a
given state st by looking ahead in M and (b) selecting an
action to take in st based on predicted action values from
the simulated experience (see Algorithm 1). For (a), a search
tree is expanded by selecting actions according to the tree
policy (3) starting from the root st until a leaf in the tree is
encountered (Lines 7 through 12). The tree policy consists
of an action value function Q and an exploration function
U as formulated in modern MCTS implementations (Silver
et al. 2017), where cUCB is a constant used to control the
influence of exploration. The Y function in (3) corresponds
to the proposed AGRS function discussed later in this sec-
tion. Once an action is taken in a leaf state (Line 13), a new
state is observed (Line 14) in the form of a newly added leaf
sexpand. The value VCNN(sexpand) of this new leaf as well as
its predicted action probabilities πCNN(a|sexpand) are given
by the CNN of the agent (Line 15). This is known as the Ex-
pansion phase of MCTS. After expansion, the Update phase
begins, wherein the values of the edges (s, a) corresponding
to actions on the path leading from the root st to the new leaf
node sexpand are updated (Lines 18 through 21). These values
are {N(s, a),W (s, a), Q(s, a), πCNN(a|s)}, where N(s, a)
denotes the number of times action a has been taken in
state s in the search tree, W (s, a) is the total cumulative
value derived from VCNN(s′) for all leafs s′ that were even-
tually expanded when action a was taken in state s, and
Q(s, a) = W (s, a)/N(s, a) is the action value function
yielding the empirical expected values of actions in a given
state. After this Update phase, a new iteration begins at the
root of the tree. The tree expansion and update process re-
peats until a user-defined limit on the number of expansions
is reached (Line 2). After this process of simulating expe-
rience (a) is done, (b) is achieved by taking an action in
the real world at the root st of the tree according to the
play policy πplay(a|st) ∝ N(st, a)/

∑
bN(st, b) (Line 22)

as used in (Silver et al. 2016) due to lowered outlier sensi-
tivity when compared to a play policy that maximizes ac-
tion value (Enzenberger et al. 2010). The foregoing corre-
sponds to a single call of the lookahead process given by
Algorithm 1. Algorithm 2 utilizes multiple lookahead calls
in sequence in order to solve the given NMRDP by taking
actions in sequence using the play policy returned by Algo-
rithm 1 and using the data generated from these transitions
to update the CNN of the agent. Indeed, using Algorithm 2
as a reference, note that once an action is taken using the
play policy (Line 9), a new state st+1 is observed (Line 10)
and the process begins again with st+1 at the root of a new

12018



tree. Samples of the form (st, πplay(·|st), r, st+1) are derived
from such actions following the play policy πplay and are
stored (Line 14) in order to train the CNN (Line 21), where
r = R((s0, . . . , st+1), πplay(·|st)) denotes the reward ob-
served. As defined in equation (1), we have r = 1 iff the
trajectory corresponding to the sequence of states from s0
to st+1 yields a satisfying trace in the given automaton ob-
jective (see Definition 2) and r = 0 otherwise. The entire
process can be repeated over many episodes (Line 3) until
the performance of πplay converges.

πtree(s, ω) = argmaxa∈A (Q(s, a) + U(s, a) + Y (s, a, ω))
(3)

U(s, a) = cUCBπCNN(a|s)

√∑
b∈A(s)N(s, b)

1 +N(s, a)
(4)

Y (s, a, ω) = cAmax

(
VA(ω, ω′) , max

a′∈A(s′)
Y (s′, a′, ω′)

)
(5)

For the AGRS component, we define a reward shaping
function Y : S × A × Ω → [0, 1] which is used as
part of the tree policy in equation (3). The AGRS function
Y (s, a, ω) given by equation (5) recursively finds the max-
imum automaton transition value anywhere in the subtree
rooted at state s, where ω is the corresponding automaton
node that the agent is currently in at state s and we have
T (s′|s, a) > 0, (ω,L(s′), ω′) ∈ δ. This automaton transi-
tion value is given by VA(ω, ω′) = WA(ω, ω′)/NA(ω, ω′),
where WA(ω, ω′) denotes the number of times a transition
ω → ω′ in the automaton has led to an accepting trace in the
automaton and NA(ω, ω′) denotes the total number of times
that transition has been observed. The constant cA is used to
control the influence of AGRS on the tree policy. Note that
these values are updated after every episode in Algorithm 2
(Lines 16 through 19).

We compare the foregoing proposed MCTSA approach
against a modern vanilla MCTS approach using two grid-
world environments Blind Craftsman and Treasure Pit de-
fined in the next section and visualized in Figure 3. In these
environments, an agent has 6 possible actions correspond-
ing to moves in any of the cardinal directions, an action to
interact with the environment, and no-op.

Experimental Results
We evaluate MCTSA using 10× 10 and 25× 25 grid-world
environments defined in the sequel. For each instance of a
10 × 10 environment, the object layout of the grid-world is
randomly generated and remains the same for every episode.
We compute the average performance and variance of 100
such instances using MCTSA and a vanilla MCTS baseline
that does not use the AGRS function Y (i.e., Y (s, a, ω) = 0,
for all s, a, ω). Each instance is trained for 30,000 play steps,
corresponding to a varying number of episodes per instance.
The 25 × 25 environments will be used in Section 6 to
demonstrate the effectiveness of the AGRS function as a
transfer learning mechanism from 10 × 10 to 25 × 25 in-
stances that share the same objective automaton.

Algorithm 1: LookaheadA
begin

Input: NMRDPM, state s, Automaton A, node
ω, NN fθ

1 W (s, a), N(s, a), Q(s, a) := 0
2 for k := 1 to expansionLimit do
3 t := 0
4 st := s
5 XM := ∅ // stores transitions
6 ωt := δ(ω,L(st))
7 while st not a leaf node do
8 a ∼ πtree(st, ωt) // selection
9 st+1 ∼ T (·|st, a)

10 ωt+1 := δ(ωt, L(st+1))
11 XM := XM

⋃
{(st, a, st+1)}

12 t := t+ 1
13 a ∼ πtree(st, ωt) // selection
14 sexpand ∼ T (·|st, a)

15 (VCNN(sexpand), πCNN(·|sexpand)) :=

fθ(s
expand) // expansion

16 XM := XM
⋃
{(st, a, sexpand)}

1718 for Each (s, a, s′) in XM do
19 W (s, a) := W (s, a) + V (sexpand)
20 N(s, a) := N(s, a) + 1
21 Q(s, a) := W (s, a)/N(s, a)

// update tree
22 Return πplay(a|s)

Algorithm 2: Monte-Carlo Tree Search with
Automaton-Guided Reward Shaping MCTSA

begin
Input: NMRDPM, Automaton A, NN fθ

1 WA(ω, ω′), NA(ω, ω′), VA(ω, ω′) := 0
2 Mem := ∅
3 for each episode do
4 t := 0
5 st := s0
6 ωt := δ(ω0, L(s0))
7 XA = ∅ // stores transitions
8 while st is not terminal do
9 a ∼ LookaheadA(M, st,A, ωt, fθ)

10 st+1 ∼ T (·|st, a)
11 ωt+1 := δ(ωt, L(st+1))
12 r ∼ R(st, a, st+1)
13 XA := XA

⋃
{(ωt, ωt+1)}

14 Mem := Mem
⋃
{(st, a, r, st+1)}

15 t := t+ 1
16 for Each (ω, ω′) in XA do
17 WA(ω, ω′) :=

WA(ω, ω′) +R(st−1, a, st)
18 NA(ω, ω′) := NA(ω, ω′) + 1
19 VA(ω, ω′) := WA(ω, ω′)/NA(ω, ω′)

// update automaton stats
20 Let (p, v) := fθ(s)
21 Train θ using loss

E(s,a,r,s′)∼Mem

[
(r − v)2 − aT log p

]

12019



The CNN used during the expansion phase of MCTSA to
obtain πCNN, VCNN consists of a shared trunk with separate
policy and value heads. The trunk contains four layers. The
first two are convolutional layers with a 5× 5 kernel, 32 and
64 channels, respectively, and ELU activation. The next two
layers are fully connected with ReLU activation; the first is
of size 256 and the second of size 128. The value and pol-
icy head each contain a fully connected layer of size 128
with ReLU activation. The value head then contains a fully
connected layer of size 1 with sigmoid activation, while the
policy head contains a fully connected layer of size 6, with
softmax. The input to the neural network consists of a num-
ber of stacked 2D layers that are the size of the board. One
layer contains a one-hot representation of the position of the
agent. There is a layer for every tile type (i.e., wood, fac-
tory, etc.) with a value of 1 in the positions where that tile is
placed in the environment and 0 otherwise. Lastly, there is
a layer for each inventory item type (i.e., wood, tool) with a
value between 0 and 1 as determined by the current number
of held item type divided by the maximum capacity of that
item. Maximum capacities differ between environments.

Environments

Blind Craftsman: This environment is defined over the
atomic propositions AP = {wood, home, factory, tools ≥
3}. The agent must first collect wood, then bring it to the
factory to make a tool from the wood. After the agent has
crafted at least three tools and arrived at the home space, it
has satisfied the objective. The CNN of the agent is trained
on the full grid-world tensor, however the automaton is only
shaped by the labels of the spaces the agent stands on. If the
agent is standing on a wood tile and chooses the interact ac-
tion, the wood inventory is increased by one and the tile dis-
appears. If the agent is on top of a factory tile and interacts,
the wood inventory decreases by one and the finished prod-
uct, or tool, inventory increases by one. We restrict the agent
to hold a maximum of two woods at a time, making it so that
the agent must go back and forth between collecting wood
and visiting the factory. The objective is given by the LTLf
formula G(wood =⇒ F factory) ∧ F(tools ≥ 3 ∧ home)
with a corresponding automaton of 3 nodes and 9 edges. See
Figure 4 for results. This minecraft-like environment is sim-
ilar to that proposed in (Toro Icarte et al. 2018).
Treasure Pit: This environment is defined over the atomic
propositions AP = {a, b, c, pit}. The goal of the agent in
this environment is to collect the treasures a, c, and then b.
The treasure a will be closest to the agent. Treasure c will
be farthest, and there will be a pit in between the two con-
taining treasure b. Once the agent enters the pit, it cannot
leave. Hence, the objective requires the agent to enter the pit
already holding a and c, and stay in the pit until it picks up b
to win. The environment generation algorithm limits the size
of the pit area to allow at least one non-pit space on each side
of the board. This ensures that it will not be impossible for
our agent to maneuver around the pit and collect a and c
before entering the pit. The objective is given by the LTLf
formula F a ∧ F c ∧ F b ∧ F( G pit). It has a corresponding
automaton of 5 nodes and 17 edges. See Figure 5 for results.

Figure 3: Possible 10 × 10 instances of Blind Craftsman
(Left) and Treasure Pit (Right).

Figure 4: Blind Craftsman average performance of MCTSA
against a vanilla MCTS baseline. Average win rate and vari-
ance are reported for 100 fixed instances of the environment.
Win rate refers to the rate at which play steps were part of a
trajectory that satisfied the LTLf objective.

Figure 5: Win rate comparison for MCTS leaf expansion
limits of 20, 40, and 80 expansions per call to Algorithm 1
for agents completing the Treasure Pit Objective. At 80 and
40 MCTS expansions, MCTSA yields a slightly steeper win
rate curve when compared to vanilla MCTS before reaching
convergence around 15,000 play steps. At 20 expansions,
MCTSA greatly outperforms vanilla MCTS. In practice, the
optimal expansion limit will depend on computing resources
and objective complexity.

12020



Figure 6: The performance of MCTSA with transfer learning
versus MCTSA without transfer learning and vanilla MCTS
(No Automaton) as a function of play steps executed in the
25× 25 blind craftsman environment. Average win rate and
variance are reported for 25 randomly generated instances
of the environment.

Figure 7: The win rate and variance are reported for MCTSA
with transfer learning, MCTSA without transfer learning,
and vanilla MCTS (No Automaton) as a function of the num-
ber of play steps executed in 25 instances of 25×25 Treasure
Pit environments.

Transfer Learning
We also investigated using the automaton transition values
VA of the objective automaton as a transfer learning mecha-
nism between different environment instances that share the
same objective. A more complex version of the Blind Crafts-
man and Treasure Pit environments is generated by scaling
the grid size to 25 × 25. Given a 25 × 25 instance of an
environment, we attempt to transfer learned transition val-
ues from a simpler 10× 10 version of the environment. The
automaton-guided transfer learning procedure works as fol-
lows. First, the automaton transition values V 10×10

A of the
objective automaton A are computed (Line 19 in Algorithm
2) for many randomly generated episodes of the 10 × 10
environment corresponding to a total of 500K play steps.
The exposure to these random grid layouts for a given envi-

ronment helps to compute more robust expected automaton
transition values. When a 25 × 25 instance is started, in ad-
dition to initializing its automaton values V 25×25

A to 0, we
load the pre-computed automaton values V 10×10

A . The latter
are used to accelerate the learning process in the 25 × 25
environment by exploiting the prevalence of successful tran-
sitions as seen in simpler 10 × 10 environments that share
the same objective.

It is worth noting that statistics are still collected for the
automaton corresponding to the 25 × 25 environment with
value function V 25×25

A that was initialized at the beginning
of the 25 × 25 instance. However, when MCTSA queries
the automaton transition values while computing the AGRS
function Y (·) during the node selection phase (Line 13 in
Algorithm 1), we anneal between the 10×10 values V 10×10

A
and the new 25× 25 values V 25×25

A according to the current
episode number, tep, as seen in equation (6). This transfer
process allows for simple generalizations about an environ-
ment’s relationship with the objective structure to be learned
on a smaller scale first. The automaton statistics learned
from the 10 × 10 grid guide the early learning process for
all 25× 25 environment runs.

The benefits of the automaton-guided transfer learning is
evident in the Blind Craftsman and Treasure Pit environ-
ments, as demonstrated in Figures 6 and 7.

VA(·) = ηtepV
10×10
A (·)+(1−ηtep)V

25×25
A (·), ηtep = (crate)

tep

(6)
We train the 25×25 environment for 60k play steps, using

the same hyperparameters and network architecture as our
10 × 10 environments. This training process is repeated 25
times and the average win rates and variances of (i) utilizing
MCTSA with transfer learning, (ii) utilizing MCTSA with-
out transfer learning, and (iii) utilizing vanilla MCTS are re-
ported in Figures 6 and 7. In both of these instances, we ob-
serve the agent leveraging the transferred automaton statis-
tics has a higher and steeper win rate curve than MCTSA,
and MCTSA performs better on average than vanilla MCTS.
We hypothesize that automaton-guided transfer learning has
the most advantage when facilitating the scheduling of sub-
goals over complex board structures. We train the 25x25 en-
vironment with the same hyper-parameters and network ar-
chitecture as in the previous section.

Conclusion
MCTSA is proposed as a means to integrate novel reward
shaping functions based on automaton representations of
the underlying objective within modern implementations of
Monte Carlo Tree Search. In doing so, MCTSA simultane-
ously reasons about both the state representation of the en-
vironment and the automaton representation of the objec-
tive. We demonstrate the effectiveness of our approach on
structured grid-world environments, such as those of Blind
Craftsman and Treasure Pit. The automaton transition val-
ues computed using MCTSA are shown to be a useful trans-
fer learning mechanism between environments that share the
same objective but differ in size and layout.

12021



Acknowledgements
This project is supported in part by the US Army/DURIP
program W911NF-17-1-0208 and NSF CAREER Award
CCF-1552497.

References
Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, 5360–5370.

Brunello, A.; Montanari, A.; and Reynolds, M. 2019. Syn-
thesis of LTL formulas from natural language texts: State of
the art and research directions. In 26th International Sym-
posium on Temporal Representation and Reasoning (TIME
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Camacho, A.; Baier, J. A.; Muise, C.; and McIlraith, S. A.
2018a. Finite LTL synthesis as planning. In Twenty-
Eighth International Conference on Automated Planning
and Scheduling.

Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2017. Non-Markovian rewards expressed in LTL: guiding
search via reward shaping. In Tenth Annual Symposium on
Combinatorial Search.

Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2018b. Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping (extended version). In GoalsRL,
a workshop collocated with ICML/IJCAI/AAMAS.

Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, volume 19, 6065–6073.

Chen, Y.; Chen, Y.; Yang, Y.; Li, Y.; Yin, J.; and Fan, C.
2019. Learning action-transferable policy with action em-
bedding. arXiv preprint arXiv:1909.02291 .

De Giacomo, G.; De Masellis, R.; and Montali, M. 2014.
Reasoning on LTL on finite traces: Insensitivity to infinite-
ness. In Twenty-Eighth AAAI Conference on Artificial Intel-
ligence.

De Giacomo, G.; and Vardi, M. 2015. Synthesis for LTL and
LDL on finite traces. In Twenty-Fourth International Joint
Conference on Artificial Intelligence.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 .

Enzenberger, M.; Müller, M.; Arneson, B.; and Segal,
R. 2010. Fuego—an open-source framework for board
games and Go engine based on Monte Carlo tree search.
IEEE Transactions on Computational Intelligence and AI in
Games 2(4): 259–270.

Gaon, M.; and Brafman, R. 2020. Reinforcement Learning
with Non-Markovian Rewards. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, 3980–
3987.

Hahn, E. M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2019. Omega-regular objectives in

model-free reinforcement learning. In International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, 395–412. Springer.
Hasanbeig, M.; Abate, A.; and Kroening, D. 2018.
Logically-constrained reinforcement learning. arXiv
preprint arXiv:1801.08099 .
Hasanbeig, M.; Abate, A.; and Kroening, D. 2019. Certified
reinforcement learning with logic guidance. arXiv preprint
arXiv:1902.00778 .
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In Inter-
national Conference on Machine Learning, 2107–2116.
Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor,
M. E.; and Stone, P. 2020. Curriculum learning for rein-
forcement learning domains: A framework and survey. Jour-
nal of Machine Learning Research 21(181): 1–50.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, 278–287.
Sadigh, D.; Kim, E. S.; Coogan, S.; Sastry, S. S.; and Seshia,
S. A. 2014. A learning based approach to control synthe-
sis of Markov decision processes for linear temporal logic
specifications. In 53rd IEEE Conference on Decision and
Control, 1091–1096. IEEE.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature 588(7839): 604–
609.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture 529(7587): 484.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419): 1140–1144.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of Go without human
knowledge. Nature 550(7676): 354.
Taylor, M. E.; and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10(Jul): 1633–1685.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2018. Teaching multiple tasks to an RL agent using
LTL. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, 452–461.
International Foundation for Autonomous Agents and Mul-
tiagent Systems.
Toro Icarte, R.; Waldie, E.; Klassen, T.; Valenzano, R.; Cas-
tro, M.; and McIlraith, S. 2019. Learning reward machines

12022



for partially observable reinforcement learning. Advances in
Neural Information Processing Systems 32: 15523–15534.
Weiss, K.; Khoshgoftaar, T. M.; and Wang, D. 2016. A sur-
vey of transfer learning. Journal of Big data 3(1): 1–40.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint inference of reward ma-
chines and policies for reinforcement learning. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 30, 590–598.

12023


