
A Complexity-Theoretic Analysis of Green Pickup-and-Delivery Problems

Xing Tan and Jimmy Xiangji Huang
Information Retrieval and Knowledge Management Research Lab

York University, Toronto, Ontario, Canada
{xtan, jhuang}@yorku.ca

Abstract
In a Green Pickup-and-Delivery problem (GPD), vehi-
cles traveling in a transport network achieving pickup-and-
delivery tasks are in particular subject to the two green con-
straints: limited vehicle fuel capacity thus short vehicle trav-
eling range, and limited availability of refueling infrastructure
for the vehicles. GPD adds additional but probably insignif-
icant computational complexity to the classic and already
NP-hard Pickup-and-Delivery problem and Vehicle Routing
Problem. Nevertheless, we demonstrate in this paper an in-
herent intractability of these green components themselves.
More precisely, we show that GPD problems whose total con-
straints are reduced to almost the green ones only, remain to
be NP-complete in the strong sense. We figure out a specif-
ically constrained variant of GPD that, however, is weakly
NP-complete – a practical pseudo-polynomial time algorithm
solving the variant problem is identified. Insight obtained
from this complexity-theoretic analysis would shed light for a
deeper understanding of GPDs, and on better development of
heuristics for solving these problems, leading to promisingly
many real-world applications.

Introduction and Motivation
Pickup-and-Delivery problem (PD) is an important variant
of the classic Vehicle Routing Problem (VRP) [Toth and
Vigo 2014; Savelsbergh and Sol 1995]. PD concerns con-
struction of vehicle routes in a transportation network to sat-
isfy requests in terms of picking up and delivering loads
(e.g., goods, packages, or passengers) between origin and
destination locations [Savelsbergh and Sol 1995]. The prob-
lem is closely related to several areas in AI including, for
example, planning and scheduling [Beck, Prosser, and Se-
lensky 2003; Coltin and Veloso 2014], robotics [Gini 2017],
multi-agent systems [Vokřı́nek, Komenda, and Pěchouček
2010; Zhang and Shah 2016], and intelligent transportation
[Bistaffa, Farinelli, and Ramchurn 2015].

A lot of recent studies in VRP and PD have focused on
routing with vehicles powered by alternative energy sources
such as electricity, hydrogen, or natural gas. Road transport
with a more prevalent use of these so-called green vehicles
in partial replacement of fossil-fuel powered conventional
vehicles, reduces greenhouse gas emission, and creates pos-
itive impacts for environment, economy, and human health.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, due to the limited fuel capabilities of green vehi-
cles, and the lack of the refueling infrastructures for these
vehicles, the practice of modern transport planning calls for
effective green-specific adaptation and mitigation.

A Green Pickup-and-Delivery problem (GPD) extends
PD, addressing in particular the constraints on driving range
of vehicles, and on the availability of refueling infrastruc-
ture for vehicles [Erdoğan and Miller-Hooks 2012; Demir,
Bektaş, and Laporte 2014]. Computationally, GPD adds
an additional, green, dimension of complexity to PD/VRP,
which are already NP-hard. Reasonably so, most current ap-
proaches solving GPD problems work on special application
cases [Eisner, Funke, and Storandt 2011; Lau et al. 2013;
Xiong et al. 2015], or are based on certain heuristics for ap-
proximate solutions [Ángel Felipe et al. 2014]. Examples
include using genetic algorithms [Xiao and Konak 2017],
evolutionary algorithms [Jemai, Zekri, and Mellouli 2012],
simulated annealing [Çağrı Koç and Karaoglan 2016], sam-
pling [Montoya et al. 2016], and abstraction [Schönfelder
and Leucker 2015].

Despite the algorithmic progress, we ought to know at
the outset whether the green constraints themselves actu-
ally create another dimension of computational intractabil-
ity. In this paper, we first cast GPD into its simplest form.
To be precise, the pickup-and-delivery part is reduced into
a polytime solvable Euler Tour. Accordingly the only possi-
ble source of computational intractability comes from the
green components, i.e., from the constraint that a vehicle
might need to get refilled before finishing its tour for accom-
plishing tasks. Next we consider applications of further con-
straints, on the total number of depots and fuel stations avail-
able, on bounded value of in-degree and out-degree of cities,
and on topological structure of tasks, attempting to construct
boundary intractable GPD subproblems. We report that the
green part in GPD is inherently intractable – all the nontriv-
ially restricted subproblems considered are, either strongly
or weakly, NP-complete. When the topology of the task
graph in a GPD is a ring (so-called), a pseudo-polynomial
time algorithm solving the problem exists. Insight obtained
from this complexity-theoretic analysis would shed light for
a deeper understanding of GPD, and for better practice of
GPD heuristics development, an active research area with
many important applications in real world, potentially creat-
ing environmental, economic, and social impacts.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11990

The remainder of this paper is organized as follows. First
we present definitions of GPD and several of its constrained
variants. Complexity results for these GPD problems are
presented and proved in the next section. Finally we sum-
marize the paper.

Definitions
We define in this section the Green Pickup-and-Delivery
problem (GPD) and several of the constrained variants of
GPD: GPDstn, GPDdgr, GPDstn dgr, and GPDring

stn dgr.

Definition 1 (PD). In a general Pickup-and-Delivery prob-
lem, we have a set of cities C. Between two cities Cp, Cd ∈ C.
A transportation task T = 〈Cp, Cd, np,d〉 refers to picking
up a load of size np,d from city Cp and delivering it to city
Cd. All such tasks define the set T . Vehicles in V serve tasks
in T . Each vhl ∈ V has its own origin city and a destina-
tion city. These two cities are also in C, and the work-load
capacity of vehicle vhl is constrained by lvhl ∈ N.

There might be additional specifications or constraints
considered, such as precedence requirements on order of
tasks to be served, cost, time windows, and etc.

A PD problem asks for finding a feasible plan consisting
of routes for vehicles in V serving all the tasks, with values
of specific objective functions minimized (or satisfied). For-
mal definitions on several variants of PDs can be found in
[Savelsbergh and Sol 1995].

Definition 2 (GPD). A Green Pickup-and-Delivery prob-
lem is a PD and in addition

• The definition of task T ∈ T is extended to include
fp,d ∈ N, a non-negative number reflecting the actual
fuel consumption travelling from city Cp to city Cd;
• A vehicle vhl ∈ V is further constrained with a fuel-tank

capacity fvhl ∈ N; and
• A set S of fuel stations is considered, where vehicle vhl

visiting of any S ∈ S will refuel the vehicle to its full.
Fuel supplies in the stations are unlimited.

Hence, all vehicles in GPD are subject to the constraints
of how far they can travel on road, proportional to their fuel-
tank capacities. Visiting fuel stations are not tasks required
to be achieved by vehicles, but are necessarily actions to be
taken before their fuel tanks running empty.

Definition 3. GPDstn is a highly-restricted GPD, which
defines a 5-tuple Θ = 〈C, T ,V,S, depot〉 where

• C is the set of vertices (corresponding to cities);
• T is the set of edges (corresponding to tasks). For any
T = 〈Ci, Cj , ni,j , fi,j〉 ∈ T , a one-unit entity (passenger,
package, commodity, etc.) needs to be picked up from city
Ci and delivered to city Cj (i.e.,ni,j = 1);

• Vehicle vhl ∈ V is the only vehicle (i.e., |V| = 1), with a
fuel-tank capacity fvhl ∈ N; Work-load capacity of vhl is
also 1 (i.e., lvhl = 1);
• depot ∈ C is the only depot city where the vehicle

starts/finishes (i.e., origin city and destination city are the
same);

• depot ∈ S , and |S| = 1. That is, the depot city also serves
as the only fuel station in the problem.

Graph G = 〈C, T 〉 defines a weighted, directed graph,
where vertices, edges, and weights in G respectively cor-
respond to cities, tasks, and actual fuel consumptions to
accomplish these tasks. A walk in the graph leaving and
finishing at the depot such that all tasks in T are traversed
corresponds to an Euler Tour1 in the graph G. An Euler
Tour is feasible if the tour also satisfies the fuel capability
constraint applied on the vehicle vhl. Also note that an
Euler Tour might consist of more than one closed trail in a
sequence.

INSTANCE: A GPDstn and its 5-tuple Θ.
QUESTION: Does there exist a feasible Euler Tour of G for
the vehicle vhl?

A GPDstn example is given in Figure 1. The example
has four cities, from Ca up to Cd. The grey-color city Ca
is the only depot, and the only fuel station. There are eight
tasks in T , from t1 up to t8. Fuel consumptions traveling
between cities to achieve these tasks are indicated in paren-
theses. Fuel capacity of the vehicle is 8. It is straightforward
to determine whether a graph has an Euler Tour: just check
whether the in-degree and the out-degree for any city in the
graph are equal. For a GPDstn to have a solution, however,
it has to have a feasible Euler Tour in the graph. Taking the
following two Euler Tours for example,

ET0 :[t1, t2, t3, t4, t5, t6, t7, t8];ET1 :[t4, t8, t1, t7, t5, t6, t2, t3].

ET0 (as illustrated in Figure 1) is a solution: It takes 8
fuel units to walk the first trail [t1, t2, t3]. After the first trail,
the vehicle returns to Ca and gets refueled before walking
its second trail [t4, t5, t6, t7, t8], which takes 6. ET1 is not
a solution, after the first trail [t4, t8], the vehicle returns to
Ca, even if it is refueled, it can not complete the 2nd trail
[t1, t7, t5, t6, t2, t3], as it takes 12 fuel units, which is greater
than the vehicle fuel capacity.

Definition 4. GPDdgr is another highly-restricted GPD,
and a close variant to GPDstn. GPDdgr differs from
GPDstn only in that, any city in a GPDdgr problem has
in-degree=out-degree≤ 2, but the problem might have more
than one depot/fuel station.

Definition 5. GPDstn dgr is a further restricted variant,
to both GPDdgr and GPDstn. That is, the condition of
in-degree=out-degree ≤ 2 holds and there is just one de-
pot/fuel station in GPDstn dgr.

Definition 6. GPDring
stn dgr applies further restrictions to

GPDstn dgr. That is, the topology of the task graph G is a
ring: For any city A in the task graph, there are exactly two
tasks picked up from some city B and delivered to A, and
there are exactly two tasks picked up from A and delivered
to some another city C, where these three cities are distinct.

1We use standard definitions from graph theory: A trail is a walk
in a graph with no repeated edge; A trail is closed if its two end-
nodes are the same; An Euler Tour of a graph is a closed trail con-
taining all edges in the graph.

11991

Ca

Cb

Cc

Cd

depot/fuel station: Ca

fuel tank capacity: 8

task(fuel use)
t1(2)

1st trailt2(2)
t3(4)
t4(1)
t5(1)
t6(2) 2nd trail
t7(1)
t8(1)

t1

t4

t7

t2

t5

t8

t3

t6

Task Graph: 〈C, T 〉 Solution ET0

Figure 1: A GPDstn example and its solution ET0. The
grey-color city Ca is the only depot, and the only fuel sta-
tion, for the only vehicle in the example. ET0 is an Euler
Tour consisting of the first trail (fuel consumption 8) and the
second trail (fuel consumption 6).

Ca Cb Cc Cd
t5(2)

t1(1)

t6(2)

t2(2)

t7(1)

t3(4)

t8(1)

t4(1)

Figure 2: An Example GPDring
stn dgr. Fuel consumptions of

tasks are indicated in the parentheses after their task names.

Figure 2 is an example GPDring
stn dgr. City Ca is the only

depot/fuel station. Fuel capacity for the vehicle is 8. Fuel
consumptions of tasks are indicated in the parentheses af-
ter task names. The constraint of in-degree=out-degree = 2
holds for all the four cities.

Complexity Results
GPDstn, GPDdgr, and GPDstn dgr, are shown to be
strongly NP-complete in this section. GPDring

stn dgr however
is weakly NP-complete.

Theorem 1. GPDstn is strongly NP-complete.

Proof Sketch2: GPDstn is in NP. It is easy to verify
whether a sequence of pickup-and-delivery tasks is a solu-
tion to a given problem instance.
NP-hardness. We perform a polytime transformation from
the NP-complete Directed Hamiltonian Circuit Problem
(DHC) to GPDstn ([GT38] in [Garey and Johnson 1979]).
Figure 3 is an example DHC, which is also used as the run-
ning example to illustrate the polytime transformation. From
a digraph G = 〈V,E〉 in a DHC instance, where |V | = n,
|E| = m, we create a corresponding Θ in GPDstn. The task
set T in Θ contains four different kinds of tasks: edge-task,
node-task, fixer-task, and returning-task.

For each vertex vi ∈ V of G in DHC, we create two
cities Li and Ri in the set C in Θ in GPDstn. Each vertex

2How to construct the transformation for proving NP-hardness
is sketchily explained by going through an illustrative example.

v thus corresponds to exactly one dotted rectangle in Figure
4. Each rectangle boxes two cities, one left and one right.
Without loss of generality, set L0 the left-city in v0 as the
depot/fuel station.

For each edge (vi, vj) ∈ E of G, we create in T an edge-
task picking up a one-unit entity from the city Ri, to be de-
livered to the city Lj . Inside each dotted rectangle, there is
a node-task leaving the left city and entering the right city.
We need to ensure that the in-degree of any city equals the
out-degree of it. This is to ensure the task graph has Euler
Tours in the first place (otherwise the transformed GPDstn

problem instance will be simply unsolvable). Note that the
in-degree of any right-city equals 1. Hence if the out-degree
of a right-city equals k > 1, (k − 1) fixer-tasks leaving L0

and entering the right-city will be created. Meanwhile the
out-degree of any left-city equals 1. Hence if the in-degree
of a left-city equals k > 1, (k−1) returning-tasks leaving the
left-city and entering L0 will be created. In Figure 4, thick
arrows are fixer-tasks and dashed arrows are returning-tasks.
All 14 tasks in the figure are labelled. Fuel consumption for
fixer-tasks (t9 and t12 in Figure 4) are set to be (2n − 1)
(which equals 2 × 4 − 1 = 7 for the example in Figure
4). Fuel consumptions for returning-tasks (t11 and t14 in the
example of Figure 4) equals 0. Fuel consumptions for node-
tasks and edge-tasks are set to 1. Fuel capacity of the only
vhl equals (2× n) (which equals 8 for the example).

There exists a DHC in a graph G = 〈V,E〉 iff there exists
a feasible Euler Tour in the transformed Θ for the vehicle.

(⇒) : If G has a DHC, this DHC visits n edges and
leaves out (m − n) edges unvisited. The DHC corresponds
to a “DHC” trail containing n edge-tasks and n node-tasks
(fuel consumptions summed to 2n exactly), leaving (m−n)
edge-tasks unaccomplished in Θ. The “DHC” trail in Fig-
ure 4 is [t1, t2, . . . , t7, t8]. For each one of these unaccom-
plished edge-tasks, we use a trail in the following pattern
to accomplish it (fuel consumption for the trail is always
2n − 1 + 1 + 0 = 2n): [fixer-task(2n-1), edge-task(1),
returning-task(0)].

Figure 4 has two such trails [t9, t10, t11], and
[t12, t13, t14]. Walking in a sequence all these trails,
including the “DHC” one, constructs a solution to Θ.

(⇐) : Assume Θ has a solution. A trail in the solution
starts with a fixer-task, and then an edge-task, has to return
to L0 using the returning-task (the vehicle runs out of fuel).
After all these (m− n) trails involving fixer-tasks, there are
exactly n edge-tasks and n node-tasks unaccomplished. One
more trail is left, and the trail has to accomplish these 2n
tasks all, implying that there exists a DHC in G.

v0

v1

v2

v3

Figure 3: A graph and its Directed Hamiltonian Circuit
〈v0, v1, v2, v3, v0〉, highlighted in thick lines.

11992

L0 R0

v0

L1 R1

v1

L2 R2

v2

L3 R3

v3

t1

t3

t2
t4

t5

t6

t7

t8

t9(2n− 1 = 7)

t10

t11(0)

t12(2n− 1 = 7)

t13

t14(0)

Figure 4: Task Graph G of Θ(G) for proving NP-hardness
of GPDstn (Theorem 1). Fuel consumptions of tasks by de-
fault equal to 1. Other than 1 values are indicated in the
parentheses after their task names (t9, t11, t12, and t14).
G = 〈V,E〉, |V | = n, |E| = m.

NP-completeness in the strong sense. We see that the trans-
formation is bounded by either 2n or m, whichever is greater
in value. GPDstn is thus strongly NP-complete.

Theorem 2. GPDdgr is strongly NP-complete.

Proof Sketch: It is noted DHC remains to be NP-complete,
even when no node/vertex in the graph is involved with
more than 3 edges ((Noted in [GT38] in [Garey and Johnson
1979]). If we use such a graph, denoted as G≤3, to perform
the transformation, the resulting task graph G in Θ (except
for the depot/fuel station node L0) is bounded by “in-degree
= out-degree ≤ 2”. But we can add more depot/fuel stations
(i.e., “New” cities) to resolve the issue associated with L0.
Figure 5 illustrates the intuition using the same DHC ex-
ample in Figure 3 (the example is actually bounded by “in-
degree = out-degree ≤ 2”). In the figure, a “New” city is
newly introduced and, like L0, it is also a depot and fuel-
station for the only vehicle. To save space, only the compo-
nent around the dashed rectangle v0 is shown in Figure 5.
Other parts remain to be the same as in Figure 4. All the
original 14 tasks in Figure 4 are labelled in the same way in
Figure 5. Fuel consumptions for these tasks are also kept un-
changed. However task t9 now starts at the “New” city, and
task t11 now finishes at the “New” city. The only new task
tnew starts at the “New” city and finishes at L0. We see that
both the “New” city and L0 are bounded by the constraint
“in-degree = out-degree ≤ 2”.

The proof is similar to the one for Theorem 1, and is
skipped here to save space. For illustration purpose, a fea-
sible solution for Θ in Figure 5 is given here:

[t9, t10, t11, tnew, t12, t13, t14, t1, t2, . . . t7, t8].

The only vehicle starts at “New”. The first trail
[t9, t10, t11] starts and finishes at “New” to achieve t10. The

L0 R0New

v0
t1tnew

t9

t2

t10

t12

t14t11

t8

Figure 5: The graph component around the dashed rectan-
gle v0 in G of Θ(G) for proving NP-hardness of GPDdgr

(Theorem 2). Fuel consumptions of tasks are not shown in
the Figure.

v0

N1 N2 Nk L0 R0

Figure 6: A transformation with k “New” cities involved
(from N1 up to Nk). Each “New” city defines a so-called
lane (highlighted by a shaded rectangle). The only vehicle is
initially at the city N1. All these fuel stations in addition to
L0 are also fuel stations.

second trail [t12, t13, t14] starts and finishes at L0 to achieve
t13. The two trails are connected by task tnew. Tasks t1 up
to t8 correspond to a “DHC” back in the graph G≤3. The
vehicle returns to “New” after task t8.

Note that when the transformation is performed on a prob-
lem instance large in size, several “New” cities will be intro-
duced into the dashed rectangle v0. Without affecting the
bidirectional argument on the validity of the transformation,
it is required some careful consideration on the order these
“New” cities to be visited. Specifically the “Stay on one lane,
whenever the vehicle can” rule needs to be followed (ex-
plained below).

In Figure 6, each shaded-rectangle defines a lane, which
contains a “New” city, a returning-task entering the city, and
a fixer-task leaving the city. When it visits a “New” city for
the first time after fulfilling the returning-task entering the
city, the vehicle has to continue in the same lane taking the
fixer-task to leave the city. Taking the horizontal task mov-
ing to the next “New” city is not allowed. When the vehi-
cle returns to N1 after visiting several (zero to many) such
lanes, it will have to take the horizontal tasks and stop at any
“New” city it has never visited before. At this city, the vehi-
cle moves down taking the fixer-task. The procedure contin-
ues until the vehicle arrives at L0, and then R0 (through the
task in between). Again if G has a DHC, Θ has a solution.
There exists a “DHC” trail from R0 to N1.
NP-completeness in the strong sense. The argument in The-
orem 1 regarding NP-completeness in the strong sense re-
mains to be valid here.

11993

Theorem 3. GPDstn dgr is strongly NP-complete.

Proof Sketch: For GPDstn dgr, we use again G≤3. There
will be just one fixer-task in the resulting Θ. Returning-tasks
now are used to connect unaccomplished edge-tasks before
eventually returning to L0. And this trail is the only one
other than the “DHC” one, should a solution exist for the
original DHC problem. Figure 7 is created directly from Fig-
ure 4, by removing t12 and redirecting t11 from returning to
L0 to entering R1 instead.

Fuel capacity remains to be 2n. Fuel consumptions, for
node-tasks and edge-tasks remain to be 1, and for returning-
tasks remain to be 0. However fuel consumption for the only
fixer-task is set to be 4n−(n+m) = 3n−m. In the example,
fuel consumption for t9 is thus 4× 4− (4 + 6) = 6.

Proof for the “(⇒)” direction should be straightforward at
this point, hence is skipped to save space. We give some nec-
essary explanation on the “(⇐)” direction. Note the fact that
fuel consumption for all tasks added up equals to 4n, and the
capacity for the vehicle is 2n. Meanwhile, if there exists a
feasible Euler Tour in the Θ, the tour consists of exactly two
trails, each consumes 2n before the vehicle returns eventu-
ally to L0. Let TR0 be the trail that does not start with the
only fixer-task, and TR1 the other trail. If TR0 repeats node-
task/edge-task in turn, eventually there are n node-tasks and
n edge-tasks in TR0, corresponding to a “DHC” back in the
graph G. If on the way TR0 deviates to take a returning-task
instead, one node-task would be by-passed. Observe that any
edge-task in TR0 has to be immediately preceded by either
a node-task, or a returning-task, it is the case TR0 can have
at most n edge-tasks. A deviation of taking a returning-task
will result in the value of total fuel consumption of TR0 be-
ing reduced by 1 (i.e., 2n − 1), leading to a contradiction:
Fuel consumption for the other trail TR1 will have to be
2n + 1, which is greater than the fuel capacity of the vehi-
cle, thus infeasible.

Using Figure 7 for illustration, the two trails are:

TR0 : [t1, t2, t3, t4, t5, t6, t7, t8];TR1 : [t9, t10, t11, t13, t14].

Trail TR0 corresponds to a “DHC” back in the graph
G≤3. The only other trail TR1 is dedicated in achieving the
left-unachieved tasks (t10 and t13 in the example). Note that
t12 as introduced in Theorem 1 and Figure 4 is no longer
needed.

Note that between Figure 4 and Figure 7, the returning-
task t11, which leaves L2, is redirected from entering L0

to entering R1. After the redirection, there is an edge-
task t4, which leaves R1 and enters L2. In general, t4
can be an unaccomplished edge-task, and if so, the trail
(other than the “DHC” one) will get stuck visiting L2

twice: [. . . , L2, t11, R1, t4, L2]. When a transformation is
performed on a problem large in size, a lot of returning-
tasks need to be redirected and a lot of fixer-tasks need to
be removed (referring to the procedure of creating Figure 7
from Figure 4). Given the fact that “in-degree=out-degree ≤
2”, when there are at least three fixer-tasks to be removed, it
is always possible to pick up a returning-task leaving some
city L, and to redirect the task to a city R where there is
no edge-task leaving R and entering L. When there are only

L0 R0

v0

L1 R1

v1

L2 R2

v2

L3 R3

v3

t1

t3

t2
t4

t5

t6

t7

t8

t9(3n−m = 6)

t10

t11(0)

t13

t14(0)

Figure 7: Task graph G of Θ(G) for proving NP-hardness
of GPDstn dgr (Theorem 3). Fuel consumptions of tasks by
default equal to 1. Other than 1 values are indicated in the
parentheses after their task names (t9, t11, and t14). G =
〈V,E〉, |V | = n, |E| = m.

L0 L2

L3R1

Switch
t11(0)

t14(0)

t
′
14(0)

t
′
11(0)

Figure 8: The city “Switch” is added to the task graph G
of Θ(G) in Figure 7. The two returning tasks (t11 and t14)
enters “Switch” first, and t

′

11 and t
′

14 leaves “Switch”. Now
(either L2 or L3) can enter (either R1 or L0).

two fixer-tasks left, we can create a “Switch” city for flex-
ibility in determining which one of the two returning-tasks
to fix which one of the two unaccomplished tasks. Taking
Figure 7 for example, the two remaining returning-tasks t11
and t14 are redirected to enter “Switch”, which in turn enters
L0 and R1 through t

′

14 and t
′

11 (Figure 8).
NP-completeness in the strong sense. The argument in The-
orem 1 regarding NP-completeness in the strong sense re-
mains to be valid here.

Theorem 4. GPDring
stn dgr is weakly NP-complete.

Proof Sketch: GPDring
stn dgr is again in NP. The proof has

two major parts: First we show GPDring
stn dgr is at least

weakly NP-hard by providing a polytime transformation
from PARTITION, which is weakly NP-complete ([SP12]
in [Garey and Johnson 1979]); Second we provide a pseudo-
polynomial time algorithm to solve GPDring

stn dgr . Running
time of the algorithm is polynomial in terms of the numeric
input value, the fuel capacity of the vehicle.
NP-hardness (at least weakly). Given a set of posi-
tive integers S, PARTITION tries to divide S into two
exclusive sets S1 and S2, where the sum of integers in
S1 equals the sum of integers in S2. For example, given

11994

S = {1, 1, 3, 4, 5}, the set can actually be partitioned into
S1 = {1, 1, 5} and S2 = {3, 4}, and 1 + 1 + 5 = 3 + 4 = 7.

From an instance S in PARTITION, we need to create an
instance Θ = 〈C, T ,V,S, depot〉 in GPDring

stn dgr . We use
S = {1, 1, 3, 4, 5} as the running example to illustrate the
transformation. In Θ, the fuel-tank capacity of the only ve-
hicle v ∈ V equals half of the sum of all integers in S (i.e.,
the capacity is 7 in the resulting Θ transformed from S in the
example). In addition |S| cities are introduced in C. Pictori-
ally (shown in Figure 9) assume all these cities are aligned
in a row from left to right, there exist exactly two pickup-
and-delivery tasks from a given city to its right neighbor.
To distinguish these two tasks we call one of them a “top”
task and the other a “bottom” task. In addition, there are
two pickup-and-delivery tasks from the rightmost city (C5

in Figure 9) to the leftmost city (C1 in Figure 9). No other
tasks are introduced in Θ. All “top” tasks need zero fuel con-
sumption. All the numbers in S are 1-on-1 and onto mapped
to the fuel consumption of “bottom” tasks. For the sake of
convenience, these numbers are mapped into an ascending
order. The leftmost city is the only depot city where the ve-
hicle starts/finishes, and the city is the only fuel station in
Θ. Given S, the resulting GPDring

stn dgr instance is shown in
Figure 9. Transformation is complete.

Notice that, ignoring the fuel consumption constraint, ve-
hicle v can finish an Euler Tour leaving and returning to C1

twice. The tour consists of two trails (name them respec-
tively the first trail and the second trail). The first trail will
achieve exactly one of the (top or bottom) tasks between
two cities. The remaining tasks construct the second trail. As
shown in Figure 10, an Euler Tour (with depot/fuel station
C1) consists of the first trail (in thick lines) and the second
trail (in dashed lines).

For the NP-hardness part we prove that there exists a par-
tition to S iff a vehicle starting from C1 can accomplish all
tasks, returning eventually to C1 with the fuel capacity con-
straint applied on C1 satisfied.

(⇒): If there exists a partition to S, we just assign the
tasks accordingly (either a “top” one or a “bottom” one is
selected, depending on how S is partitioned) into the first
trail and the second trail. The resulting Euler Tour must sat-
isfy the fuel consumption constraints.

(⇐): If there exists a solution for the transformed
GPDring

stn dgr instance (i.e., an Euler Tour with the fuel con-
sumption constraint satisfied), consumption of fuel for two
trails amounts to exactly double the vehicle fuel capacity. If
one trail consumes less than the fuel capacity, the other trail
must consume more than the fuel capacity, which is infeasi-
ble. Hence fuel consumptions for the two trails are exactly
the same, equaling to the vehicle fuel capacity. We know
that fuel consumptions for the bottom tasks in the two trails,
respectively, correspond to the sets S1 and S2 for S.
A pseudo-polynomial time algorithm (hence actually NP-
hard in the weak sense). Let fall be the overall fuel con-
sumption for all tasks in a given GPDring

stn dgr instance (as-
sume existence of Euler Tours, otherwise no solution). Solv-
ability of the instance is now related to both fall and fvhl
the capacity of the vehicle. If fall > 2fvhl, the instance is

C1 C2 C3 C4 C5

0

1

0

1

0

3

0

4

0

5

Figure 9: The GPDring
stn dgr instance created from transform-

ing the PARTITION problem S = {1, 1, 3, 4, 5}. The city
C1 is the only depot city and the only fuel station. The only
vehicle in the example has a fuel capacity 7, which is deter-
mined by (1 + 1 + 3 + 4 + 5)/2.

C1 C2 C3 C4 C5

0

1

0

1

0

3

0

4

0

5

Figure 10: A solution to the GPDring
stn dgr example. It con-

sists of two trails in order: the first one is in thick lines, and
the second one is in dashed lines.

infeasible – inevitably at least one of the two trails will run
out of fuel. If fall < fvhl, the instance is always feasible –
one full tank of fuel suffices to achieve all the tasks.

Conditional solvability happens with the inequality of
fvhl ≤ fall ≤ 2fvhl. In this case, GPDring

stn dgr is solvable
iff there exists a trail TR0 whose fuel consumption satisfies
(fall − fvhl) ≤ fTR0

≤ fvhl. Taking negation, with fall
added to each term, we obtain

(−fvhl+fall) ≤ (−fTR0
+fall) ≤

(
−(fall−fvhl)+fall

)
,

which means we also have (fall − fvhl) ≤ fTR1 ≤ fvhl,
where fall = fTR0 + fTR1.

Algorithm 1 solves GPDring
stn dgr. Note that line 1 covers

the case where “fall > 2fvhl”, thus the instance is infeasi-
ble. The loop (line 5-9) deals with the case where “fvhl ≤
fall ≤ 2fvhl”. It is implemented through using dynamic pro-
gramming to fill a table. For illustration purpose, we use the
example of Figure 2 to explain how the corresponding table
(such as Table 1) is going to be filled. In the table, columns
are fuel consumption3 ranging from 0 to fvhl, and rows are
the cities from Ca, and back to Ca. Cell (Ck, n) denotes the
truth value (t or f) of the statement “there is a walk from
depot/fuel station Ca to city Ck with fuel consumption n”.
We fill the table in the order of top-down, row by row, left to
right, column by column. It starts with (Ca, 0) = t, the table
is updated with respect to the fuel consumptions of tasks la-
belled in Figure 2. Since there are two tasks (t1 and t5), we
update (Cb, 1) = t, and (Cb, 2) = t. It continues until we
have filled all cells. The grey cells in the bottom row high-
lights the range of (fall−fvhl) ≤ f ≤ fvhl. In our example,

3Fuel consumptions in the algorithm are with integer values.
For real numbers, we only need to group them into ranges of inte-
gers closest to them, for the algorithm to work.

11995

city\fuel 0 1 2 3 4 5 6 7 8

Ca t f f f f f f f f
Cb f t t f f f f f f
Cc f f f t t f f f f
Cd f f f f f t f t t
Ca f f f f f f t f t

Table 1: A 2-dimensional matrix of (city, fuel consumption)
for solving the example of Figure 2. The table is filled
through dynamic programming. A “t” value in any of the
grey-color cells at the bottom row indicates solvability.

Algorithm 1: A Pseudo-polynomial Time Solver

Input: A GPDring
stn dgr instance Θ

Output: a Boolean variable “result”
1 “result” is set to false
2 if (fall < fvhl) then
3 “result” is set to true
4 end
5 for each f such that (fall − fvhl) ≤ f ≤ fvhl do
6 if a trail with fuel consumption f exists then
7 “result” is set to true
8 end
9 end

10 return “result”

it is 6 ≤ f ≤ 8, as fall for Figure 2 is 14. Any “t” value in
a greyed-cell indicates existence of solution to the instance.
For example, from the fact that (Ca, 6) = t, we can recover
a trail of TR0 = [t5, t6, t7, t8], with fTR0 = 6. Hence the
other trail TR1 = [t1, t2, t3, t4], with fTR1 = 8. Both trails
are feasible. TR0 and TR1 corresponds to a solution to the
instance. The time it takes to fill the table is bounded by
O(n× fvhl), which is a polynomial time bound in terms of
the magnitude, but not the actual length, of the input fvhl.
Algorithm 1 only runs in pseudo-polynomial time.

Summary and Future Work
Vehicle routing turning green reflects an important so-
cial movement towards significant reduction of over-
all greenhouse-gas emission. However from complexity-
theoretic perspective, an addition of green components poses
additional computational challenge to problems of PD and
VRP, which are already intractable. In fact as demonstrated
in this paper, the green component in GPD is inherently NP-
hard to tackle. Several strong constraints, on bounded value
of in-degree and out-degree of cities, on total number of fuel
stations, and on topological structure of tasks, are explored
in searching for non-trivial tractable GPD subproblems.

Complexity results obtained are pictorially summarized
in Figure 11, where an arrow connects a problem to
its restricted version. The dashed line separates strongly
NP-complete problems from the weakly NP-complete
ones. Existence of pseudo-polynomial time algorithm for
GPDring

stn dgr indeed offers very useful insight towards de-

GPD
GPDstn

Theorem 1
GPDdgr

Theorem 2

GPDstn dgr Theorem 3

GPDring
stn dgr Theorem 4

Strongly

Weakly

Figure 11: NP-complete GPD problems

velopment of more effective heuristics for real-world ap-
plications. GPD problems whose task graphs follow a cer-
tain topological structure, are easier to solve: When the task
graph is with the so-called ring structure, we reduce the
problem complexity from strongly NP-complete to weakly
NP-complete, with a pseudo-polynomial time algorithm
identified. In our future work, we will explore other practical
graph structures, where GPD become polytime solvable.

Observe again the growth of the pseudo-polynomial time
Algorithm 1 for GPDring

stn dgr is exponential only with re-
spect to the size of fvhl, the fuel capacity of the vehicle.
And practically it is simply reasonable to assume that fvhl
will not be a very large number, making the quadratic-time
effort in filling the table an affordable approach. Accessible
opportunities for real-world cases and applications should
exist, where we can first approximate the task graph of a
given GPD problem into a ring, and then solve the problem.

Analysis of complexity with an application of precedence
constraints, or time windows, to tasks in a backbone PD
problem (i.e., an Euler Tour) was examined recently [Tan
and Huang 2019]. In this current study, we evaluate the role
of the green constraints in contributing to the intractability
of GPD. It should be an interesting future work investigat-
ing possible existence of phase transition [Gent et al. 1996]
in the solution space of GPD, and how problem difficulty of
GPD is related to both phase transition and heuristic search,
using for example an analytical framework proposed in [Co-
hen and Beck 2017b,a].

Consider that in the computational sense, phase transi-
tion describes in the solution space, the phenomenon of
a sharp transition between solvability and unsolvability of
problem instances. Using a Constraints Programming model
as a solver, we can work particularly on GPDring

stn dgr, and
there are two settings particularly of relevance: 1) With a
fixed vehicle fuel capacity and an increasing overall fuel
consumption of all tasks, the problem is moving (likely a
sharp transition) from always feasible to always infeasible.
We know when fall > 2fvhl, the instance is infeasible, and
if fall < fvhl, it is always feasible; and 2) With the value of
fvhl fixed, and increase the value of fall, from fvhl to 2fvhl
(i.e., from feasible to infeasible). Alternatively, we can work
on GPDstn, which has just one station. When the degree of
the stations is greater than 1, and both task graph and fall
are fixed, we can try generating the tasks using normal dis-
tribution with increasing value of standard deviation.

11996

Acknowledgments
We are thankful to all the anonymous reviewers for their
insightful feedback and suggestions. We are particularly
thankful to Reviewer #3 for his/her dedicated efforts look-
ing into technical details of the proofs in the paper. This re-
search was supported by a Discovery Grant from the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC), and the York Research Chairs (YRC) program.

References
Ángel Felipe; Ortuño, M. T.; Righini, G.; and Tirado, G.
2014. A heuristic approach for the green vehicle routing
problem with multiple technologies and partial recharges.
Transportation Research Part E: Logistics and Transporta-
tion Review 71: 111 – 128.
Beck, J. C.; Prosser, P.; and Selensky, E. 2003. Vehicle rout-
ing and job shop scheduling: What’s the difference? In Proc.
of the 13th ICAPS, 267–276.
Bistaffa, F.; Farinelli, A.; and Ramchurn, S. D. 2015. Shar-
ing Rides with Friends: A Coalition Formation Algorithm
for Ridesharing. In Proc. of the 29th AAAI, 608–614.
Çağrı Koç; and Karaoglan, I. 2016. The green vehicle rout-
ing problem: A heuristic based exact solution approach. Ap-
plied Soft Computing 39: 154 – 164. ISSN 1568-4946.
Cohen, E.; and Beck, J. C. 2017a. Cost-Based Heuristics and
Node Re-Expansions across the Phase Transition. In Proc.
of the 10th SOCS, 11–19.
Cohen, E.; and Beck, J. C. 2017b. Problem Difficulty and
the Phase Transition in Heuristic Search. In Proc. of the 31st
AAAI, 780–786.
Coltin, B.; and Veloso, M. 2014. Scheduling for Transfers
in Pickup and Delivery Problems with Very Large Neighbor-
hood Search. In Proc. of the 28th AAAI, 2250–2256.
Demir, E.; Bektaş, T.; and Laporte, G. 2014. A review of re-
cent research on green road freight transportation. European
Journal of Operational Research 237(3): 775 – 793.
Eisner, J.; Funke, S.; and Storandt, S. 2011. Optimal Route
Planning for Electric Vehicles in Large Networks. In Proc.
of the 25th AAAI.
Erdoğan, S.; and Miller-Hooks, E. 2012. A Green Vehicle
Routing Problem. Transportation Research Part E: Logis-
tics and Transportation Review 48(1): 100 – 114.
Garey, M.; and Johnson, D. 1979. Computers and in-
tractability - a guide to NP-completeness. W.H. Freeman
and Company.
Gent, I. P.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1996.
The Constrainedness of Search. In Proc. of the 13th AAAI,
AAAI’96, 246–252.
Gini, M. L. 2017. Multi-Robot Allocation of Tasks with
Temporal and Ordering Constraints. In Proc. of the 31st
AAAI, 4863–4869.
Jemai, J.; Zekri, M.; and Mellouli, K. 2012. An NSGA-II
Algorithm for the Green Vehicle Routing Problem. In Hao,
J.-K.; and Middendorf, M., eds., Evolutionary Computation

in Combinatorial Optimization, 37–48. Springer Berlin Hei-
delberg.
Lau, H. C.; Agussurja, L.; Cheng, S.-F.; and Tan, P. J. 2013.
A Multi-objective Memetic Algorithm for Vehicle Resource
Allocation in Sustainable Transportation Planning. In Proc.
of the 23rd IJCAI, 2833–2839.
Montoya, A.; Guéret, C.; Mendoza, J. E.; and Villegas, J. G.
2016. A multi-space sampling heuristic for the green vehicle
routing problem. Transportation Research Part C: Emerging
Technologies 70: 113 – 128.
Savelsbergh, M.; and Sol, M. 1995. The General Pickup and
Delivery Problem. Transportation Science 29(1): 17–29.
Schönfelder, R.; and Leucker, M. 2015. Abstract Routing
Models and Abstractions in the Context of Vehicle Routing.
In Proc. of the 24th IJCAI, 2639–2645.
Tan, X.; and Huang, J. X. 2019. On Computational Com-
plexity of Pickup-and-Delivery Problems with Precedence
Constraints or Time Windows. In Proc. of the 28th IJCAI,
5635–5643.
Toth, P.; and Vigo, D. 2014. Vehicle Routing: Problems,
Methods, and Applications. SIAM.
Vokřı́nek, J.; Komenda, A.; and Pěchouček, M. 2010.
Agents towards vehicle routing problems. In Proc. of the
9th AAMAS, 773–780.
Xiao, Y.; and Konak, A. 2017. A genetic algorithm with
exact dynamic programming for the green vehicle routing
& scheduling problem. Journal of Cleaner Production 167:
1450 – 1463.
Xiong, Y.; Gan, J.; An, B.; Miao, C.; and Bazzan, A. L. C.
2015. Optimal Electric Vehicle Charging Station Placement.
In Proc. of the 24th IJCAI, 2662–2668.
Zhang, C.; and Shah, J. A. 2016. Co-Optimizating Multi-
Agent Placement with Task Assignment and Scheduling. In
Proc. of the 25th IJCAI, 3308–3314.

11997

