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Research School of Computer Science, The Australian National University

Ian.Mallett@anu.edu.au, Sylvie.Thiebaux@anu.edu.au, Felipe.Trevizan@anu.edu.au

Abstract

Probabilistic planning subject to multi-objective probabilis-
tic temporal logic (PLTL) constraints models the problem of
computing safe and robust behaviours for agents in stochastic
environments. We present novel admissible heuristics to guide
the search for cost-optimal policies for these problems. These
heuristics project and decompose LTL formulae obtained by
progression to estimate the probability that an extension of a
partial policy satisfies the constraints. Their computation with
linear programming is integrated with the recent PLTL-dual
heuristic search algorithm, enabling more aggressive pruning
of regions violating the constraints. Our experiments show that
they further widen the scalability gap between heuristic search
and verification approaches to these planning problems.

1 Introduction
In safety-critical planning applications, optimising perfor-
mance is not enough, and utility must be traded-off against
the risk of jeopardizing complex mission goals and con-
straints. For instance, consider a Mars rover that must gather
scientific information and send it to earth (Zilberstein et al.
2001). Safety requirements and constraints include avoiding
collision against obstacles, not traversing into unsafe terrains,
maintaining safe operational temperature and battery levels,
and so on. The rover should seek to optimise expected sci-
ence returns while remaining safe by proactively keeping the
probability of violating each of the above constraints within
acceptable levels.

Such planning problems can be modelled as stochas-
tic shortest path problems (SSP) subject to multi-objective
probabilistic linear temporal logic (MO-PLTL) constraints
Pr(ψi)∈zi, where the ψi are LTL formulae and zi ⊆ [0, 1]
are intervals bounding their respective probabilities (Baum-
gartner, Thiébaux, and Trevizan 2018). Optimal solutions to
MO-PLTL SSPs take the form of stochastic finite-memory
policies, where the probability of the next action to perform
depends both on the current state of the environment and on
a mode used to track the truth value of the LTL formulae.

Variants of MO-PLTL SSPs have been extensively studied
by the automated verification community (Baier and Katoen
2008), and their resolution is supported by tools such as the
PRISM model-checker (Kwiatkowska, Norman, and Parker
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2011). However, these approaches build, upfront, the entire
state space of the MO-PLTL SSP, i.e. the synchronous prod-
uct of the modes and environment states (Etessami et al.
2008; Forejt et al. 2011; Kwiatkowska and Parker 2013). The
prohibitive size of this construction, polynomial in the huge
number of reachable environment states and in the worst case
double exponential in the size of the formulae, precludes ap-
plicability to the factored state spaces found in AI planning.

Recently, heuristic search has become the state of the art
approach for solving planning problems modelled as factored
MO-PLTL SSPs. In particular, Baumgartner et al. (2018)
introduced PLTL-dual, an algorithm which builds the state
space of the MO-PLTL SSPs on-the-fly from the factored
representation. PLTL-dual applies linear programming to in-
creasingly larger subsets of the reachable state space, guided
by admissible heuristics to prune regions that cannot satisfy
the constraints or are too costly to form part of an optimal
policy. When guided by informative heuristics, PLTL-dual
only needs to expand a fraction of the reachable state space to
find an optimal policy satisfying the constraints. This yields
significant scalability improvements over the conventional
approach implemented in PRISM.

Unfortunately, effective heuristic guidance can be difficult
to obtain. Classical planning enjoys a multitude of admissible
heuristics (Bonet and Geffner 2001; Helmert, Haslum, and
Hoffmann 2007; Helmert and Domshlak 2009; Pommeren-
ing et al. 2014). However, it is only recently that the first
SSP heuristics taking into account both probabilities and
costs have been proposed (Trevizan, Thiébaux, and Haslum
2017). Moreover, only a couple of heuristics exist for de-
terministic planning with LTL-like constraints (Baier, Bac-
chus, and McIlraith 2009; Bienvenu, Fritz, and McIlraith
2011), and heuristic search for SSPs with probabilistic LTL
constraints is in its infancy. Baumgartner et al. started to in-
vestigate the latter, and devised projection heuristics based
on a representation of LTL formulae and policy modes in
terms of non-deterministic Büchi automata (NBA) (Vardi
and Wolper 1994; Babiak et al. 2012). Their experimental
results show that the size of the linear programs (LPs) re-
quired to represent the projections of NBAs grows unaccept-
ably large, so that the projection heuristic with NBAs larger
than 100 states obtains worse results than the trivial heuris-
tic (Pr(ψi) = 1 ∀i). To avoid generating NBAs, they also
experimented with modes obtained by formula progression
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(Bacchus and Kabanza 1998) and the trivial heuristic, but
were unable to devise heuristics based on progression.

This paper presents the first admissible heuristics based
on progression for probabilistic LTL. These heuristics over-
estimate the probability of an LTL formula being satisfiable
by completions of a partial policy. We present two heuristic
estimates. The first loosely ties together various projections of
the MO-PLTL SSP over subsets of state variables chosen via
a principled examination of the formulae. The second applies
a further relaxation that decomposes the formulae, sums the
probabilities of disjuncts, and averages the probabilities of
conjuncts. We show how to embed the computation of these
heuristics into the LPs used by PLTL-dual, which makes
optimisation and heuristic estimation synergic and avoids
repeated calls to heuristic estimators. Our results show that
the progression heuristics are competitive and further increase
the superiority of PLTL-dual over PRISM.

The paper starts with background on MO-PLTL SSPs in
Section 2. Sections 3 and 4 describe the projection and de-
composition heuristics, respectively, and Section 5 their inte-
gration into PLTL-dual. Section 6 gives experimental results
and Section 7 concludes with related and future work.

2 Background
2.1 MO-PLTL SSPs
A Stochastic Shortest Path problem (SSP) with Multi-
Objective Probabilistic Temporal Logic (MO-PLTL) con-
straints is a tuple 〈L, S, s0,G,A, P, C, ~ψ〉 where: L is a set
of atoms, S ⊆ 2L is the finite set of states; s0 ∈ S is the
initial state; G ⊆ S is the non-empty set of goal states; A
is the finite set of actions and we write A(s) for the set of
actions applicable in state s; P (s′|s, a) is the probability of
transitioning from s to s′ when action a ∈ A(s) is applied
in s; C(a) ∈ R∗+ is the immediate cost of applying action
a; and ~ψ is a vector of k probabilistic LTL constraints. Each
constraint is of the form ψi ≡ Pr(ψi) ∈ zi where ψi is a
linear temporal logic (LTL) formula over atoms in L, and
zi⊆ [0, 1] is an interval bounding its probability.

We assume that the reader is familiar with Linear Temporal
Logic (LTL) and refer to (Baier and Katoen 2008) for a de-
tailed account. Briefly, the standard version of LTL specifies
properties of infinite sequences of states (or paths). It extends
propositional logic with the operators Xϕ, which holds if ϕ
holds at the next position in the sequence, and ψUϕ, which
specifies that ψ must hold at every point in the sequence
until ϕ holds. We also use the operator ψRϕ = ¬(¬ψU¬ϕ)
which is required by the transformation to negation normal
form assumed in Subsection 3.2.

The standard semantics of LTL specifies when an infinite
path q satisfies the formula ϕ, which we write q |= ϕ. How-
ever, in planning, the sequences we seek are finite and end
in a goal state.1 For a finite path p ending in state last(p),
we follow Baumgartner et al. (2018) in using the Infinite
Extension Semantics (Bacchus and Kabanza 1998; Bauer and
Haslum 2010), which stipulates that p satisfies ϕ iff the infi-
nite sequence that loops in the final state of p satisfies ϕ, i.e.

1For SSPs the lengths of the finite paths to the goal are un-
bounded, which is why SSPs are said to have an indefinite horizon.

iff p last(p)ω |= ϕ. Our heuristics can trivially be adapted
to slightly different finite path semantics, such as f -FOLTL
(Baier and McIlraith 2006) or LTLf (De Giacomo and Vardi
2013). Note that we do not require the formulas to be either
safe or co-safe, as in e.g. (Lacerda, Parker, and Hawes 2015).

A solution to an MO-PLTL SSP is a stochastic finite-
memory policy, π : S×M×A→ [0, 1] whereM is a set of
mode vectors ~m which act as memory for the policy, starting
from an initial mode vector ~m0. Intuitively, each element
mi of ~m is the memory that keeps track of the satisfaction
of the LTL formula ψi, and is updated upon transitioning
between states. For the purpose of this paper, we assume that
this update function is deterministic2 (i.e., a single mode ~m′

may result from updating mode ~m when the state changes
from s to s′). The policy maps the current state s and mode
vector to a probability distribution over the applicable actions
A(s). Due to the determinism of the mode update function,
the policy corresponds to a Markov chain and its execution
induces a probability distribution over the sequences of states
of the MO-PLTL SSP. A valid policy must reach the goal
G with probability 1 and satisfy the PLTL constraints, i.e.
the probability mass of the sequences satisfying ψi must fall
within zi. An optimal policy is a valid policy with minimal
expected cost.

We consider policies whose modes are obtained by pro-
gression of the LTL formulae (Bacchus and Kabanza 1998).
As shown by Baumgartner et al., this does not compromise
optimality. Formula progression is a technique to track an
agent’s progress towards satisfying an LTL formula, as the
sequence of states followed when executing the policy un-
folds. Progression looks at the current state s of the sequence
and at the formula ϕ to satisfy, and returns a new formula
ϕ′ = prog(s, ϕ) that must be satisfied by the rest of the se-
quence: sp |= ϕ iff p |= ϕ′. Fitting with infinite extension
semantics, we also define idle(s, ϕ) which returns true if
and only if sω |= ϕ. Using progression, the policy modes
are vectors of LTL formulae ~ϕ = (ϕ1, . . . , ϕk), and upon
transitioning to s, are updated with prog(s, ϕi) for all i.

2.2 Solution Approaches for MO-PLTL SSPs
Existing solution approaches compile the MO-PLTL SSP
into the problem of minimising the cost of reaching certain
accepting states with the required probabilities. This analy-
sis is performed in an augmented state space which is the
synchronised product of the regular state space S and the
mode spaceM. More precisely, the augmented state space
is S× = S × M; the initial state is t0 = 〈s0, ~ϕ0〉 where
the initial mode ~ϕ0 is such that ϕ0i = prog(s0, ψi) for all
i, the set of goal states is G× = G ×M; the action appli-
cability function is A×(〈s,ϕ〉) = A(s), the transition prob-
ability distribution is P×(〈s′,~ϕ′〉|〈s,~ϕ〉, a) = P (s′|s, a) if
ϕ′i = prog(ϕi, s

′) for all i and 0 otherwise; and the accepting
states with respect to the ith constraint of the MO-PLTL SSP
are Ti = {〈s,~ϕ〉 ∈ G×| idle(s, ϕi)}.

In theory, this reachability problem can be solved by a
linear program, known as the dual LP, whose variables are the

2More permissive options are possible, provided that the syn-
chronised product described in Subsection 2.2 is an SSP.
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occupation measures xt,a representing the expected number
of times action a will be performed in state t = 〈s,~ϕ〉 ∈ S×

when executing the policy – see (Altman 1999; Baier and
Katoen 2008; Baumgartner, Thiébaux, and Trevizan 2018):

min
xt,a≥0

∑
t∈S×,a∈A×(t)

xt,aC(a) (LP1)

s.t. in(t) =
∑

t′∈S×,a∈A×(t′)

xt′,aP
×(t|t′, a) ∀t ∈ S× (C1)

out(t) =
∑
a∈A×(t) xt,a ∀t ∈ S×\ G× (C2)

out(t0)− in(t0) = 1 (C3)

out(t)− in(t) = 0 ∀t ∈ S×\ (G×∪ {t0}) (C4)∑
tg∈G× in(t) = 1 (C5)∑
t∈Ti in(t) ∈ zi ∀ψi ∈ ~ψ (C6)

LP1 can be viewed as a flow problem where xt,a describes
the flow leaving state t via action a and xt,aP (t′|t, a) units
of flow reaching each successor state t′. The objective repre-
sents the total expected cost to reach the goal (sink) from the
initial state (source). The functions in(t) and out(t) in C1-
C2 are shorthand for the incoming and outgoing flow for state
t. C3-C5 represent, respectively, the source, the flow preser-
vation and the sink of the flow network, and C6 enforces
the constraints on the probability of reaching an accepting
state. The optimal solution x∗ of LP1 can be converted into
an optimal policy π∗(t, a) = x∗t,a/

∑
a′∈A×(t) x

∗
t,a′ .

LP1, with its |S| ×
∏
i 22|ψi| × |A| variables, is unaccept-

ably large. Hence, Baumgartner et al. (2018) investigated a
heuristic search approach, PLTL-dual, which only applies
LP1 to a subset of the augmented state space, constructed on
the fly, starting from t0. At each iteration, the search expands
the fringe states reachable under the optimal policy found at
the previous iteration and runs the LP. The search stops if
the LP finds a proper policy as this policy is guaranteed to
be optimal. If the MO-PLTL SSP is unsolvable, an infeasible
LP will be produced at some iteration when or before the
complete augmented state space is generated.

The search is guided by k + 1 admissible heuristics to
evaluate fringe states: a cost heuristic that under-estimates
the expected cost of reaching the goal, guiding the search
towards cheap policies; and one heuristic for each PLTL con-
straint that over-estimates3 the probability of the respective
formula, guiding the search towards valid policies. These
heuristics map probability distributions P over the fringe of
S× to R+. The set F of reachable fringe states is the sup-
port of P, i.e., F = {〈s,~ϕ〉 ∈ S×|P(s, ~ϕ) > 0}. A heuris-
tic hψi for PLTL constraint ψi is admissible if, for all P,
hψi(P) ≥

∑
〈s,~ϕ〉∈F P(s, ~ϕ) × Pr∗(ϕi|s), where Pr∗(ϕi|s)

is the maximum probability of satisfying ϕi from state 〈s,~ϕ〉
over the set of optimal policies.

Baumgartner et al. (2018) uses the hpom heuristic (Tre-
vizan, Thiébaux, and Haslum 2017) to estimate cost, and a
heuristic hBA based on the NBA representation of LTL for-

3Note that over-estimates of probabilities are sufficient: PLTL-
dual obviates the need to compute under-estimates by converting
every constraint Pr(ψi)∈ [zi, zi] into two lower bound constraints:
Pr(ψi) ∈ [zi, 1] and Pr(¬ψi) ∈ [1− zi, 1].

mulae to estimate probabilities. However, these heuristics do
not scale to NBAs exceeding 100 states.4 In the rest of this
paper, we show that more powerful heuristics for estimating
probabilities can be directly obtained from the progressed
formulae labelling the fringe states, and present two such
heuristics, hpom

ψ which is based on projection and hdec
ψ which

is based on a further decomposition of the formula. These
heuristics apply to a single constraint, which we write as
ψ ≡ Pr(ψ) ∈ z to simplify notation.

3 LTL Projection
In this section we introduce our heuristic for PLTL constraints
based on a set of projections, i.e., a set of smaller MO-PLTL
SSPs obtained by ignoring different subsets of atomic propo-
sitions. Each of these projections simplify the underlying SSP
and one of our novel contributions is to show how to simplify
the LTL formulae to obtain a meaningful heuristic. We first
describe the multi-variable projections, then we introduce our
LTL formula projection and show how to integrate different
projections into a single heuristic.

3.1 Underlying SSP Projection
For the remainder of this paper, we assume that the set of
atomic propositions L is compactly represented as in SAS+

(Bäckström 1992), using a set of multi-valued variables v∈V ,
each with a finite domain Dv . This allows us to represent each
state s∈S as a set of values, one per state variable, and we
denote by s[v]∈Dv the value of v in s. We also assume that
the actions in A are represented compactly using partial valu-
ations over V , i.e., using functions from V to×v∈V(Dv∪{⊥})
where s[v]=⊥ denotes that v has no assigned value. Using
this representation, an action a consists of: a partial valuation
pre(a) denoting its precondition; a set eff(a) of partial valu-
ations representing the effects of the action; and a probability
distribution Pa(·) over effects e ∈ eff(a) representing the
probability of e being selected when a is applied. The result
of applying an effect e in a state s∈S is the state res(s, e)∈S
such that, for all state variables v of s, res(s, e)[v]=e[v] if
e[v] 6=⊥ and res(s, e)[v]=s[v] otherwise.

Given a non-empty set of variables U ⊂ V , the pro-
jection of a state s onto U is a state sU ∈ ×v∈U Dv s.t.
sU [v] = s[v] for all v ∈ U . The projection of an MO-
PLTL SSP onto U is 〈LU , SU , sU0 ,GU ,A, PU , C,ψU 〉 where:

LU = {(v = d)|v ∈ U , d ∈ Dv};
SU =×

v∈U
Dv;

GU = {sU |s ∈ G}; and
if a is applicable in sU ∈ SU (i.e., pre(a)[v] ∈ {⊥, sU [v]}
for all v ∈ U ) then

PU (sU
′|sU , a) =

∑
e∈eff(a)

s.t. sU ′=res(sU ,e)

Pa(e).

Next, we show how to project the PLTL constraint ψ onto U
to obtain ψU .

4Using the LTLf semantics (De Giacomo and Vardi 2013) and
finite automata would not remedy this issue.
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3.2 Formula Projection
When projecting a formula ψ onto a set of variables U , we
assume without loss of generality that ψ is in negation normal
form without spurious > and ⊥, and we relax the PLTL con-
straint by assuming that each instance of a forgotten variable
(in V \ U) is independent of the others. That is, multiple in-
stances of a forgotten variable can variously be assigned true
or false at each state in a path. Under these assumptions, all
literals in ψ containing forgotten variables can be trivially re-
placed with >, allowing the formula to be further simplified.
For instance, a formula F(v1 = 1)∧((v1 = 3)U(¬(v2 = 1)))
when projected onto {v2} would become >U(¬(v2 = 1)),
preserving the requirement that v2 must eventually not be 1.

We now explain how to choose suitable sets U of variables
to project onto. The aim of a PLTL heuristic is to extract
some information about how to satisfy a constraint; there
is no point if after projection the formula is trivial (i.e., it
simplifies to > or ⊥). Let minvars(ψ) be the minimal set of
variable combinations {C1, . . . , Cn}, such that the projection
of ψ onto the variables U is non-trivial if and only if there
is some combination Cj ∈ minvars(ψ) s.t. Cj ⊆ U . It can
clearly be seen that the set minvars(ψ) can be computed
recursively as follows:

minvars(>) = minvars(⊥) = ∅
minvars((v = d)) = minvars(¬(v = d)) = {{v}}
minvars(ψ1 ∧ ψ2) = reduce(minvars(ψ1) ∪minvars(ψ2))

minvars(ψ1 ∨ ψ2) = reduce({C1 ∪ C2|C1 ∈ minvars(ψ1),

C2 ∈ minvars(ψ2)})
minvars(Xψ) = minvars(ψ)

minvars(ψ1Uψ2) = minvars(ψ1Rψ2) = minvars(ψ2)

where the reduce operator removes combinations that are sub-
sumed by others. Consider our earlier example ψ = F(v1 =
1) ∧ ((v1 = 3)U(¬(v2 = 1))). Projecting onto {v1} will
preserve the left hand side of the ∧, and {v2} only the right
hand side of the U. Note that projecting ψ onto {v1, v2} is
also non-trivial, but any set U with {v1, v2} ⊆ U also has
{v1} ⊆ U , so {v1, v2} does not appear in the minimal set
of combinations. Hence minvars(ψ) = {{v1}, {v2}}. We
choose a set of combinations Pψ randomly from minvars(ψ)
such that Pψ covers the set of variables in ψ. Our heuristic
projects the MO-PLTL SSP onto each of these combinations
in Pψ and ties these projections together as explained below.

3.3 Tying Projections
For each combination Cj in Pψ , we build a dual LP (LP1) for
the projection of the MO-PLTL problem onto Cj . We denote
the set of reachable augmented states in this projection S×j .

These projections are tied together by extra tying con-
straints which enforce that each projection should use each
action an equal number of times in expectation:∑

t∈S×j
xt,a=

∑
t∈S×

j′
xt,a ∀Cj , Cj′ ∈Pψ, a∈A (C7)

The heuristic hpom
ψ (P) injects P(s, ϕ) flow into each network

at the projection of each fringe state 〈s,ϕ〉 ∈ F, and max-
imises the amount of flow reaching the accepting states of
the projection.5 The heuristic estimate is that maximum.

5It is possible that for a fringe state the projection of that state is

hpom
ψ is admissible. The proof follows from the fact that

the literal independence assumption makes formulae easier
to satisfy. Hence any path from a state in F which reaches a
goal state and satisfies ψ can be projected onto each S×j and
will reach a goal and satisfy the projection of ψ.

4 LTL Decomposition
We now present a second admissible heuristic hdec

ψ for a sin-
gle PLTL constraint. This heuristic combines projection with
a complementary relaxation of PLTL constraints, so it is as-
sumed in this section that the underlying SSP and ψ have
already been projected onto a subset of the SAS+ variables
as in the previous section. We call this second relaxation de-
composition, as it decomposes the progression formulae into
sub-formulae. Decomposition over-estimates the probability
of satisfying a formula in conjunctive normal form (CNF)
by summing the probability of disjuncts and averaging the
probability of conjuncts.

For the rest of this paper, we assume progression also con-
verts formulae to CNF. Any LTL formula can be expanded to
the form

∧
i(αi∨

∨
j φij) where each αi is a finite disjunction

of literals, and each φij is an LTL formula in negation normal
form prefixed by the next operator X. During progression,
each αi can be evaluated against the current state interpre-
tation, and we refer to the resulting form as CNF, to

∨
j φij

as a clause, and to φij as an X-literal. While this CNF trans-
formation results in an exponential blowup in formula size,
it is only necessary in hdec

ψ , and is used in conjunction with
formula projection. In practice, projection simplifies the for-
mula such that the exponential blowup doesn’t significantly
affect the heuristic’s performance.

For convenience, we represent a formula in CNF as a set
of sets; a set Ψ represents the formula

∧
Φ∈Ψ

∨
φ∈Φ φ. The

set of X-literals in a CNF formula Ψ is D(Ψ), called the
decomposition of Ψ. It is convenient to define the set of
X-literals which might arise from progression of a formula
ψ. We denote this set Σ(ψ), and it is the set of temporal
subformulae of ψ prefixed by X.

We denote the probability of satisfying a formula Ψ from
a state s as Pr(Ψ|s). To estimate the probability Pr(Ψ|s) we
observe the following inequalities:

Pr(Ψ|s) ≤
∑

Φ∈Ψ Pr(Φ|s)/|Ψ| (1)

Pr(Φ|s) ≤
∑
φ∈Φ Pr(φ|s) (2)

Pr(φ|s)= max
a∈A(s)

∑
s′∈S

P (s′|s, a)Pr(prog(s′, φ)|s′) (3)

Applied recursively, these inequalities find an over-estimate
for the probability while only optimising actions in states
with X-literal modes in Σ(ψ).

To encode this optimisation in our LP framework, we
use a flow network which exhibits duplication of flow. The
variables are occupation measures xs,φ,a representing flow
leaving the pair 〈s,φ〉 via action a. Under SSP dynamics with
progression, the flow along xs,φ,a would be shared between
the pairs 〈s′,prog(s′, φ)〉 such that s′ is reachable via a, but

not present in an LP, in which case that LP is extended to include
this state and all projected states reachable from it.
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Figure 1: An example of flow from multiple states labelled
with CNF formulae being redistributed to decomposed modes.
Dotted lines denote the movement of flow by redistribution,
and solid lines denote occupation measures.

instead is duplicated and redirected to pairs 〈s′,φ′〉 for φ′∈
D(prog(s′, φ)). Let IΨ,φ = |{Φ ∈ Ψ|φ ∈ Φ}| be the number
of occurrences of φ in Ψ. We define the functions:

in(s,Ψ) ≡
∑

s′∈S,a∈A(s′)
φ∈Σ(ψ):prog(s,φ)=Ψ

P (s|s′, a)xs′,φ,a

out(s, φ) ≡
∑
a∈A(s) xs,φ,a

rec(s, φ) ≡
∑

Ψ:φ∈D(Ψ)
IΨ,φ
|Ψ| in(s,Ψ)

The function in() represents the flow into states with CNF
modes, rec() represents flow received from these to X-literal
modes, and out() represents the flow leaving one of these
state-X-literal pairs. Note that rec() represents both Eqs. (1)
and (2) by splitting flow evenly between clauses and subse-
quently duplicating flow to each X-literal. See Fig. 1 for an
example of this flow redistribution.

Flow in this network sinks at pairs 〈s,Ψ〉 not only where
s∈G but also if Ψ=> or Ψ=⊥, as there is no decomposition
for > and ⊥. Let the set of these sinks be F . We maximise
flow into the accepting sinks, i.e., 〈s,Ψ〉∈T or Ψ =>. Let
the set of these pairs be Ĝ⊂F . The amount of flow reaching
the accepting sinks is represented by the variable sinkacc.

The following linear constraints define the decomposition
flow network, using only O(|S× Σ(ψ)× A |) variables.

max sinkacc (LP2)
s.t. xs,φ,a ≥ 0 ∀s ∈ S, φ ∈ Σ(ψ), a ∈ A(s) (C8)

sinkacc ≤ 1 (C9)

out(s, φ)−rec(s, φ) ≤
∑

Ψ:〈s,Ψ〉∈F

P(s,Ψ)× IΨ,φ

|Ψ|
∀s∈S\G,
φ∈Σ(ψ)

(C10)

sinkacc −
∑

〈s,Ψ〉∈F∩Ĝ

P(s,Ψ) =
∑

〈s,Ψ〉∈Ĝ

in(s,Ψ) (C11)

Here C10 requires that flow leaving a state must enter it,
and the right hand side allows for flow to be sourced from
fringe states. Note that the right hand side will be 0 when
there is no fringe state feeding into the decomposed state/X-

A A1

B

B1

B2

C

C1

C2

C3

Figure 2: An example of flow synchronised between both
networks. The blue/red labels above/below transitions show
flow in the primary/secondary network.

literal pair, i.e., @〈s,Ψ〉 ∈ F with φ ∈ D(Ψ). This constraint
is an inequality so that flow can be leaked from anywhere in
the network, a technique previously used to solve SSPs with
dead ends in (Trevizan, Teichteil-Königsbuch, and Thiébaux
2017). C11 defines sinkacc, taking into account fringe states
which project to the goal.

5 Integration with PLTL-dual
The state-of-the-art heuristic search algorithm for solving
MO-PLTL SSPs is PLTL-dual (Baumgartner, Thiébaux, and
Trevizan 2018). We integrate both hpom

ψ and hdec
ψ with PLTL-

dual to evaluate their performance. PLTL-dual interfaces
with heuristics in a unique way, iteratively solving LPs rep-
resenting progressively larger subsets of the state space, and
including the heuristic computation in this same LP. In this
way, the heuristic is computed for all fringe states at once,
simultaneously with finding the shortest path.

The vast majority of the information extracted from heuris-
tics in PLTL-dual is via tying constraints. For estimating
the cost, PLTL-dual maintains an instance of hpom (Trevizan,
Thiébaux, and Haslum 2017), and this is tied to the heuristic
for each constraint, so actions necessary to satisfy a constraint
are used in the cost heuristic also.

While hpom
ψ can be tied directly with PLTL-dual, tying hdec

ψ

first requires the introduction of the concept of flow retracing.

5.1 Flow Retracing
To over-estimate the probability, the network in the previous
section (which we call the primary network) finds a proba-
bilistic path through a relaxation of MO-PLTL SSP dynamics.
Because of flow duplication, occupation measures in the pri-
mary network don’t correspond to the original dynamics,
compromising the use of tying constraints. To bridge this
gap, we introduce a secondary network which retraces flow
that reached accepting states without duplication. This can
be thought of as finding a probability distribution on paths
through the primary network to accepting states, as illustrated
in Fig. 2. The secondary network is represented by further
constraints which find this probability distribution concur-
rently with the optimisation of the primary network. It is this
secondary network that we tie to hpom in PLTL-dual.

Fig. 2 illustrates the secondary network tracing flow
through the primary network. Since there is no accepting
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path from state B to the goal, primary flow into it is leaked
after being redistributed. The probabilistic action out of A1

lets only 0.5 units of flow into state C, all of which eventually
reaches accepting goal states. The flow entering C1 may be
leaked even if there is a path to an accepting goal state, as the
secondary network flow is bottlenecked by the 0.5 units of
primary flow from A1 to C. As such, the secondary network
traces only 0.5 units of flow through the primary network.

The secondary network uses an all-outcomes determinisa-
tion (Yoon, Fern, and Givan 2007), allowing flow to “choose”
which outcome of an action it follows, and which X-literal
to be distributed to. The variables in the secondary network
are occupation measures for both states with CNF modes and
those with X-literals. These are denoted ys,Ψ,φ and ys,φ,a,s′
respectively. The first represents flow being redistributed in
the state s from the mode Ψ to φ, the second represents flow
leaving s with φ via action a and reaching the state s′.

For convenience we define the following functions for the
secondary network. These are self-explanatory, but have a
notable distinction between X-literal modes and CNF modes,
similarly to the primary network:

in2(s,Ψ) =
∑

s′∈S,φ∈Σ(ψ),a∈A(s′):
Ψ=prog(s,φ)∧P (s|s′,a)>0

ys′,φ,a,s out2(s, φ) =
∑

a∈A(s),s′∈S:
P (s|s′,a)>0

ys,φ,a,s′

in2(s, φ) =
∑

Ψ:φ∈D(Ψ)

ys,Ψ,φ out2(s,Ψ) =
∑

φ∈D(Ψ)

ys,Ψ,φ

The secondary network retraces flow reaching accepting
state pairs in Ĝ. As not all the flow reaching the fringe neces-
sarily can leave the secondary network through these states,
the flow entering it is similarly limited. We add the variables
is,Ψ for each fringe state to represent the amount of flow en-
tering the secondary network from that state. The constraints
for flow through the secondary network are:

ys,φ,a,s′ ≥ 0 ∀s, s′∈S, φ∈Σ(ψ), a∈A(s) :P (s′|s, a)>0 (C12)

ys,Ψ,φ ≥ 0 ∀s ∈ S,Ψ ∈ 22Σ(ψ)

, φ ∈ D(Ψ) (C13)
0 ≤ is,Ψ ≤ 1 ∀〈s,Ψ〉 ∈ F \ F (C14)
is,Ψ ≤ P(s,Ψ) ∀〈s,Ψ〉 ∈ F \ F (C15)
out2(s,Ψ)− in2(s,Ψ) = is,Ψ ∀〈s,Ψ〉 ∈ F \ F (C16)

out2(s,Ψ)− in2(s,Ψ) = 0 ∀〈s,Ψ〉∈S× 22Σ(ψ)

\(F∩F) (C17)
out2(s, φ)− in2(s, φ) = 0 ∀〈s,φ〉 ∈ S× Σ(ψ) (C18)∑

〈s,Ψ〉∈Ĝ in2(s,Ψ) =
∑

〈s,Ψ〉∈F is,Ψ (C19)

The input variables is,Ψ must not exceed the actual flow
entering from the associated fringe state (C15), and the flow
entering the network must be the same as the flow leaving it
(C19). Similarly, the flow entering each state must equal the
flow leaving it (C17, C18), allowing for the flow entering the
network at fringe states (C16). Note that for C13 and C17,
only the variables for the set of reachable CNF formulae need
to be generated, rather than the full mode set 22Σ(ψ)

.
As well as secondary network’s constraints (C12-C19), we

add constraints between the two networks, upper-bounding
the secondary network relative to the primary network. Flow
along actions is restricted by C21, and flow redistributed in
decomposition is upper bounded by C22 and C23, where
the right hand side of C22 takes into account flow entering

the network from the fringe. C20 forces the flow leaving the
secondary network to match the flow leaving the primary
network. The combination of C11, C19 and C20 make the
flow entering each network and leaving each network via
pairs in Ĝ identical.∑

〈s,Ψ〉∈Ĝ in(s,Ψ) =
∑

〈s,Ψ〉∈Ĝ in2(s,Ψ) (C20)

ys,φ,a,s′−xs,φ,a×P (s′|s, a) ≤ 0 ∀ys,φ,a,s′ (C21)

ys,Ψ,φ−in(s,Ψ)× IΨ,φ

|Ψ|
≤
∑

Ψ:〈s,Ψ〉∈F

P(s,Ψ)× IΨ,φ

|Ψ|
∀〈s,Ψ〉 ∈ F,
φ ∈ D(Ψ)

(C22)

ys,Ψ,φ−in(s,Ψ)× IΨ,φ
|Ψ| ≤ 0 ∀〈s,Ψ〉∈S×22Σ(ψ)

\F, φ∈D(Ψ) (C23)

5.2 Tying Constraints
As mentioned above, PLTL heuristics in PLTL-dual are tied
to the cost heuristic which consists of a set of projections,
one of each variable v, and ignores the PLTL constraints.

The cost heuristic can be tied to hpom
ψ using constraints

similar to C7. The distribution P is then defined by the flow
into the fringe states in PLTL-dual and the cost and PLTL
heuristics are computed concurrently with the path optimisa-
tion.

Tying hdec
ψ to the cost heuristic is also relatively straight-

forward. Let xd,a be the occupation measure for the action a
and the value d∈Dv of the projection onto some variable v
used by the cost heuristic. Each projection in hdec

ψ is then tied
this the projection onto v using the tying constraints below:∑
s,s′∈S,φ∈Σ(ψ):
P (s|s′,a)>0

ys,φ,a,s′ ≤
∑
d∈Dv

xd,a ∀a ∈ A (C24)

The choice of v in C24 doesn’t matter, as all projections
used by the cost heuristic are all tied together through equality
constraints and will yield the same result. Also, note that
the inequality in C24 forces actions necessary to satisfy the
constraint to be taken in each of the variable projections of
the cost heuristic, but not vice versa. This is because, the
network for each given PLTL constraint reaches its sink as
soon as an accepting state is reached for that constraint, rather
than continuing executing actions to reach the goal.

5.3 Admissibility of hdec
ψ in PLTL-dual

We provide a sketch of the proof of the admissibility of hdec
ψ

when integrated with PLTL-dual. Let x̂ be a solution to LP1,
inducing a valid policy π and let z = Pr(ψ | s0, π). W.l.o.g.,
we show that hdec

ψ (〈s0,Ψ0〉) ≥ z (the case of other extended
states 〈s,Ψ〉 can be handled by using them as initial state and
adjusting z appropriately). Also, let out(s,Ψ | π) be the flow
out of 〈s,Ψ〉 in our solution x̂.

Suppose for the sake of contradiction that
hdec
ψ (〈s0,Ψ0〉) < z. The proof sketch is as follows: We

first construct a solution to the secondary network from x̂
satisfying C12-C19, then a solution for the primary network
satisfying C8-C11 and show that both networks satisfy
constraints C20-C23.

To construct the solution to the secondary network,
let Ts0,Ψ0,π be the set of finite trajectories t =
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〈s0,Ψ0〉, ..., 〈sn,Ψn〉 from 〈s0,Ψ0〉 reachable under π, such
that t |= Ψ0. By the semantics of progression, for each tra-
jectory t there exists at least one sequence of sets of LTL
formulae St0, ..., S

t
n (called satisfying assignments) such that

Sti ⊆ D(Ψi),

∀Φ ∈ Ψi, S
t
i ∩ Φ 6= ∅,

∀φtij ∈ Sti , ∀Φk ∈ prog(φtij , si+1), |Sti+1 ∩ Φk| = 1 and

∀φtij ∈ Sti , t[i...n] |= φtij

where t[i...n] is the subsequence of t starting at index i.
These sets represent, at each step, the literals in the formula
which will be satisfied by the remainder of the trajectory. We
can iteratively assign each φtij several weights wtijk, where

wt0j0 =
IΨ0,φ

t
0j

|Ψ0| , and wtijk =
Iprog(φt

(i−1)k
,st
i
),φt
ij

|prog(φt
(i−1)k

,sti)|
·
∑
l w

t
(i−1)kl.

These weights have the property that ∀i
∑
j,k w

t
ijk = 1.

We define all ys,φ,a,s′ and ys0,Ψ0,φ as follows:

ys,φ,a,s′ :=
∑

t∈Ts0,Ψ0,π

Pr(t) ·
( ∑

i,j,k s.t. sti=s,
φtij=φ,a

t
i=a,s

t
i+1=s′

wtijk

)

ys0,Ψ0,φ :=
∑

t∈Ts0,Ψ0,π

Pr(t) ·
( ∑
j s.t. φ=φt0j

wt0j0

)
and all other ys,Ψ,φ as:

ys,Ψ,φ :=
∑

t∈Ts0,Ψ0,π

Pr(t) ·
( ∑

i,j,k s.t. sti=s,
prog(φt(i−1)k,s

t
i)=Ψ,φtij=φ

wtijk

)

Under this construction, as the weights at each step sum
to 1, then the flow entering accepting goal states in the sec-
ondary network is

∑
t∈Ts0,Ψ0,π

Pr(t) = z.
For the primary network, we construct a solution from

the trajectories T ′s0,Ψ0,π
, which is the set of trajectories in-

duced by π, not conditioned on satisfying Ψ0. For a tra-
jectory t, for each φtij ∈ D(Ψt

i) we assign a weight vtij .
Note that unlike weights wtijk, these are not limited to a

set of satisfying assignments. We assign vt0j =
IΨ0,φ

t
0j

|Ψ0| , and

vtij =
∑
k

Iprog(φt
(i−1)k

,st
i
),φt
ij

|prog(φt
(i−1)k

,sti)|
·vt(i−1)k. These weights have the

property that, for φij ∈ Si, vtij ≥
∑
k w

t
ijk. We then assign

xs,φ,a :=
∑

t∈T ′s0,Ψ0,π

Pr(t) ·
( ∑
i,j s.t. sti=s,
φtij=φ,a

t
i=a

vtij

)

with an exception for xs,φ,ag which route flow into accepting
states. These variables are set to

xs,φ,ag :=
ys,φ,ag,g

Pr(g | s, ag)
where g is a goal state. Due to this, the primary network has
exactly z units of flow entering accepting states.

Note that tying constraints are consistent with this con-
struction when π is projected onto other cost constraints.

Now that we have a valid flow for both primary and sec-
ondary networks, we need to show that they satisfy con-
straints C20–C23, i.e., the primary network upper-bounds
the secondary network. Consider an action a from a state
〈s, φ〉. By construction, outcomes of a must be taken pro-
portionately to P (s′ | s, a) by the secondary network except
when the associated trajectories are not in Ts0,Ψ0,π. All tra-
jectories in T ′s0,Ψ0,π

are included in the primary network,
hence satisfying the upper bound in C21. From this we
have in(s,Ψ) ≥ in2(s,Ψ), and as weights are distributed
equivalently in both the primary and secondary network,
constraints C22 and C23 are also satisfied. Lastly, C20 is
true by construction, as both networks admit exactly z flow
into accepting states which contradicts our assumption that
hdec
ψ (〈s0,Ψ0〉) < z; therefore hdec

ψ is admissible.

6 Experimental Results
The heuristics were evaluated in comparison with the NBA
heuristic hBA (Baumgartner, Thiébaux, and Trevizan 2018)
and the trivial heuristic (h(P) = 1), as well as PRISM. As
the results for the 2019 Comparison of Tools for the Analysis
of Quantitative Formal Models (Hahn et al. 2019) shows,
PRISM is still one of the fastest model checkers available.
We used the default options of PRISM and the “-lp” flag to
use their LP approach to MO-PLTL SSPs because, without
this flag, PRISM was unable to solve any of our benchmarks.
The experiments were ran on an Intel i7-7700@3.6GHz using
Gurobi 8.1.1 on a single thread and a 20mins and 4Gb cutoff.

For evaluation, we use the Factory and Wall-e domains
from (Baumgartner, Thiébaux, and Trevizan 2018), and a
new domain called Priority Search. All domains include at
least one non co-safe and one non-safe formula. The prob-
lems in our experiments are represented in PPDDL (Younes
et al. 2005) and translated to probabilistic SAS+ using Fast
Downward (Helmert 2006). For PRISM, the probabilistic
SAS+ problems are translated to PRISM’s multi-valued lan-
guage. Both PPDDL and PRISM versions of the problems are
available at https://gitlab.com/fwt/mo-pltl-ssps-benchmarks.

The Priority Search domain is based on the Search and Res-
cue (SAR) domain (Trevizan, Thiébaux, and Haslum 2017)
and, in both domains, the agent controls a robot locating
missing victims of a disaster in an n × n grid. Each posi-
tion is randomly initialised as possibly containing a victim
with probability p. As in the SAR domain, the actions rep-
resent the agent moving in the environment and exploring
the current position; however, the fuel resource from SAR is
omitted to avoid confounding effects in the experiment since
hpom can handle them with ease which could be seen as an
unfair advantage against the baselines. The constraints in our
domain are also different from SAR which does not have any
PLTL constraints. The first constraint requires that eventually
all unknown locations must be searched. A contiguous line of
n− 1 locations is randomly initialised as the “danger zone”.
The second and third constraints are that locations in the
danger zone must be searched first, and with probability at
least 0.8, the robot must not stay inside the danger zone for
more than 2 steps.

The results, as the aggregate of multiple runs for each pa-
rameterisation of each domain, are presented in Fig. 3 for
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Figure 3: The solution time in seconds averaged over 10 runs for each problem.

n p PRISM Trivial
Heuristic hBA hdec

ψ hdec
ψ -pos hpom

ψ hpom
ψ -pos

4 0.25 100% 100% 75% 100% 100% 100% 100%
1.72±0.03 1.82±0.17 652±158 5.49±0.37 6.69±1.35 4.25±0.30 4.15±0.82

0.50 100% 100% 100% 100% 100% 100% 100%
57.6±1.94 74.1±24.9 272±88.8 167±53.8 60.4±23.2 141±50.6 32.3±12.6

0.75 0% 0% 0% 0% 55% 0% 75%
n.a. n.a. n.a. n.a. 624±222 n.a. 265±143

5 0.25 100% 100% 100% 100% 100% 100% 100%
34.7±1.68 46.0±130 127±36.2 128±30.0 75.2±15.6 91.6±23.3 40.4±11.0

0.50 0% 0% 0% 0% 30% 0% 70%
n.a. n.a. n.a. n.a. 600±457 n.a. 330±147

0.75 0% 0% 0% 0% 0% 0% 15%
n.a. n.a. n.a. n.a. n.a. n.a. 503±1124

Table 1: Results for Priority Search(n,p) problems averaged over 20 runs for each problem. The results are reported as “X Y±Z”
where X is the percentage of problems successfully solved and Y and Z are the average and its 95% conf. interval for the cpu-time
over solved problems. Best values for each problem is highlighted.

Wall-e and Factory, and in Table 1 for Priority Search. The
plots show the average time over 10 runs to solve problems
(with its 95% confidence interval) in the Factory and Wall-
e domains. The graphs use a log scale, and we omit points
which had less than 100% coverage. Table 1 shows the results
for 6 parameterisations of the Priority Search domain with
20 runs per entry. Since the algorithms considered compute
the optimal solution and do not rely on sampling, 10 runs
is enough to account for minor sources of randomisation,
e.g., tie breaking. The only exception is the random choice of
combinations used by hpom

ψ (Section 3.2); however, for both
wall-e and factory domains, there is only one possible combi-
nation and, for priority search domain, the 20 runs account
for the multiple possible combinations. Table 2 presents rele-
vant statistics of selected problems for each approach, e.g.,
size of the SSP, LPs, and automata, namely Deterministic
Rabin Automata (DRA) for PRISM and NBA for PLTL-dual
with the hBA heuristic.

In the Wall-e domain, either hpom
ψ or hdec

ψ dominates all the
other planners for n>3 and they are at least one order of mag-
nitude faster than the others planners for the largest problems
solved by them (n∈{6, 7}). hpom

ψ has the best performance
up to n=8 because it provides better guidance than the other
heuristics: hpom

ψ explored on average 31.3% (95%ci: ±0.02)

and 8.2% (95%ci: ±0.03) of the states explored by hdec
ψ and

hBA respectively for n≥4. However, hpom
ψ is unable to scale

up as well as hdec
ψ . For instance, for n=7, hpom

ψ uses almost
the double of LP variables as hdec

ψ for heuristic encoding (see
Table 2). This is because the Wall-e domain has at most 2
state variables in each constraint and, more importantly, only
a single state variable in its largest constraint, making the
hpom
ψ constraint relaxation ineffective. For n=16, hdec

ψ solved
9 out of 10 runs in 18m40s and exceeded the 20mins cutoff
in a single run while all runs exceeded the cutoff for n=17.

For Factory, hpom
ψ dominates all the other algorithms for

anything but small problems and is 1 to 2 orders of magnitude
faster than the other planners for n∈{7,8} and all k. More-
over, hpom

ψ is the only planner able to scale up to n=8, k>4
and n= 9. As in Wall-e, the dominance of hpom

ψ is because
it is more informative than the other heuristics: it explored
on average 44.5% (95%ci: ±0.09) of the states explored by
the second best planner for n>4 and all k. This can also be
observed in the size of the LP solved using hpom

ψ , for instance,
in problem 8-3, hpom

ψ uses 50% less LP variable to encode
its heuristic than hdec

ψ and its last LP solved is 20% of the
size of hdec

ψ ’s last LP. Notably, it was slower to apply hdec
ψ

than the trivial heuristic in factory, which can be attributed to
decomposition not being informative enough to make up for
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Wall-e (n) Factory (n-k) Priority Search (n, p)
problem 5 7 15 4-3 8-3 9-3 4, 0.5 5, 0.25 5, 0.50

SSP Size of S 90 182 870 256 65K 262K 4K 3K 212K
Size of A 315 671 3K 1K 736K 3M 38K 31K 2M

PRISM Size of largest DRA 2,857 – – 29,979 – – 256 128 –
# LP vars. used 80,920 – – 3,572 – – 112,863 92,467 –

hBA largest NBA size 48 256 – 13 137 266 512 256 –
# LP vars. for heur. 8,913 3,498 – 418 224 248 2,265 3,921 –
# vars. used in last LP 18,474 33,337 – 1,552 42,513 – 47,878 43,885 –
% time solving LPs 90.1% 90.1% – 41.9% 96.5% – 59.9% 72.9% –

trivial h. # vars. used in last LP 10,681 33,492 – 1,070 40,836 – 33,613 31,125
% time solving LPs 82.3% 90.4% – 44.3% 95.4% – 83.1% 77.4% –

hdec
ψ # LP vars. for heur. 5,454 13,412 116,444 785 4,683 6,110 9,264 13,943 23,822

# vars. used in last LP 9,533 20,134 145,071 1,965 36,891 – 27,457 32,188 68,421
% time solving LPs 70.9% 74.6% 81.4% 58.5% 96.7% – 85.6% 88.4% 89.6%

hpom
ψ # LP vars. for heur. 5,230 26,334 – 446 2,022 2,596 15,447 21,719 40,834

# vars. used in last LP 7,376 29,427 – 972 7,383 28,435 28,879 35,515 78,110
% time solving LPs 19.3% 30.7% – 16.1% 81.6% 84.3% 74.2% 74.1% 85.5%

Table 2: Statistics for each approach in selected problems. For priority search, the statistic are for hdec
ψ -pos and hpom

ψ -pos.

its computation time. For instance, hdec
ψ expanded only 8%

fewer states than with the trivial heuristic on average, as the
single directional tying constraints (C24) don’t capture the
bidirectional relationship between machines and production.

Lastly, for the Priority Search domain, the difference be-
tween hdec

ψ and hpom
ψ is not statistically significant and they

were dominated by PRISM for n = 4, p ∈ {0.25, 0.5} and
n= 5, p= 0.25. hdec

ψ and hpom
ψ underperform in this domain

because the choice of variables made by the process in Sec-
tion 3 is sub-optimal. This can be verified by manually includ-
ing the robot’s position in the projections which we refer to
as hpom

ψ -pos and hdec
ψ -pos. Considering hpom

ψ -pos and hdec
ψ -pos,

we have that hpom
ψ -pos is statistically tied with PRISM in the

small problems and dominates all other planners for large
instances (n = 4, p = 0.75 and n = 5, p ≥ 0.5). While sta-
tistically tied on time for small problem, hpom

ψ -pos expanded
15.1% (95%ci:±0.06) of the states visited by PRISM on aver-
age, thus solving much smaller LPs, e.g., for n=5, p=0.25,
its final LP’s size is on average 39% of that of PRISM’s sin-
gle LP. This advantage allows hpom

ψ -pos to scale up to larger
problems than PRISM. Moreover, hdec

ψ -pos is slower than
PRISM for small problem but it is still capable to scale up to
larger problems than PRISM. We can also see that hpom

ψ -pos
provides better guidance than hdec

ψ -pos, for instance hpom
ψ -pos

expanded 77.6% (95%ci: ±5.65) of the states expanded by
hdec
ψ -pos on problem n = 5, p = 0.25. Note however that

PRISM is a more general tool that can solve a larger class of
problems than MO-PLTL SSPs.

7 Conclusion, Related and Future Work
We presented new admissible heuristics for probabilistic plan-
ning with MO-PLTL constraints, and showed they compared
favourably to the only other heuristic available for these
problems (Baumgartner, Thiébaux, and Trevizan 2018). The
strength and novelty of our heuristics lie in principled ways
of choosing sets of variables on which to project LTL formu-
lae and relaxing the computation of their probabilities. These
contributions are enabled by progression, showing promise

for progression-based approaches to PLTL heuristics.
In related work, Lacerda et al. (2015) define a “task pro-

gression” metric that estimates the number of transitions
required to reach an accepting state from a given state of a
finite automaton for a co-safe LTL formula. This is then used
in a multi-objective MDP, to reward the extent to which an
LTL formula that cannot be satisfied by any policy has pro-
gressed towards an accepting state. The metric could be seen
as an admissible heuristic for co-safe LTL, which is however
not informed by the possible transitions of the environment.

Outside of probabilistic planning, there is a body of work
on heuristics for deterministic planning with temporally ex-
tended goals and preferences expressed using LTL variants
(Baier, Bacchus, and McIlraith 2009; Bienvenu, Fritz, and
McIlraith 2011). Among those, (Bienvenu, Fritz, and McIl-
raith 2011) uses progression to optimistically evaluate for-
mulae at fringe states, assuming the part of the formula that
cannot be idled to false in the current state is true. In addition
to being designed for a different problem where satisfaction
probability needs to be evaluated, our projection heuristic
can be more informative, as it is only optimistic over a sub-
set of the formula’s variables. The remainder of heuristic
search approaches to planning with LTL constraints compiles
LTL and finite LTL variants into various types of automata
whose description can directly be incorporated in the factored
planning problem descriptions. They are then handled using
standard heuristics that are not LTL-aware (Rintanen 2000;
Baier and McIlraith 2006; Edelkamp 2006; Torres and Baier
2015; Camacho et al. 2017).

Our future work includes decreasing the large number of
variables introduced to retrace accepting flow, since they are
greatly responsible for the overhead in hdec

ψ . We also plan to
experiment with techniques to split automata (Camacho et al.
2018) to improve PLTL-dual and the heuristics. Finally, we
would like to extend the heuristic search approach to deal
with more expressive logics (Baumgartner, Thiébaux, and
Trevizan 2017) and partially observable domains (Santana,
Thiébaux, and Williams 2016; Walraven and Spaan 2018).
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