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Abstract

Landmarks (LMs) are state features that need to be made
true or tasks that need to be contained in every solution of
a planning problem. They are a valuable source of informa-
tion in planning and can be exploited in various ways. LMs
have been used both in classical and hierarchical planning,
but while there is much work in classical planning, the tech-
niques in hierarchical planning are less evolved. We introduce
a novel LM generation method for Hierarchical Task Network
(HTN) planning and show that it is sound and incomplete. We
show that every complete approach is as hard as the co-class
of the underlying HTN problem, i.e. coNP-hard for our set-
ting (while our approach is in P). On a widely used bench-
mark set, our approach finds more than twice the number of
landmarks than the approach from the literature. Though our
focus is on LM generation, we show that the newly discov-
ered landmarks bear information beneficial for solvers.

Introduction
Planning is the task of finding a sequence of actions that
change the environment to fulfill a certain objective. Two
widely used approaches to planning are classical planning
and Hierarchical Task Network (HTN) planning. In classical
planning, the environment is described using a set of (propo-
sitional) state features that are modified by actions, which
define valid state transitions. The objective is to find a se-
quence of actions transforming the initial state of the system
into one in which certain goal features hold.

In HTN planning there are two kinds of tasks: actions
like in classical planning (also primitive tasks) and abstract
tasks, which are not applicable directly, but are decomposed
into other (primitive or abstract) tasks by using decompo-
sition methods. The objective in HTN planning is not to
fulfill a state-based goal condition, but to find an applica-
ble decomposition of a given abstract task. Since there is
(usually) more than one method for an abstract task, the hi-
erarchy implies a second combinatorial problem because a
planner has to choose the “right” one for a certain task. This
makes HTN planning more expressive (Erol, Hendler, and
Nau 1994, 1996; Höller et al. 2014, 2016). The process can
be seen as AND/OR tree (Kambhampati, Mali, and Srivas-
tava 1998; Ghallab, Nau, and Traverso 2004). Starting with
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the initial task, a planner chooses a single method (i.e. ab-
stract tasks form OR nodes) and has to include all subtasks
into the plan (i.e. methods form AND nodes), and so on.

A concept that has been successful especially in classical
planning is that of landmarks (LMs). LMs are state features
(or actions) that are made true (contained) in every solution.
It was first used for problem decomposition (Porteous, Se-
bastia, and Hoffmann 2001; Hoffmann, Porteous, and Sebas-
tia 2004) and later for creating non-admissible (see e.g. Zhu
and Givan (2003), Richter, Helmert, and Westphal (2008),
and Richter and Westphal (2010)) and admissible heuris-
tics (see e.g. Karpas and Domshlak (2009) or Helmert and
Domshlak (2009)) for heuristic search. LMs have also been
introduced in hierarchical planning. First in form of task
LMs in hybrid planning (Elkawkagy, Schattenberg, and Bi-
undo 2010) (an extension of HTN planning), later in form of
fact LMs in HGN planning, a formalism where the hierarchy
is defined on goals, not on tasks. The former can directly be
applied to HTN planning and will be the baseline for our
approach. While the latter can apply LM generation tech-
niques from classical planning directly (Shivashankar et al.
2013, 2016a,b; Shivashankar, Alford, and Aha 2017), the
presented techniques are not applicable to HTN planning.

Work on LMs can be divided into two orthogonal cate-
gories (Keyder, Richter, and Helmert 2010): LM utilization
showing how to exploit LM information, and LM genera-
tion, showing how to find LMs. We focus on the latter.

Based on techniques from classical planning, we intro-
duce a novel approach for LM generation in HTN planning
that elegantly combines the generation of fact, action, and
method LMs. It dominates the existing work (finding at least
the same LMs). Our approach is sound and incomplete. We
show that every (sound and) complete approach is as hard
as the co-class of the underlying plan existence problem,
i.e., in our setting – delete-effects and ordering-relations of
the HTN model are ignored during generation – coNP-hard
(while our approach is in P). On a widely used benchmark
set we find more than twice the number of LMs as related
work. We further show that the additional LMs bear valu-
able information for search guidance.

Formal Framework
A classical planning problem P is a tuple (F,A, s0, g, δ).
F is a set of propositional state features (or facts) used to
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describe the environment. A state s ∈ 2F is given by those
state features that hold in it, all others are supposed to be
false. s0 ∈ 2F is called the initial state and g ⊆ F is the
goal condition. A is a set of action names. The functions
δ = (prec, add , del) with prec, add , del : A → 2F map
them to state features defining their precondition, add ef-
fects, and delete effects, respectively. An action a is appli-
cable in a state s ∈ 2F if and only if its precondition is
contained in the current state, prec(a) ⊆ s. When a is ap-
plicable in s, the state s′ resulting from its application is
defined as s′ = (s \ del(a)) ∪ add(a). A sequence of ac-
tions (a1, a2, . . . , an) is applicable in a state s when action
ai with 1 ≤ i ≤ n is applicable in state si−1, where si for
1 ≤ i ≤ n results from applying the sequence up to action i.
The state si is called the state resulting from the application.
All states s ⊇ g are called goal states. A plan (or solution) is
an action sequence applicable in s0 resulting in a goal state.

We extend classical problems to HTN problems based on
the formalism of Geier and Bercher (2011). An HTN plan-
ning problemP = (F,A,C,M, s0, tnI , g, δ) extends a clas-
sical problem by a decomposition hierarchy on the things to
do, the tasks. Let A and C be the sets of primitive and ab-
stract (also compound) tasks. We assume that their intersec-
tion is empty and call the set of all task names N = A ∪ C.

Tasks are organized in task networks (TNs). A TN is a
triple tn = (T ,≺, α), where T is a set of identifiers (ids),
≺ a strict partial order on the ids, and α a mapping from ids
to actual tasks α : T → N . This definition allows having a
certain task more than once in a TN.

Planning starts with a special TN defining the objective of
the problem called initial task network tnI .

The decomposition rules are called (decomposition) meth-
ods M . They map a task c ∈ C to a TN, i.e. they are pairs
(c, tn). When a method (c, tn) is applied to a task t with
α(t) = c in a TN, the task is deleted from the network, the
tasks defined in tn are added and inherit the ordering rela-
tions previously present for t. A TN tn1 = (T1,≺1, α1)
is decomposed into a TN tn2 = (T2,≺2, α2) by a method
(c, tn), if it contains a task t ∈ T1 with α1(t) = c and there
is a TN tn ′ = (T ′,≺′, α′) equal to tn but using different ids
(i.e. T1 ∩ T ′ = ∅). tn2 is defined as follows:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We write tn1−−→t,m tn2 to denote that tn1 can be transformed
into tn2 by decomposing a task t contained in tn1 using
the method m. We write tn1 →∗ tn2 to denote that a TN
tn1 can be decomposed into a TN tn2 by using a (possibly
empty) sequence of methods.

The elements s0, g, and δ are defined as before. A solution
is a TN tnS = (TS ,≺S , αS) such that

1. tnI →∗ tnS , i.e. tnS can be created by decomposing tnI ,
2. all tasks are primitive, and
3. there is a sequence of all tasks in line with the ordering

constraints ≺S applicable in s0 resulting in a goal state.

An HTN planning system is not allowed to add tasks apart
from the decomposition process. Since we defined the HTN
problem as an extension of a classical problem, it contains a
state-based goal definition. Usually, this definition is empty
in HTN planning. Our LM generation works fine without it
and most instances in the benchmark set do not contain one.

The landmarks of a given problem are defined as follows:
Definition 1 (Task Landmark). A task landmark is a task
name n ∈ N such that every sequence of decompositions
leading to some solution tnS contains a task network in-
cluding the landmark. Thus, each decomposition sequence
from tnI to tnS has the form tnI →∗ tn →∗ tnS , where
tn = (T ,≺, α) with t ∈ T and α(t) = n.
Definition 2 (Method Landmark). A method landmark is a
method m ∈ M such that every sequence of decomposi-
tions leading to some solution tnS contains two task net-
works tn1 = (T1,≺1, α1) and tn2 such that there is a task
t ∈ T1 and it holds that tnI →∗ tn1 −−→t,m tn2 →∗ tnS .
Definition 3 (Fact Landmark). A fact landmark is a fact
f ∈ F such that for every solution tnS , every lineariza-
tion applicable in s0 in line with the ordering and resulting
in a goal state there is an intermediate state si with f ∈ si.

The definition for task landmarks (Def. 1) is essentially
equivalent to that of Elkawkagy et al. (2012, Def. 3), but
adapted to our formalism. The definition of fact landmarks
is a canonical adaptation of fact landmarks from classical
planning (Porteous, Sebastia, and Hoffmann 2001).

Landmark Generation in HTN Planning
The concept of landmarks in HTN-like planning has first
been studied by Elkawkagy, Schattenberg, and Biundo
(2010). They introduced a technique to identify tasks that are
contained in all methods (c, tn) ∈ M decomposing a cer-
tain task c by computing the intersection of their subtasks.
These tasks are called mandatory tasks. However, the gain
reported in the empirical evaluation was mainly caused by
a presented model reduction, not by the mandatory tasks. In
follow-up work Elkawkagy et al. (2012) tested how the com-
puted landmark information can be exploited by introduc-
ing and evaluating landmark-based search strategies. These
search strategies are tailored to the deployed search algo-
rithm, which prioritizes different methods that belong to the
same abstract task similar to SHOP (Nau et al. 2003; Gold-
man and Kuter 2019). However, whereas the SHOP systems
rely on depth-first search and the order of the methods is
specified in the model, Elkawkagy et al.’s system uses in-
formed search strategies and computes the methods’ order
based on the mandatory tasks. The core idea is to priori-
tize methods with fewer tasks, whereas only non-mandatory
tasks are considered as the latter have to be achieved any-
way. So, their work did not yet define a landmark heuristic
that can be exploited by standard heuristic HTN planners.

Bercher, Keen, and Biundo (2014) then introduced these
ideas to standard heuristic search, using mandatory task
landmarks for an admissible LM counting heuristic. To show
in which way we extend their LM heuristic (Bercher, Keen,
and Biundo 2014, Def. 1), we reproduce their definition, but
simplified and adapted to our notation:
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Definition 4 (Mandatory Task Landmarks). Let P =
(F,A,C,M, s0, tnI , g, δ) and tnI = (TI ,≺I , αI) be an
HTN planning problem. For a primitive task a ∈ A, we de-
fine the set of mandatory tasks as MT (a) = ∅ and for an
abstract task c ∈ C it is defined as follows:

MT (c) =
⋂

(c,(T ,≺,α))∈M

⋃
t∈T
{α(t)}

A set of MT landmarks LMmt for P can be computed by:

1 LMmt ←
⋃
t∈TI
{αI(t)}

2 while LMmt changes do
3 LMmt ← LMmt ∪

⋃
n∈LMmt MT (n)

The generation method collects tasks contained in all
methods belonging to the same abstract task. Thus all tasks
introduced at deeper levels cannot always be found. This,
however, could be improved by lookahead techniques as
done in early approaches in classical planning.

AND/OR Landmarks in HTN Planning
We now introduce HTN LM generation based on AND/OR
graphs, adapting a technique from classical planning. Since
the objective in classical planning is given in terms of a state-
based goal, techniques like LM generation usually rely on it.
When an HTN problem also includes one, techniques could
be directly applied on it, but it is usually not present. This
is a main problem when applying techniques from classi-
cal planning in HTN planning. One approach would be to
extract task LMs for the HTN model and calculate the state-
based LMs of the preconditions of primitive task LMs.

However, we introduce a more elegant approach that
smoothly combines the generation of task, method, and fact
LMs in HTN models based on the approach of Keyder,
Richter, and Helmert (2010). Their technique extracts LMs
from an AND/OR graph representation for delete-relaxed
classical planning problems that was introduced by Mirkis
and Domshlak (2007). We first introduce the approach of
Keyder, Richter, and Helmert and then show that it can
nicely be adapted to HTN planning.

Extracting Landmarks in Classical Planning Using
AND/OR Graphs
We use the definition of AND/OR graphs by Keyder,
Richter, and Helmert (2010, p. 2):
Definition 5 (AND/OR Graph). An AND/OR graph G =
(VI , Vand , Vor , E) is a directed graph with vertices V =
VI ∪ Vand ∪ Vor and edges E, where VI , Vand and Vor are
disjoint sets called initial nodes, AND nodes, and OR nodes,
respectively. A subgraph J = (V J , EJ) of G is said to jus-
tify VG ⊆ V if and only if the following conditions holds:

1. VG ⊆ V J
2. ∀a ∈ V J ∩ Vand : ∀(v, a) ∈ E : v ∈ V J ∧ (v, a) ∈ EJ
3. ∀o ∈ V J ∩ Vor : ∃(v, o) ∈ E : v ∈ V J ∧ (v, o) ∈ EJ
4. J is acyclic

Let P = (F,A, s0, g, δ) with δ = (prec, add , del) be a
delete-relaxed classical problem (∀a ∈ A : del(a) = ∅). It
can be represented as the following AND/OR graph (Mirkis
and Domshlak 2007; Keyder, Richter, and Helmert 2010):

Definition 6 (AND/OR representation of delete-relaxed
classical problems). Let G = (VI , Vand , Vor , E) with
VI = s0, Vand = A, and Vor = F \ s0. The set of edges is
defined as E = {(a, f) | a ∈ A, f ∈ add(a)} ∪ {(f, a) |
a ∈ A, f ∈ prec(a)}.

Landmarks in these graphs are characterized by the fol-
lowing definition (Keyder, Richter, and Helmert 2010):

Definition 7 (Landmarks in AND/OR graphs).

LM (v) = {v} for v ∈ VI ,

LM (v) = {v} ∪
⋂

u∈pred(v)

LM (u) for v ∈ Vor ,

LM (v) = {v} ∪
⋃

u∈pred(v)

LM (u) for v ∈ Vand ,

where pred(v) is the set of predecessors of v in G, i.e.
pred(v) = {u | (u, v) ∈ E}.

The set of landmarks for a problem is then defined as the
set of landmarks for the nodes representing the goal defini-
tion g, i.e. VG = g and we are looking for

⋃
n∈VG

LM(n).
Keyder, Richter, and Helmert calculate the maximal set

fulfilling these equations in P by initializing the LM sets of
all nodes apart from VI with the full LM set. Nodes in VI
are initialized with its own value. Then the sets are updated
using the given rules until a fixpoint is reached.

Extracting Landmarks in HTN Planning Using
AND/OR Graphs
From a high-level perspective, what is encoded in the
AND/OR graph is that for every state feature in the goal
condition, there must be (at least) one action that has it as an
add effect. When an action is in the graph, its preconditions
must be fulfilled, i.e. there must be at least one action (for
each precondition) with this state feature as add effect, and
so on (until the state features in the initial state are reached).

In HTN planning we find a similar structure: for each ab-
stract task in the initial task network, there must be a method
decomposing it. When a method is in the graph, all its sub-
tasks must be in the graph, and so on (until all tasks are prim-
itive). This similarity to AND/OR graphs has been pointed
out before (Kambhampati, Mali, and Srivastava 1998; Ghal-
lab, Nau, and Traverso 2004, Chapter 11).

However, we do not need to stop at this point: when we
have reached an action, we know that its preconditions need
to be fulfilled. So there must be actions that have those state
features as add effects. To reflect this in landmark genera-
tion, we do not replace the definition of the AND/OR graph
given before, but extend it in the following way.

Definition 8 (AND/OR representation of delete-relaxed
HTN problems). Let P = (F,A,C,M, s0, tnI , g, δ) be
an HTN planning problem. We define the corresponding
AND/OR graph as follows:
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Figure 1: Simple HTN domain. S and T are abstract tasks,
m1 to m3 methods, a and b actions, and x and z state fea-
tures. T might be decomposed bym1 into S and b, or bym2

into b. S can be decomposed by m3 into a.

G = (VI , Vand , Vor , E) with VI = s0, Vand = A ∪M 1

and Vor = F \ s0 ∪ C. The set of edges is defined as

E = {(a, f) | a ∈ A, f ∈ add(a)} ∪
{(f, a) | a ∈ A, f ∈ prec(a)} ∪
{(m, c) | m = (c, tn) ∈M} ∪
{(n,m) | m = (c, (T ,≺, α)) ∈M, t ∈ T , α(t) = n}

We generate the LMs as described Keyder, Richter, and
Helmert. Since the size of the graph is linear in the size of
the model, the following proposition holds:
Proposition 1. LM generation can be done in P.

The overall set of LMs is then defined based on the hier-
archy and (if present) state-based goal:
Definition 9 (HTN Landmarks). Let tnI = (TI ,≺I , αI) be
the problem’s initial task network. The overall set of HTN
and/or landmarks LM ao is defined as

LM ao =
⋃
v∈VG

LM(v) with VG =
⋃
t∈TI

{αI(t)} ∪
⋃
f∈g

{f}

Figure 1 illustrates the interplay of hierarchy and state
during LM generation. The initial task network contains a
single abstract task T that may be decomposed using the
methods m1 or m2, both introducing an action b. The ab-
stract task S can be decomposed into an action a using m3.
There are two state features x and z. The former is included
in the initial state (s0 = {x}) and precondition of a. The lat-
ter is the precondition of b. When we apply the mandatory
task LM generation, we end up with the LM set {T, b}.

The AND/OR graph resulting from the problem is given
in Figure 2. The resulting landmark sets are given at the
right. Notably, though it is not even reachable when using
m2, we end up with a inside our landmark set, since it is the
only action that fulfills the precondition of the landmark b.

Theoretical Properties
Before coming to our approach, we have a look at the the-
oretical properties of LM generation in general. Similar
to classical planning, we see that deciding whether a task,
method, or fact is a LM falls in the co-class of the plan exis-
tence problem of the respective problem class.
Theorem 1 (Complexity of LM generation). Let P be an
HTN planning problem and C be the complexity class of the
respective plan existence problem. Deciding whether a task,
or a method, or a fact is a LM is coC-complete.

1Wlog., we assume that A ∩M = ∅ and F ∩ C = ∅.

zx

a b

m3 m2

S

m1

T
LM (x ) = {x}
LM (z ) = {a, x, z}
LM (a) = {a, x}
LM (b) = {a, b, x, z}

LM (m1 ) = {a,m3, S, x} ∪ {a, b, x, z} ∪ {m1}
= {a, b,m1,m3, S, x, z}

LM (m2 ) = {a, b,m2, x, z}
LM (m3 ) = {a,m3, x}
LM (S ) = {a,m3, S, x}
LM (T ) = ({a, b,m1,m3, S, x, z} ∩ {a, b,m2, x, z}) ∪ {T}

= {T, a, b, x, z}

Figure 2: AND/OR graph of our example given in Fig. 1.
Circles are OR nodes, boxes are AND nodes, and the
diamond-shaped node labeled x is the only initial node.

Proof. Hardness. Our proof is a straight-forward adaptation
of the corresponding proof by Hoffmann, Porteous, and Se-
bastia (2004, Thm. 1) for classical planning landmarks.

We introduce a new initial abstract task cI with two corre-
sponding methods m1 and m2. m1 decomposes cI into the
original tnI .m2 decomposes it into a new TN that solves the
problem. It introduces an abstract task t, which can only be
decomposed into an action t′. t′ as an empty precondition,
a new fact f as effect, and g (the original goal) as further
effects. t′ does not use negative effects2. Clearly, m2, t (ab-
stract), t′ (primitive), and f are landmarks if and only if P
is unsolvable.

Membership. Similar to Hoffmann, Porteous, and Sebas-
tia (2004, Thm. 1), we test whether the problem gets unsolv-
able if we ignore all parts of the model that “relate” to the
LM(s) in question. I.e., in case of a method we just remove
it. In case of a task (abstract or primitive), we remove all
TNs and methods that contain them. And in case of a fact,
we remove all actions (i.e., again removing all methods that
introduce it) that add it. The this renders the task unsolvable,
the task, method, or fact is a LM.

Since deterministic complexity classes are closed under
complement, our landmark decision in those classes can
also be decided in C. This includes many known restrictions
such as regular and tail-recursive problems, or (non-relaxed,
ground) totally ordered problems (Erol, Hendler, and Nau
1994, 1996; Alford, Bercher, and Aha 2015a).

Using Thm. 1 we can deduce the computational hardness
of determining whether a task, method, or fact is a landmark
for many classes of HTN planning problems (Bercher, Al-
ford, and Höller 2019; Erol, Hendler, and Nau 1996; Al-
ford et al. 2014; Alford, Bercher, and Aha 2015a; Höller,
Bercher, and Behnke 2020), e.g. the following ones:

Corollary 1. Let P be an HTN planning problem. Deciding
whether a task, method, or fact is a landmark of P is unde-
cidable. If P is totally ordered, its complexity is EXPTIME-
complete. If it is delete-relaxed it is coNP-complete.

2We could put t and t′ into the same TN, saving a “decomposi-
tion level” and method, but we wanted to keep the size of new TNs
limited to 1 so we do not change properties of the problem we re-
duce from (like tasks per TN, ordering constraints, or the “position”
of the task, which may all influence the computational complexity).
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We can conclude that any complete LM generation tech-
nique for delete- and ordering-relaxed HTN problems can-
not run in polynomial time unless P=coNP.

For totally ordered HTN planning, Olz, Biundo, and
Bercher (2021) studied the complexity of proving whether
a fact is a precondition/effect of every refinement of an ab-
stract task, making such facts LMs of the task. They show
the problem is in the same complexity class as the underly-
ing plan existence problem. This is in line with our results,
since it is a deterministic complexity class.

In the following, we use the so-called Decomposition Tree
(Geier and Bercher 2011) in our proofs. This is a formal rep-
resentation of a TN and its derivation from the initial task3,
i.e., it is a witness proving that the TN can be produced via
decomposing the initial task.
Definition 10 (Decomposition Tree). Given an HTN plan-
ning problem, a Decomposition Tree (DT) is a tuple g =
(V,E,≺, α, β). V and E are the vertices and edges of a di-
rected tree. ≺ is a strict partial ordering on V . α : V → N
maps the vertices to (primitive or abstract) tasks from the
problem. Vertices that are labeled with abstract tasks are
mapped to methods by β : V →M .

A DT is valid if its root is labeled with the initial task of
the problem and for every vertex v labeled with an abstract
task c, the following conditions hold:

1. It is labeled with a method applicable to c, i.e. β(v) =
(c, tnm).

2. The task network induced by the children of v in g differs
from tnm only in the task identifiers.

3. For all vertices v′ ∈ V , the ordering with respect to the
children of v is like defined for HTN planning, i.e. for each
child v′′ the following conditions hold:

(a) if (v, v′) ∈ ≺ then (v′′, v′) ∈ ≺
(b) if (v′, v) ∈ ≺ then (v′, v′′) ∈ ≺

4. ≺ does only contain ordering relations enforced by the
conditions 2 and 3.
Note that there is a valid DT for every solution of an HTN

problem (Geier and Bercher 2011, Prop. 1), since it simply
represents the decomposition that led to the respective TN.

Now we first show that for a given solution to the
HTN problem, there is a corresponding justification in the
AND/OR graph representing the model. This lemma is then
used in the proof of the soundness of our LMs.
Lemma 1. Let P be an HTN planning problem, tn a so-
lution, and dt its decomposition tree. Then, there exists a
justification for the initial task of the AND/OR graph (given
in Definition 8) representing the dt.

Proof. Consider the following observations:

1. Task Insertion – Assume we have a justification for an
AND/OR graph representation of a classical problem. As-
sume we want to add additional actions. This results in
more AND nodes, but as long as we support their precon-
ditions by other action nodes or the initial state, we get
another valid justification.
3Problems with an initial task network can trivially be compiled

into one with just an initial task (Geier and Bercher 2011).

2. Eliminating Cycles – Geier and Bercher (2011, Sec. 4.1
and 4.2) have shown that – when allowing an HTN plan-
ner to insert tasks apart from the decomposition process –
cycles in the decomposition structure are not necessary
and can be removed. When removed actions have been
needed to make the resulting sequence applicable, they
can be reintroduced via task insertion. While Geier and
Bercher use this result to show an upper bound of the size
of TNs for this special class of HTN planning, we need it
to show the existence of justifications without cycles.

Given a decomposition tree, we know by Obs. 2 that (a) there
is a modified tree that (a) contains a subset of the tasks of g,
that (b) does not contain cyclic decompositions and that (c)
the contained actions can be made applicable by task inser-
tion. Now consider the basic structure of a DT: We start by
adding all tasks contained in the (acyclic) DT to the justi-
fication. Therefore we know that condition 1 for the justifi-
cations is fulfilled. For every abstract task, it explicitly con-
tains the method used for decomposition, i.e., we can use
this method to add the edges from the abstract task node to
the method node, and from the method node to the subtask
nodes. For the hierarchical part of the graph, the latter fulfills
condition (2) and the former condition (3) of the justification
definition. Since our decomposition structure is acyclic, we
know that the new graph is.

What is left to show is that there is a justification for the
part of the graph representing the state transition system. By
Obs. 1 we know we can “add actions” to fulfill the conditions
for a justification. Since we started with a valid decomposi-
tion tree before we removed cycles, we know that there is a
set of actions that makes the sequence applicable, thus there
is a valid justification for the state transition system.

Theorem 2 (Soundness). LM ao landmarks are landmarks
for the underlying HTN planning problem.

Proof. The approach by Keyder, Richter, and Helmert ex-
tracts landmarks for AND/OR graphs, i.e., nodes that have
to be in every justification. By Lemma 1, there is a justifi-
cation corresponding to every DT. Since every justification
includes the nodes, this holds for every one that represents a
DT and every DT includes the nodes.

Informally, this means that we calculate landmarks for a
superset of the solutions. Since the LMs are contained in all
of them, they are also contained in the actual solutions.

We know from the complexity results that our approach
is not complete (unless coNP = P). We now have a closer
look at why it is not. Obviously, delete effects and ordering
relations are not represented in the graph. Thus all LMs de-
pending on these cannot be found, but we will see from the
proof for the following theorem that there is another relax-
ation made when constructing the AND/OR graph.

Theorem 3 (Completeness). LM ao does not find all LMs in
Delete- and Ordering-Free HTN planning problems.

Proof. Consider the HTN domain given in Figure 3. The
initial task network (tnI ) contains the abstract tasks S and
T , and the action e. The initial state is s0 = {x}. All tasks
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Figure 3: HTN domain without delete-effects and ordering
relations. S and T are abstract tasks, a–e are actions, m1–
m4 are methods, and x–z are state features.

LM (x ) = {x}
LM (a) = {a, x}
LM (b) = {b, x}
LM (c) = {c, x}
LM (d) = {d, x}
LM (e) = {a, e, x, y, z}
LM (y) = {y, a, x}
LM (z ) = {z, x} = {z} ∪

({b, x}∩{c, x})

LM (m1 ) = {m1, a, x}
LM (m2 ) = {m2, b, x}
LM (m3 ) = {m3, c, x}
LM (m4 ) = {m4, d, x}
LM (S) = {S, x} = {S} ∪

({m1, a, x}∩{m2, b, x})
LM (T ) = {T, x} = {T} ∪

({m3, c, x}∩{m4, d, x})

Figure 4: Landmarks found on the domain given in Figure 3.

are unordered. S can be decomposed by m1 into the action
a, or by m2 into the action b. T can be decomposed by m3

and m4 into the actions c and d, respectively.
Since e is in tnI , it is necessarily in every solution. To

make it applicable, y needs to be fulfilled, thus S needs to
be decomposed using m1 to include a in the plan, which is
the only way to make y true. z is also precondition of e, i.e.
b or c must be contained in every plan. However, since S
needs to be decomposed into a, c is the only option to fulfill
z. I.e. c must be contained in the set of LMs.

The LMs found by LM ao are given in Fig. 4. The LMs for
the overall problem includes LM (S ) ∪ LM (T ) ∪ LM (e)
= {S, T, e, x, y, z, a}. The landmark c is not included.

The reason for the incompleteness can be found in
our AND/OR encoding of the hierarchy. Besides delete-
relaxation and ordering-relaxation, we have already seen
that a third relaxation is made: task insertion. This relax-
ation is often used in HTN heuristics to make computation
feasible4 (Alford et al. 2014), e.g. by Bercher et al. (2017)
or Höller et al. (2018; 2019; 2020).

This raises the question whether there is a complete al-
gorithm that is feasible (i.e. that can be computed in P).
However, due to Cor. 1 we know that his is unlikely (as it
would require P=coNP). There might, of course, be incom-
plete methods finding more LMs than ours. However, when
we compare our method with the one from the literature, we
see that the following theorem holds:
Theorem 4 (Dominance). Let L1 and L2 be the task land-
marks generated by LMmt and LM ao , respectively. Then it
holds that L1 ⊆ L2.

Proof. In our generation, a task c is represented by an OR
node. When its LM set is updated, it is set to the intersection

4See Geier and Bercher (2011) and Alford, Bercher, and Aha
(2015b) for an investigation of its impact on the comp. complexity.
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Figure 5: Number of all LMs extracted by MT (on the x axis)
and AND/OR (on the y axis) generation split by domain.
Please be aware the different scaling of the axis.

of its predecessors. These predecessors are nodes resulting
from the methods m1 to mk applicable to c. The LM sets of
m1 to mk are set to the union of the sets of their subtasks.
Since a LM set of a node n contains n by definition, the sub-
tasks ofm1 tomk contain themselves, i.e. that the sets ofm1

to mk contain at least all their subtasks (but might contain
more), and c the intersection of all these sets. This is exactly
the definition of MT LMs. In Fig. 1 and 2 we have given an
example for a LM found by LM ao but not by LMmt , so we
might find a proper superset of LMs.

Evaluation
We evaluate our new LM generation on a widely-used HTN
benchmark set. It has e.g. been used by Höller et al. (2018)
and Behnke, Höller, and Biundo (2019a,b). It contains 144
problem instances from 8 domains. Experiments ran on
Xeon E5-2660 v3 CPUs, 4 GB RAM and 10 min time.
Landmark Generation. Task LMs are extracted by both
generation procedures. Over all instances, our generation
finds 13% more task LMs than MT. Besides task LMs, our
approach also extracts fact and method LMs. However, we
find only very few method LMs (0 to 1 per instance)5. When
we compare the full sets of LMs that are found (Figure 5),
we extract more than twice the number LMs over the entire
instance set.

Generation time is not an issue for both methods: MT LM
generation needs 0.03 ms on average, we need 1.3 ms.
Landmark-guided Search. Though the focus of this pa-
per is on LM generation, we want to show that the newly

5This is caused by the grounding procedure of PANDA (see
Behnke et al. (2020)). Whenever there is only a single method
m for a task c, occurrences of c in other methods (or the initial
task network) are replaced by the subtasks of m. At most a single
method LM is left that is caused by a second compilation step that
replaces an initial task network by an initial task.
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entertainment 12 9 9 9 12 12 12 9 9 5
PCP 17 13 13 13 14 12 12 9 8 3
Satellite 25 21 21 21 25 25 25 24 21 23
SmartPhone 7 4 4 4 5 7 6 6 5 6
UM-Translog 22 22 22 22 22 22 22 22 22 19
Woodworking 11 5 6 6 10 11 11 9 9 5
rover 20 4 4 3 4 10 4 5 5 5
transport 30 7 1 1 15 22 22 2 1 19
total 144 85 80 79 107 121 114 86 80 85

Table 1: Coverage table for different systems.

LMC-AND/OR-R WA∗5
LMC-AND/OR WA∗5
LMC-MT WA∗6
RC FF WA∗2
SAT’19
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TDGc WA∗2
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Figure 6: Number of solved instances over time.

found LMs bear information that helps guiding the search.
We therefore integrated the generation mechanisms into the
PANDA framework6 (Höller et al. 2021) and combined them
with the progression search algorithm described by Höller
et al. (2020, Alg. 3). We realized the following heuristics:
• LMC-MT – Landmark count heuristic using MT LMs.

Landmarks are extracted once for the initial task network.
During search, reached LMs are tracked and the number
of unfulfilled LMs is used as heuristic value.

• LMC-AND/OR – Same as before, but using our LM gen-
eration (which also includes fact and method LMs).

• LMC-AND/OR-R – As before with additional analysis
checking whether all unfulfilled LMs are still reachable.
Be aware that a configuration with reachability analysis

is not reasonable for MT LM generation. Here, all LMs are
reached by definition, there is no chance to prevent this. Have
a second look at Fig. 1 and 2. After applying m2, a is not
reachable anymore and the search node can be pruned. For
the MT LM set {T, b}, however, pruning is not possible.

Figure 1 shows the coverage of several HTN planning sys-
tems. It contains the configuration with the highest cover-
age for each of our LM heuristics; the Relaxed Composi-
tion heuristic (Höller et al. 2018) with FF (Hoffmann and

6PANDA is available online under panda.hierarchical-task.net

LMC-AND/OR-R WA*5
LMC-AND/OR WA*5
LMC-MT WA*5
RC FF WA*2

1 101 102 103 104 105 106 107 108 nodes

#solved

20

40

60

80

100

Figure 7: Solved instances for given number of search nodes.

Nebel 2001) as inner heuristic (RC FF); TDGm and TDGc
heuristics (Bercher et al. 2017), and compilation-based sys-
tems. Two of the latter bound the problem and translate it to
propositional logic (see Behnke, Höller, and Biundo (2018,
2019a)). When no solution is found, the bound is increased.
The third compilation (Alford et al. 2016) translates the (also
bounded) problem to classical planning and uses the Jasper
planner (Xie, Müller, and Holte 2014) to solve it.

It can be seen that the LMC heuristic benefits from the
new LMs. When only looking at coverage, the possibility
to integrate a reachability analysis has a larger impact than
the increased LM set. However, as can be seen in Figure 6
(showing solved instances after a given time), the increased
LM set also speeds up search considerably compared to the
MT-based system. When we compare instance per instance,
we need 13% less search nodes (median) with a maximum
of 99,81%. Summed over all instances, we need 71,22% less
nodes. Figure 7 shows the number of instances (on the y-
axis) solved after a certain number of search nodes (on the x-
axis). It can be seen that the additional LMs cause the search
to take less nodes to find plans (i.e., it is more informed).

While the SAT-based systems perform best, our new LM
generation makes LMC competitive with all search-based
systems apart from the RC FF heuristic. However, having
the sophisticated search techniques of successful LM plan-
ners in classical planning like LAMA (Richter and Westphal
2010) in mind, it is not surprising that a simple LM count
heuristic is not competitive with the RC heuristic.

Conclusion

We introduced a novel LM generation technique for HTN
planning that is based on AND/OR graphs. Our approach
finds fact, task, and method LMs in a single generation pro-
cess. It dominates the approach on HTN LMs from the liter-
ature. We have shown that the approach is sound, incom-
plete, runs in P, and that every complete technique must
solve an coNP-hard problem. Our evaluation shows that our
approach also finds more LMs in practice and that the new
LMs bear information valuable to guide the search. As next
steps we consider the realization of more elaborated LM-
based search techniques and consider a LAMA-like system
or the integration into IP/LP-based heuristics as done in clas-
sical planning (Pommerening et al. 2014) most promising.
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