
Equitable Scheduling on a Single Machine

Klaus Heeger*1, Danny Hermelin2, George B. Mertzios†3,
Hendrik Molter‡1, Rolf Niedermeier1, Dvir Shabtay2

1 TU Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany
2 Ben Gurion University of the Negev, Beersheba, Israel

3 Department of Computer Science, Durham University, UK
heeger@tu-berlin.de, hermelin@bgu.ac.il, george.mertzios@durham.ac.uk,

h.molter@tu-berlin.de, rolf.niedermeier@tu-berlin.de, dvirs@bgu.ac.il

Abstract

We introduce a natural but seemingly yet unstudied general-
ization of the problem of scheduling jobs on a single machine
so as to minimize the number of tardy jobs. Our generaliza-
tion lies in simultaneously considering several instances of
the problem at once. In particular, we have n clients over a
period of m days, where each client has a single job with
its own processing time and deadline per day. Our goal is
to provide a schedule for each of the m days, so that each
client is guaranteed to have their job meet its deadline in at
least k ≤ m days. This corresponds to an equitable sched-
ule where each client is guaranteed a minimal level of ser-
vice throughout the period of m days. We provide a thorough
analysis of the computational complexity of three main vari-
ants of this problem, identifying both efficient algorithms and
worst-case intractability results.

Introduction
One of the most basic and fundamental scheduling problems
is that of minimizing the number of tardy jobs on a single
machine. In this problem we are given n jobs, where each
job j has an integer processing time pj and an integer dead-
line dj , and the goal is to find a permutation of the jobs so
that the number of jobs exceeding their deadlines is mini-
mized (a job j exceeds its deadline if the total processing
time of jobs preceding it in the schedule, including itself, is
larger than dj). This problem is known as the 1||

∑
Uj prob-

lem in the classical three-field notation for scheduling prob-
lems by Graham et al. (1979). It is well-known that 1||

∑
Uj

is solvable in O(n log n) time (Maxwell 1970; Moore 1968;
Sturm 1970), but gets e.g. NP-hard in case of simple (chain)
precedence constraints even if all processing times pj are the
same (Lenstra and Rinnooy Kan 1980). There is also a more
recent survey concerning the minimization of the weighted
number of tardy jobs (Adamu and Adewumi 2014) and the
problem has also been thoroughly studied for parallel ma-
chines (Baptiste et al. 2004).

Due to the ever increasing importance of high customer
satisfaction, fairness-related issues are becoming more and

*Supported by DFG RTG 2434 “Facets of Complexity”.
†Supported by the EPSRC grant EP/P020372/1.
‡Supported by the DFG, project MATE (NI 369/17).

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more important in all areas of resource allocation (Bred-
ereck, Kaczmarczyk, and Niedermeier 2018; Fluschnik et al.
2019; Lang and Rothe 2016; Walsh 2020) and particu-
larly scheduling (Kumar and Kleinberg 2006).1 For instance,
in their seminal work Baruah et al. (1996) introduced the
concept of proportionate progress, a fairness concept for
resource allocation problems. They applied it to periodic
scheduling by assigning resources to jobs according to their
rational weights between 0 and 1, thereby aiming to make
sure that a job never gets an entire slot (in the periodic sched-
ule) ahead or behind. Nowadays, equity and fairness in re-
source allocation is a widely discussed topic, leading to con-
siderations such as the “price of fairness” (Bertsimas, Farias,
and Trichakis 2011) or to discussions about the abundance
of fairness metrics (Gupta et al. 2020).

We study a very natural but seemingly novel extension of
the 1||

∑
Uj problem, taking into account a very basic as-

pect of equity among the customers in order to guarantee
high customer satisfaction. Our task is to service n clients
for m days, where each client has a single job to be sched-
uled for every day. This should be done in an equitable fash-
ion. We focus on a very simple notion of equity where, given
an integer parameter k, we request that each client receives
satisfactory service in at least k out of the m days. In what
follows, refer to k as equity parameter. It is important to note
here that since all scheduling requests for all days and clients
are assumed to be known in advance, we consequently still
face an offline scenario of scheduling.

Consider the following motivating example. Imagine that
a research group with n PhD students owns a single compute
server, where each student has to submit a plan for their ex-
periments for the nextm days. Typically, the needed compu-
tation time is known in advance. To make sufficient progress
on their research, all students need to have regular access to
the compute server for performing individual experiments.
All students request access to the server every day, but due to
high demand not all of them may be scheduled early enough
during the day so that the experiments can still be evaluated
the very same day. The chair of the group wants to guarantee
a schedule for the compute server such that every student can
evaluate their experiments on the same day in at least k out

1For instance, in 2018 ACM started its new conference series
on “Fairness, Accountability, and Transparency (FAT)”.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11818

of m days. This is precisely the scenario we wish to model.

Three Equitable Scheduling Variants. Our model can be
formally described as follows: We wish to schedule the jobs
of a set of n clients over m days in an equitable way. At
each day, each client has a single job to be scheduled non-
preemptively on a single machine. We let pi,j and di,j re-
spectively denote the integer processing time and deadline
of the job of client i ∈ {1, . . . , n} at day j ∈ {1, . . . ,m}. In
addition, we let k denote an equity parameter given as part
of the input, with k ∈ {0, . . . ,m}.

A schedule σj for day j ∈ {1, . . . ,m} is a permutation
σj : {1, . . . , n} → {1, . . . , n} representing the order of jobs
to be processed on our single machine on day j. For a given
schedule σj , the completion time Ci,j of the job of client i
is defined as Ci,j =

∑
σj(i0)≤σj(i)

pi0,j . In this way, the job
meets its deadline on day j ifCi,j ≤ di,j . If this is indeed the
case, then we say that client i is satisfied on day j, and oth-
erwise i is unsatisfied. Our goal is to ensure that each client
is satisfied in at least k days out of the entire period of m
days; such a solution schedule (for all m days) is referred to
as k-equitable. Thus, depending on how large k is in com-
parison with m, we ensure that no client gets significantly
worse service than any other client.

EQUITABLE SCHEDULING (ES):

Input: A set of n clients, each having a job with pro-
cessing time pi,j and deadline di,j for each day
j ∈ {1, . . . ,m}, and an integer k.

Task: Find a set of m schedules {σ1, . . . , σm} so that
for each i ∈ {1, . . . , n} we have |{j | 1 ≤ j ≤
m ∧ Ci,j ≤ di,j}| ≥ k.

We consider three variants of EQUITABLE SCHEDULING,
each corresponding to a well-studied variant of the 1||

∑
Uj

problem when restricted to a single day.
• In the first variant, which we call EQUITABLE SCHEDUL-

ING WITH UNIT PROCESSING TIMES (ESUP), the pro-
cessing time of all jobs are unit in each day. That is,
pi,j = 1 for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

• In the EQUITABLE SCHEDULING WITH SINGLE DEAD-
LINES (ESSD) problem, all jobs have the same deadline
at each day. That is, at each day j ∈ {1, . . . ,m} we have
di,j = dj for each i ∈ {1, . . . , n}.

• In the final variant, called the EQUITABLE SCHEDULING
WITH PRECEDENCE CONSTRAINTS (ESPC) problem, all
processing times are unit, and jobs share the same dead-
line at each day, i.e., pi,j = 1 and di,j = dj for each i ∈
{1, . . . , n} and j ∈ {1, . . . ,m}. In addition, in each day
we are given a precedence DAG Gj = ({1, . . . , n}, Ej)
which represents precedence constraints on the jobs at
day j. We say that a schedule σj is feasible if for each
(i1, i2) ∈ Ej we have σj(i1) < σj(i2).
For each of these variants, we will also consider the spe-

cial case where the input for each day is the same, and we
will append an ‘*’ to the name of the problem variant to in-
dicate that this is the case we are considering. For example,
in the ESPC* problem we have dj1 = dj2 and Gj1 = Gj2
for all j1, j2 ∈ {1, . . . ,m}.

Our Results. We are mainly interested in exact algorithms
or algorithms with approximation guarantees. We study the
(parameterized (Downey and Fellows 2013)) algorithmic
complexity of all three main variants (and some further vari-
ations) discussed above. Our main findings are as follows.
• For ESUP we show that the problem can be solved in

polynomial time by a reduction to the BIPARTITE MAX-
IMUM MATCHING problem. Our reduction can also be
applied when jobs have release times, and when there is
fixed number of machines available on each day.

• For ESSD and ESSD* we show strong NP-hardness and
W[1]-hardness2 for the parameter numberm of days even
if k = 1. On the positive side, we show that ESSD can
be solved in pseudo-polynomial time if the number m of
days is constant and is FPT for the parameter number n of
clients. For ESSD* we give an algorithm that, for any k,
computes a 2k-equitable set of schedules if there exists a
3k-equitable set of schedules.

• For ESPC and ESPC* we show NP-hardness and W[1]-
hardness for the parameter number m of days even if
k = 1 and the precedence DAG only consists of disjoint
paths. For ESPC we also show NP-hardness for k = 1 if
the precedence DAG either consists of a constant number
of disjoint paths or disjoint paths of constant length. On
the positive side, we can show that ESPC is FPT for the
parameter number n of clients.

Due to space constraints, some results (marked with ?) are
(partially) deferred to the long version (Heeger et al. 2020).

Unit Processing Times
In this section, we show that EQUITABLE SCHEDULING
WITH UNIT PROCESSING TIMES can be solved in polyno-
mial time by a reduction to BIPARTITE MAXIMUM MATCH-
ING. Later in the section we will show that our reduction can
also be applied when jobs have release times, and when there
is fixed number of machines available on each day.

Recall that pi,j and di,j respectively denote the processing
time and deadline of the job of client i on day j, and that k
is the equity parameter. Let d∗j = max1≤i≤n di,j denote the
maximal deadline on day j ∈ {1, . . . ,m}. We may assume
d∗j ≤ n. We create a graph G with the following vertices:

• For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}, we
create a vertex vi,j . The set of vertices V = {vi,j : 1 ≤
i ≤ n, 1 ≤ j ≤ m} represents all input jobs of all clients.

• For each d ∈ {1, . . . , d∗j} and each j ∈ {1, . . . ,m}, we
create a vertex ud,j . The set U = {ud,j : 1 ≤ d ≤ d∗j , 1 ≤
j ≤ m} represents all possible completion times of the all
input jobs that meet their deadline.

• For each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m − k},
we create a vertex wi,j . The set W = {wi,j : 1 ≤ i ≤
n, 1 ≤ j ≤ m− k} represents the set of jobs that exceed
their deadline.
2A problem is fixed-parameter tractable (FPT) for a parameter k

if it can be solved in f(k)nO(1) time for a computable function f ,
where n is the size of the input. W[1]-hardness for a parameter im-
plies that presumably no FPT-algorithm for this parameter exists.

11819

The edges of G are constructed as follows. For each i ∈
{1, . . . , n} and each j ∈ {1, . . . ,m} we connect vi,j to:

• vertices wi,1, . . . , wi,m−k, and

• vertices u1,j , . . . , ud,j , where d = di,j .

Lemma 1. G has a matching of size nm if and only if there
exists schedules {σ1, . . . , σm} where no client is unsatisfied
in more than m− k days.

Proof. (⇐): Let {σ1, . . . , σm} be a set of schedules where
no client is unsatisfied on more than m − k days. Consider
the job of client i on day j, for some i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}. Note that the completion time of this job isC =
Ci,j = σj(i). If C ≤ di,j , then there is an edge {vi,j , uC,j}
inG, and we add this edge to the matching. IfC > d

(t)
j , then

client i is unsatisfied on day t. Let ` denote the number of
days prior to j that client i is unsatisfied. Then ` < m − k,
since otherwise client i would be unsatisfied in more than
m−k days (including day j). We add the edge {vi,j , wi,`+1}
to the matching. This results in a matching of size nm in G.

(⇒): Assume that G contains a matching of size nm. We
create a set of schedules {σ1, . . . , σm} as follows. First note
that G is bipartite with one part being V , and |V | = mn,
implying that every vertex in V is matched. Each vi,j ∈ V
is either matched to a vertex in U or a vertex in W .

• Suppose that vi,j is matched to some ud,j0 ∈ U . We have
j = j0 and d ≤ di,j by construction of G. We set σj(i) =
d, and so client i is satisfied on day j. Observe that the
fact that ud,j0 cannot be matched to any other vertex in V
guarantees that σj(i) 6= σj(i0) for any i0 6= i. Let sj
denote the number of clients satisfied by σj in this way.

• Suppose that vi,j is matched to some vertex wi0,j0 ∈ W .
Note that i = i0 and j0 ≤ m − k by construction of G.
Let xi,j = |{i0 < i : wi0,j is matched }|. Then we set
σj(i) = sj + xi,j + 1.

Clearly each σj is permutation from {1, . . . , n} to
{1, . . . , n}, and no client is unsatisfied in more than m − k
days under {σ1, . . . , σm}.

Observe that G has O(mn) vertices and O(mn2 +m2n)
edges, and it can be constructed inO(mn2+m2n) time. Us-
ing the algorithm of Hopcroft and Karp (1973) for BIPAR-
TITE MAXIMUM MATCHING, this gives us the following:

Theorem 2. ESUP can be solved in O((n +m) · (nm)
3
2)

time.

We remark that this algorithm is very flexible and can eas-
ily be extended to the setting where the jobs have release
dates and where there are multiple parallel machines. The
main idea is that the vertices in U represent time slots for
jobs and a job has an edge to all time slots that are before
the job’s deadline. To incorporate release dates we addition-
ally remove edges to time slots that are “too early”. Finally,
to model parallel machines, we introduce copies of the ver-
tices in U for each of the machines.

Single Deadline on Each Day
In this section, we investigate the computational complexity
of EQUITABLE SCHEDULING WITH SINGLE DEADLINES.

Hardness Results. We first show that ESSD is NP-hard
even if all numbers involved are small constants.
Theorem 3 (?). ESSD is NP-hard even if k = 1 and d = 3.

We can further show that ESSD* (i.e., ESSD where the
processing time of the job of each client is the same every
day) is NP-hard and W[1]-hard when parameterized by the
number of days.3

Theorem 4 (?). ESSD* is NP-hard and W[1]-hard when
parameterized by the number m of days even if k = 1 and
all numbers are encoded in unary.

Algorithmic Results. We first show that we can solve
ESSD in pseudo-polynomial time if the number of days m
is constant. Note that this implies that ESSD is in XP when
parameterized by the number of days if all processing times
and the deadline is encoded unary. Theorem 4 shows that
we presumably cannot expect to be able to obtain an FPT-
algorithm for this case.
Theorem 5 (?). ESSD can be solved in O(dmmax ·

(
m
k

)
· n)

time, where dmax = maxj dj .

Next, we claim that ESSD can be solved in polynomial
time if the number of clients n is constant. In other words,
we show that ESSD is in XP when parameterized by the
number of clients.
Theorem 6 (?). ESSD can be solved in O((2k + 2)n ·m)
time.

We remark that Theorems 5 and 6 are both achieved with
dynamic programs.

We now strengthen Theorem 6 by showing that ESSD is
FPT when parameterized by n. To do this, we give an inte-
ger linear programm formulation for the problem and use the
famous result by Lenstra Jr (1983). Note, however, that The-
orem 6 is a purely combinatorial result and that the implicit
running time of Theorem 7 is at least double exponential.
Theorem 7. ESSD is FPT when parameterized by the num-
ber of clients n.

Proof. First we partition the days into equivalence classes.
We say that two days j and j′ are equivalent if for any sub-
set S of clients all jobs of S can be scheduled together on
day j if and only if they can be scheduled together on day j′.
Note that since there are at most 2n subsets of clients, we can
test whether two days j and j′ are equivalent by just deter-
mining for every subset S of clients whether the processing
time of their jobs on day j resp. j′ exceeds the due date. Let
E be the set of equivalence classes. Clearly, |E| ≤ 22

n

. We
write that S � E for a set of clients S and an equivalence

3Parameterized complexity studies of NP-hard scheduling
problems recently gained increasing interest (Bentert, van Bevern,
and Niedermeier 2019; Bentert et al. 2021; Bodlaender and van der
Wegen 2020; Ganian, Hamm, and Mescoff 2020; Hermelin et al.
2020; Hermelin, Shabtay, and Talmon 2019; Mnich and van Bev-
ern 2018); we contribute to this field with several of our results.

11820

class E if the sum of the processing times of all jobs from S
exceeds the deadline on every day from E.

We design an ILP with one variable xE,S for each pair of
equivalence class E ∈ E and subset of clients S from E:

xE,S = 0 if S � E∑
S:i∈S

∑
E∈E

xE,S ≥ k ∀i ∈ {1, . . . , n}∑
S⊆{1,...,n}

xE,S = |E| ∀E ∈ E

Since the number of variables is at most 2n ·22n , it follows
by Lenstra Jr (1983) that the ILP can be solved in FPT-time
parameterized by n.

Given a solution to the ILP, we get a k-equitable sched-
ule by scheduling for each variable xE,S the jobs of S on
exactly xE,S days of the equivalence class E. By the third
condition, this results in one schedule for every day. By the
first condition none of the scheduled jobs is tardy. By the
second condition, the schedule is k-equitable.

Vice versa, given a k-equitable schedule, we construct a
feasible solution to the ILP by setting xE,S to be the num-
ber of days from equivalence class E scheduling exactly the
jobs from S before the deadline. The first condition is then
fulfilled by the definition of S � E. The second condition is
fulfilled as the schedule is k-equitable. The third condition
is fulfilled as there is exactly one schedule for each day.

In the remainder of this subsection, we investigate the
canonical optimization version of ESSD* where we want
to maximize k. Note that the existence of a polynomial-time
approximation algorithm with any factor (i.e., an algorithm
computing a solution for an instance I of value ALG(I)
such that f(I)·ALG(I) ≥ OPT(I) for some function f) im-
plies P = NP, since distinguishing between the cases k = 0
and k = 1 is NP-hard (see Theorem 4).

However, we will show that for any instance with optimal
solution value 3k, we can find a solution of value 2k. We
make a case distinction on k: we first show an algorithm for
that case that k ≤ m

2 and afterwards an algorithm for the
case of k > m

2 .
Lemma 8. Given a YES-instance I =
({p1, . . . , pn},m, d, k) with k ≤ m

2 of ESSD*,
one can compute a solution to the instance I ′ :=
({p1, . . . , pn},m, d, k′) with k′ := 2bk3 c in
O(n · (k + log n)) time.

Proof. We apply an algorithm similar to the so-called “First-
Fit-Decreasing” algorithm for BIN PACKING (Johnson et al.
1974). Set k′ := 2bk3 c. We work in the following steps.

1. We sort all clients by the processing times of their jobs.
2. Iterate through the clients, starting with large processing

times. For each client we schedule k′ of their jobs on the
first k′ days that have enough space, i.e., after the jobs are
scheduled the sum of processing times of the scheduled
jobs for each day is at most d.
Note that so far (i.e., without Step 3), the jobs of each
client are scheduled in a block of k′ consecutive days that
starts a some day j with j mod k′ = 0.

3. If there is a client i who cannot have k′ of its jobs sched-
uled that way, do the following:
Note that when this happens for the first time, it means
that all blocks of k′ consecutive days that starts a some
day j with j mod k′ = 0 are “full”. We now make a case
distinction on the number m mod k′ of days that are not
part of any of these blocks.

• If m mod k′ ≥ k′

2 and Step 3 is invoked for the first
time, then let i′ be the client with smallest processing
time scheduled on day b 2m3 c+ 1. Let j be the first day
that has a job of client i′ scheduled. Schedule jobs of
clients i and i′ to days {m− (m mod k′)+1, . . . ,m−
(m mod k′) + k′

2 } and replace the jobs of client i′ that
are scheduled on days {j, . . . , j + k′

2 − 1} with jobs of
client i. If Step 3 is invoked for the second time, then
output FAIL.

• If m mod k′ < k′

2 , then output FAIL.
4. If all clients are processed, output the schedules.

We first show that if the presented algorithm outputs a
set of schedules, the set is k′-equitable. If m mod k′ < k′

2 ,
then this is obvious. If m mod k′ ≥ k′

2 , then we have to
check that Step 3 of the algorithm does not produce in-
feasible schedules. Observe that in Step 3, we have that
pi′ ≥ pi since the clients are ordered by the processing time
of their jobs and client i′ is processed before client i. This
means that replacing a jobs of client i′ by a job of client i
on some day cannot violate the deadline unless it was al-
ready violated before swapping the jobs. Observe that if I
is a YES-instance, then there can be at most bmk c jobs with
processing time more than d

2 . Thus there are at most b 2m3 c
days on which our algorithm schedules a job with process-
ing time more than d

2 . Since the algorithm processes the
jobs in decreasing order, all jobs with length more than d

2

are scheduled only on the first b 2m3 c days. It follows that
pi′ ≤ d

2 since it is scheduled on day b 2m3 c + 1. It follows
that pi ≤ pi′ ≤ d

2 , and thus, the deadline is not violated on
days m − (m mod k′) + 1, . . . ,m − (m mod k′) + k′

2 .
This implies that Step 3 always produces k′-equitable sets
of schedules.

In the remainder of the proof we show that if the pre-
sented algorithm outputs FAIL, then I is a NO-instance.
On an intuitive level, the main idea is to show that the
first d 2m3 e days are “full” and the remaining bm3 c days have
at least d 2m3 e−k

′ jobs (in total) scheduled. This then allows
us to show that the total processing time if k jobs of each
client were scheduled exceeds m · d, which implies that I is
a NO-instance.

Since all jobs with length more than d
2 are scheduled only

on the first b 2m3 c days, it follows that if the algorithm outputs
FAIL, then the last dm3 e days have either at least two jobs
scheduled or none.

Assume that our algorithm outputs FAIL and let client i∗
be the client that was processed when the algorithm output
FAIL. Note that there are strictly less than k′

2 days with no

11821

jobs scheduled, independent on whether m mod k′ ≤ k′

2 .
Thus, among the last bm3 c days, (strictly) less than k′

2 days
have no jobs scheduled and all others have at least two
jobs scheduled. Together with k′ jobs of client i∗ which are
not scheduled at all, we have at least 2(bm3 c −

k′

2 + 1) +
k′ ≥ 2dm3 e jobs, all of which have a processing time of at
least pi∗ . Let the set of these jobs be called J∗. Since the
jobs of client i∗ could not be scheduled in the first d 2m3 e
days, we know that the total processing time of all jobs from
one of the first d 2m3 e days plus pi∗ or the processing time
of any job in J∗ is larger than the deadline d. Intuitively,
this allows us to “distribute” the processing times of the jobs
in J∗ to the first d 2m3 e days (note that |J∗| ≥ d 2m3 e) and
derive the following estimate: k′

∑
i:pi≥pi∗ pi > d

2m
3 e · d.

Substituting k′ with k and summing over all clients, we get
k
∑
i∈{1,...,n} pi > m · d, which is a contradiction to the

assumption that I is a YES-instance.
Since First-Fit-Decreasing can be implemented in

O(n∗ log n∗) (Johnson 1974), where n∗ is the number of el-
ements, Steps 1 and 2 can be performed in time O(n log n+
n · k) by running First-Fit-Decreasing on the instance with
one element of size pi for each client i and bmk′ c bins of
size d, and then cloning the solution k′ times. Step 3 clearly
runs inO(k) while Step 4 runs in constant time. The running
time of O(n(k + log n)) follows.

We now turn to the case k > m
2 .

Lemma 9. Given a YES-instance I =
({p1, . . . , pn},m, d, k) with k > m

2 of ESSD*,
one can compute a solution to the instance I ′ :=
({p1, . . . , pn},m, d, k′) with k′ := b 2k3 c inO(n·(k+log n))
time.

Proof. We classify the clients into two groups based on the
processing time of their jobs: A client i is large if pi > d

3

and small otherwise (i.e., if pi ≤ d
3). Set k′ := b 2k3 c. We

start with some basic obervations:

1. There are no two clients i1 and i2 with pi1 + pi2 > d.
Since k > m

2 , every solution to I must schedule jobs
of clients i1 and i2 at least once to the same day by the
pidgeon-hole principle. This is infeasible if pi1 +pi2 > d.

2. There are at most three large clients. Assume for con-
tradiction that there are four large clients. Then, since
k > m

2 , by the pidgeon-hole principle there is one day that
has three jobs from three of the four large clients sched-
uled, which is impossible since the total processing time
on that day would exceed d.

3. The total processing time of all jobs that need to be sched-
uled cannot exceed m · d, i.e., k

∑
i∈{1,...,n} pi ≤ m · d.

Note that this implies that if a k′-equitable set of sched-
ules schedules on each day jobs with total processing
time larger than 2d

3 , then I is a NO-instance, since then
k
∑
i∈{1,...,n} pi ≥

3
2k
′∑

i∈{1,...,n} pi >
3
2m

2d
3 = m · d.

From now on we assume that the first two observations hold,
otherwise I is a NO-instance.

Intuitively, we will mostly try to use the third observa-
tion to show that our algorithm is correct: We greedily fill
up all days with jobs until no job of a small client fits in any
day. If this happens and we do not have a k′-equitable set
of schedules, then by the third observation we can deduce
that we were facing a NO-instance. However, in order to do
this, we first have to deal with some special cases explicitely
(which are handled in Steps 1 and 2 of the algorithm in the
next paragraph). If the total processing time of the jobs of all
small clients is very small (i.e., at most d3) we can construct
a k′-equitable set of schedules directly. We also need to treat
some cases where the total processing time of the jobs of
all small clients is at most 2d

3 separately, hence then we can
have the case that we cannot schedule a job of any small
client on a certain day and still the total processing time on
that day does not exceed 2d

3 , which prevents us from apply-
ing the third obervation. Formally, we sort once in all clients
by the processing times of their jobs, and then we compute
a set of schedules in the following way.

1. If the sum of processing times of all small clients is at
most d3 and there are at least two large clients, then we do
the following.
We schedule the jobs of the up to three large clients one
after another in the following way. We pick the k days
having the most free processing time and schedule a job
of client whose job we currently schedule on these days.
If these schedules exceed the deadline on one day, then
we output FAIL.
Now we pick dk3 e days where the first large client has
a job scheduled, we remove that job and replace it with
jobs of all small clients. Next, we pick dk3 e different days
where the second large client has a job scheduled, we re-
move that job and replace it with jobs of all small clients.

2. If the sum of processing times of all small clients is at
most 2d

3 and there are at most two large jobs, then we do
the following.
• If there are no large clients, we schedule all jobs of all

small clients on the first k′ days.
• If there is only one large client, then we schedule the

job of the large client on the first k′ days and on them−
k′ remaining days we schedule jobs of all small clients.
Ifm < 2k′, then we recursively find a b 23 (k+k

′−m)c-
equitable schedule for the small clients on the first k
days where the deadline is set to d− p`, where p` is the
processing time of the job of the large client.

• If there are two large clients and k′ < m
2 , then we

schedule jobs of the two large clients on the first k′ days
and jobs of all small clients on the last k′ days.

3. We schedule the jobs of the up to three large clients one
after another in the following way. We pick the k′ days
having the most free processing time and schedule a job
of client whose job we currently schedule on these days.
If these schedules exceed the deadline on one day, then
we output FAIL.

4. We schedule the jobs of the small clients of after another
in the following fashion. We fix an order of the small
clients and create a list L repeating this order k′ times.

11822

We process the days from the first one to the last one as
follows. Until the list L gets empty, we schedule the job
of the first client i in L and delete (this appearance of) i
from L, unless the job of i is already scheduled on this
day, or the processing time of this job together with the
processing time of all jobs already scheduled on this day
exceeds the deadline. If the list L is non-empty after we
processed the last day, we return FAIL.

Assuming the algorithm does not recurse in Step 2, it is
easy to check that if the algorithm does not output FAIL,
then we found a k′-equitable set of schedules.

If the algorithm recurses in Step 2, then the large job is
scheduled k′ times and every small job is scheduledm−k′+
b 23 (k + k′ −m)c times. Note that using k′ ≤ min{m, 2k3 },
we getm−k′+ 2

3 (k+k
′−m) = m

3 +
2k
3 −

k′

3 ≥
k′

3 +k
′− k

′

3 =
k′. Thus, due to the integrality of m and k′, every small job
is scheduled at least k′ times.

In the remainder of the proof we show that if the algorithm
outputs FAIL, then I is a NO-instance.

Assume that the algorithm outputs FAIL in Step 1. Since
we assume that the first basic observation holds this can
only happen if there are three large clients and the algorithm
schedules one job of each large client to one day and all
other days have two jobs of large clients scheduled. This can
only happen if 3k > 2m, however then, by the pidgeon-hole
principle, any feasible solution would have to schedule jobs
of each of the three large clients on the same day. This is a
contradiction to the assumptoin that I is a YES-instance.

By the same argument, we have that if the algorithm out-
puts FAIL in Step 3, then I is a NO-instance.

Now assume that the algorithm outputs FAIL in Step 4.
Since Step 4 was applied, the sum of processing of all small
clients is larger than 2d

3 , or the processing time of all small
clients exceeds d

3 and on each day, at least one large job is
scheduled. This implies that for each day the sum of pro-
cessing times of jobs scheduled at that day is larger than 2d

3 ,
since otherwise the algorithm would have scheduled the job
from the next client in L. However then, by the third basic
observation, we know that I is a NO-instance.

Except for the recursion, all of Steps 1-4 can clearly be
performed in O(n · k). Since we sort the clients by the pro-
cessing time of their job, calling the recursion in Step 2 can
be done in constant time, as only the large jobs (which are
the first up to three jobs) need to be removed from the in-
stance and k′ and d need to be adjusted. Thus, a total running
time of O(n(k + log n)) follows.

Combining Lemmas 8 and 9 yields the following result.

Theorem 10. Given a YES-instance I =
({p1, . . . , pn},m, d, k) of ESSD*, one can compute a
solution to the instance I ′ := ({p1, . . . , pn},m, d, k′) with
k′ := 2bk3 c in O(n · (k + log n)) time.

We leave as an open question whether a similar result can
be obtained for ESSD. However, the presented approach
heavily relies on the fact that all days behave the same. We
conjecture that a fundamenally different idea would be nec-
essary to compute approximate solutions for ESSD.

Precedence Constraints
In this section we investigate the computational complexity
of EQUITABLE SCHEDULING WITH PRECEDENCE CON-
STRAINTS.

Hardness Results. The hardness result from Theorem 4
for ESSD* can easily be adapted to ESPC* by modelling
processing times by paths of appropriate length in the prece-
dence DAG. Hence, we get the following result (we omit the
details here).
Corollary 11. ESPC* is NP-hard and W[1]-hard when pa-
rameterized by the number of days m even if k = 1 and the
precedence DAG consists of disjoint paths.

In the following, we present some hardness results that
show that even further restrictions on the precedence DAG
presumable cannot yield polynomial-time solvability.
Theorem 12 (?). ESPC is NP-hard even if k = 1, d =
6, and the precedence DAG of each day consists of three
disjoint paths.

Proof. We reduce from MONOTONE EXACTLY 1-IN-3-
SAT, where every variable appears in exactly three clauses.
This problem is known to be NP-complete (Gonzalez 1985).
Given a set of clauses, we are asked whether there is an
assignment of truth values to the variables such that every
clause contains exactly one variable that is set to true and
two variables that are set to false. Let a be the number of
variables and b be the number of clauses. We construct an
instance of ESPC as follows.

• We set the deadline to six, i.e., d = 6, and we set k = 1.
• For each variable xj , we create six clients:
i
(j,T)
1 , i

(j,T)
2 , i

(j,T)
3 , i

(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 .

• We create 9 “dummy clients” i(d)1 , . . . , i
(d)
9 .

• We createm = 2+a+b days: two “dummy days”, a vari-
able days, and b clause days.

Dummy Days: For the first day we create a precedence
DAG that is one directed path starting with jobs of
clients i

(d)
1 , . . . , i

(d)
6 and then the jobs of all remaining

clients in an arbitrary order. For the second day we create a
precedence DAG that is one directed path starting with jobs
of clients i(d)4 , . . . , i

(d)
9 and then the jobs of all remaining

clients in an arbitrary order.
Variable Days: For variable xj we create
day j + 2 with a precedence DAG that con-
sists of two directed paths. The first path contains
jobs of clients i

(d)
1 , i

(d)
2 , i

(d)
3 , i

(j,T)
1 , i

(j,T)
2 , i

(j,T)
3 in

that order. The second path starts with jobs of
clients i

(d)
4 , i

(d)
5 , i

(d)
6 , i

(j,F)
1 , i

(j,F)
2 , i

(j,F)
3 in that order

and then the jobs of all remaining clients in an arbitrary
order.
Clause Days: Let (xj1 , xj2 , xj3) be the jth clause and
and let it contain the t1th, t2th, and t3th appear-
ance of xj1 , xj2 , and xj3 , respectively. We we create
day a + j + 2 with a precedence DAG that con-
sists of three directed paths. The first path contains

11823

∑
A′⊆A

xG,A′,d = γ(G, d) ∀d ∈ {n− |A|+ 1, . . . , n}, precedence DAGs G (1)

∑
A′⊆A

x≤n−αG,A′ = γ≤n−α(G) ∀ precedence DAGs G (2)

∑
A′:i∈A′

∑
G

(
x≤n−αG,A′ +

n∑
d=n−α+1

xG,A′,d

)
≥ k ∀i ∈ A (3)

xG,A′,d = 0 if |A′| > d (4)∑
A′⊆A:|A′|≤d

x≤n−αG,A′ ≥ γ
≤d(G) ∀d ∈ {1, . . . , n− α} (5)

xG,A′ = 0 ∀A′, G : ∃(i, i′) ∈ E(G) with i /∈ A′ ∧ i′ ∈ A′ (6)

xG,A′,d = 0 ∀A′, G, d ∈ {n− α+ 1, . . . , n} : ∃(i, i′) ∈ E(G)

with i /∈ A′ ∧ i′ ∈ A′ (7)∑
A′⊆A,G,d∈{n−α+1,...,n}min{d−|A′|, n−α}·xG,A′,d+

∑
j∈{1,...,m}:dj≤n−α dj−

∑
A′⊆A,G |A′|·x≤n−α(G,A′) ≥ k(n−|A|)

(8)

jobs of clients i
(d)
1 , i

(d)
2 , i

(d)
3 , i

(j1,T)
t1 , i

(j2,F)
t2 , i

(j3,F)
t3

in that order. The second path contains jobs
of clients i

(d)
4 , i

(d)
5 , i

(d)
6 , i

(j1,F)
t1 , i

(j2,T)
t2 , i

(j3,F)
t3 in

that order. The third path starts with jobs of
clients i

(d)
7 , i

(d)
8 , i

(d)
9 , i

(j1,F)
t1 , i

(j2,F)
t2 , i

(j3,T)
t3 in that or-

der and then the jobs of all remaining clients in an arbitrary
order.

This finishes the construction. It can clearly be done in
polynomial time. The correctness is deferred to a long ver-
sion (Heeger et al. 2020).

We remark that by introducing additional dummy clients,
the reduction for Theorem 12 can be modified in a way that
the precedence DAGs consists of disjoint paths of constant
length. Hence, we get the following result (we omit the de-
tails here).
Corollary 13. ESPC is NP-hard even if k = 1 and the
precedence DAG of each day consists of disjoint paths of
constant length.

Algorithmic Result. In the following, we give an ILP for-
mulation for ESPC to obtain fixed-parameter tractability for
the number of clients that are incident to an arc in at least on
precedence DAG.
Theorem 14 (?). ESPC is fixed-parameter tractable when
parameterized by the number of clients that are incident to
an arc in at least on precedence DAG.

Proof. Let I be an instance of ESPC. We assume without
loss of generality that dj ≤ n for all days j ∈ {1, . . . ,m}
(since on every day at most n jobs can be scheduled, we
can replace the deadline by n otherwise). Let A be the set
of clients incident to at least one arc appearing in some
precedence DAG. Let α := |A| and β be the number of
arcs appearing in at least one incidence DAG. Note that
α
2 ≤ β ≤

(
α
2

)
. Note that the number of different prece-

dence DAGs is at most 2β . For a precedence DAG G and

a deadline d ∈ {1, . . . ,m}, let γ(G, d) denote the number
of days with precedence DAG G and deadline d. We define
γ(G) :=

∑n
r=1 γ(G, r) and γ≤d(G) :=

∑d
r=1 γ(G, r).

We construct an integer linear program (ILP) as follows.
For each precedence DAG G, subset A′ ⊆ A, and d ∈
{n−α+1, . . . , n}, we add a variable xG,A′,d, indicating on
how many days with precedence DAG G and deadline d ex-
actly the jobs from clients in A′ are scheduled. Additional,
for each precedence DAG G and subset A′ ⊆ A, we add a
variable x≤n−αG,A′ , indicating on how many days with prece-
dence DAG G and deadline at most n − α the jobs from
clients in A′ are scheduled. Furthermore, there are the con-
straints specified by Equations (1) to (8).

The number of variables in this ILP is bounded by α2α+β
and therefore can be solved in FPT-time with respect to α+β
by Lenstra Jr (1983). The correctness proof for the ILP is
deferred to the long version (Heeger et al. 2020).

Conclusion
We have introduced a promising new framework for prob-
lems in single machine scheduling. We investigated three
basic single machine scheduling problems in this frame-
work and we believe that it might also be interesting in other
scheduling contexts.

We leave several questions open for future research. We
believe that it would be promising to implement our approx-
imation algorithm for ESSD* (Theorem 10) and, once pro-
vided with appropriate real-world data, test how well it per-
forms in practice. The question whether we can get similar
approximation results also for ESSD and ESPC remains
unresolved. For ESPC, it also remains open whether we
can get similar combinatorial algorithms as for ESSD and
whether ESPC is in XP for the parameter number of days
(i.e., whether it can be solved in polynomial time if the num-
ber of days is constant).

11824

References
Adamu, M.; and Adewumi, A. 2014. Survey of single ma-
chine scheduling to minimize weighted number of tardy
jobs. Journal of Industrial and Management Optimization
10: 219.

Baptiste, P.; Brucker, P.; Knust, S.; and Timkovsky, V. G.
2004. Ten notes on equal-processing-time scheduling.
Quarterly Journal of the Belgian, French and Italian Op-
erations Research Societies 2(2): 111–127.

Baruah, S. K.; Cohen, N. K.; Plaxton, C. G.; and Varvel,
D. A. 1996. Proportionate Progress: A Notion of Fairness in
Resource Allocation. Algorithmica 15(6): 600–625.

Bentert, M.; Bredereck, R.; Györgyi, P.; Kaczmarczyk, A.;
and Niedermeier, R. 2021. A Multivariate Complexity Anal-
ysis of the Material Consumption Problem. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence, AAAI
2021. AAAI Press.

Bentert, M.; van Bevern, R.; and Niedermeier, R. 2019. In-
ductive k-independent graphs and c-colorable subgraphs in
scheduling: a review. Journal of Scheduling 22(1): 3–20.

Bertsimas, D.; Farias, V. F.; and Trichakis, N. 2011. The
Price of Fairness. Operations Research 59(1): 17–31.

Bodlaender, H. L.; and van der Wegen, M. 2020. Parameter-
ized Complexity of Scheduling Chains of Jobs with Delays.
In Proceedings of the 15th International Symposium on Pa-
rameterized and Exact Computation, IPEC 2020, 4:1–4:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Bredereck, R.; Kaczmarczyk, A.; and Niedermeier, R. 2018.
Envy-Free Allocations Respecting Social Networks. In
Proceedings of the 17th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2018,
283–291.

Downey, R. G.; and Fellows, M. R. 2013. Fundamentals of
Parameterized Complexity. Springer.

Fluschnik, T.; Skowron, P.; Triphaus, M.; and Wilker, K.
2019. Fair Knapsack. In Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence, AAAI 2019, 1941–1948.
AAAI Press.

Ganian, R.; Hamm, T.; and Mescoff, G. 2020. The Com-
plexity Landscape of Resource-Constrained Scheduling. In
Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI 2020, 1741–1747.
ijcai.org.

Gonzalez, T. F. 1985. Clustering to Minimize the Maxi-
mum Intercluster Distance. Theoretical Computer Science
38: 293–306.

Graham, R.; Lawler, E.; Lenstra, J.; and Kan, A. 1979. Opti-
mization and approximation in deterministic sequencing and
scheduling: a survey. Annals of Discrete Mathematics 3:
287–326.

Gupta, S.; Jalan, A.; Ranade, G.; Yang, H.; and Zhuang, S.
2020. Too many fairness metrics: Is there a solution? SSRN
URL https://dx.doi.org/10.2139/ssrn.3554829.

Heeger, K.; Hermelin, D.; Mertzios, G. B.; Molter, H.; Nie-
dermeier, R.; and Shabtay, D. 2020. Equitable Schedul-
ing on a Single Machine. CoRR abs/2010.04643. URL
https://arxiv.org/abs/2010.04643.
Hermelin, D.; Manoussakis, G.; Pinedo, M.; Shabtay, D.;
and Yedidsion, L. 2020. Parameterized Multi-Scenario
Single-Machine Scheduling Problems. Algorithmica 82(9):
2644–2667.
Hermelin, D.; Shabtay, D.; and Talmon, N. 2019. On
the parameterized tractability of the just-in-time flow-shop
scheduling problem. Journal of Scheduling 22(6): 663–676.

Hopcroft, J. E.; and Karp, R. M. 1973. An n5/2 Algorithm
for Maximum Matchings in Bipartite Graphs. SIAM Journal
on Computing 2(4): 225–231.
Johnson, D. S. 1974. Fast Algorithms for Bin Packing. Jour-
nal of Computer and System Sciences 8(3): 272–314.
Johnson, D. S.; Demers, A. J.; Ullman, J. D.; Garey, M. R.;
and Graham, R. L. 1974. Worst-Case Performance Bounds
for Simple One-Dimensional Packing Algorithms. SIAM
Journal on Computing 3(4): 299–325.
Kumar, A.; and Kleinberg, J. M. 2006. Fairness Mea-
sures for Resource Allocation. SIAM Journal on Computing
36(3): 657–680.
Lang, J.; and Rothe, J. 2016. Fair Division of Indivisible
Goods. In Rothe, J., ed., Economics and Computation, An
Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division, Springer Texts in Busi-
ness and Economics, 493–550. Springer.
Lenstra, J.; and Rinnooy Kan, A. 1980. Complexity results
for scheduling chains on a single machine. European Jour-
nal of Operational Research 4(4): 270 – 275.
Lenstra Jr, H. W. 1983. Integer programming with a fixed
number of variables. Mathematics of Operations Research
8(4): 538–548.
Maxwell, W. L. 1970. On sequencing n jobs on one machine
to minimize the number of late jobs. Management Science
19(1): 295–297.
Mnich, M.; and van Bevern, R. 2018. Parameterized com-
plexity of machine scheduling: 15 open problems. Comput-
ers & Operations Research 100: 254–261.
Moore, J. 1968. An n job, one machine sequencing algo-
rithm for minimizing the number of late jobs. Management
Science 15(2): 102–109.
Sturm, L. B. J. M. 1970. A Simple Optimality Proof
of Moore’s Sequencing Algorithm. Management Science
17(1): 116–118.
Walsh, T. 2020. Fair Division: The Computer Scientist’s Per-
spective. In Proceedings of the 29th International Joint Con-
ference on Artificial Intelligence, IJCAI 2020, 4966–4972.
ijcai.org.

11825

