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Abstract
Generalized planning is concerned with the computation of
general policies that solve multiple instances of a planning
domain all at once. It has been recently shown that these poli-
cies can be computed in two steps: first, a suitable abstrac-
tion in the form of a qualitative numerical planning problem
(QNP) is learned from sample plans, then the general poli-
cies are obtained from the learned QNP using a planner. In
this work, we introduce an alternative approach for comput-
ing more expressive general policies which does not require
sample plans or a QNP planner. The new formulation is very
simple and can be cast in terms that are more standard in ma-
chine learning: a large but finite pool of features is defined
from the predicates in the planning examples using a general
grammar, and a small subset of features is sought for sep-
arating “good” from “bad” state transitions, and goals from
non-goals. The problems of finding such a “separating sur-
face” while labeling the transitions as “good” or “bad” are
jointly addressed as a single combinatorial optimization prob-
lem expressed as a Weighted Max-SAT problem. The advan-
tage of looking for the simplest policy in the given feature
space that solves the given examples, possibly non-optimally,
is that many domains have no general, compact policies that
are optimal. The approach yields general policies for a num-
ber of benchmark domains.

Introduction
Generalized planning is concerned with the computation of
general policies or plans that solve multiple instances of a
given planning domain all at once (Srivastava, Immerman,
and Zilberstein 2008; Bonet, Palacios, and Geffner 2009; Hu
and De Giacomo 2011; Belle and Levesque 2016; Segovia,
Jiménez, and Jonsson 2016). For example, a general plan for
clearing a block x in any instance of Blocksworld involves
a loop where the topmost block above x is picked up and
placed on the table until no such block remains. A general
plan for solving any Blocksworld instance is also possible,
like one where misplaced blocks and those above them are
moved to the table, and then to their targets in order. The
key question in generalized planning is how to represent and
compute such general plans from the domain representation.

In one of the most general formulations, general policies
are obtained from an abstract planning model expressed as a
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qualitative numerical planning problem or QNP (Srivastava
et al. 2011). A QNP is a standard STRIPS planning model
extended with non-negative numerical variables that can be
decreased or increased “qualitatively”; i.e., by uncertain pos-
itive amounts, short of making the variables negative. Unlike
standard planning with numerical variables (Helmert 2002),
QNP planning is decidable, and QNPs can be compiled
in polynomial time into fully observable non-deterministic
(FOND) problems (Bonet and Geffner 2020)

The main advantage of the formulation of generalized
planning based on QNPs is that it applies to standard re-
lational domains where the pool of (ground) actions change
from instance to instance. On the other hand, while the plan-
ning domain is assumed to be given, the QNP abstraction is
not, and hence it has to be written by hand or learned. This
is the approach of Bonet, Francès, and Geffner (2019) where
generalized plans are obtained by learning the QNP abstrac-
tion from the domain representation and sample plans, and
then solving the abstraction with a QNP planner.

In this work, we build on this thread but introduce an alter-
native approach for computing general policies that is sim-
pler, yet more powerful. The learning problem is cast as a
self-supervised classification problem where (1) a pool of
features is automatically generated from a general grammar
applied to the domain predicates, and (2) a small subset of
features is sought for separating “good” from “bad” state
transitions, and goals from non-goals. The problems of find-
ing the “separating surface” while labeling the transitions as
“good” or “bad” are addressed jointly as a single combina-
torial optimization task solved with a Weighted Max-SAT
solver. The approach yields general policies for a number of
benchmark domains.

The paper is organized as follows. We first review related
work and classical planning, and introduce a new language
for expressing general policies motivated by the work on
QNPs. We then present the learning task, the computational
approach for solving it, and the experimental results.

Related Work
The computation of general plans from domain encodings
and sample plans has been addressed in a number of works
(Khardon 1999; Martı́n and Geffner 2004; Fern, Yoon, and
Givan 2006; Silver et al. 2020). Generalized planning has
also been formulated as a problem in first-order logic (Sri-
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vastava, Immerman, and Zilberstein 2011; Illanes and McIl-
raith 2019), and general plans over finite horizons have been
derived using first-order regression (Boutilier, Reiter, and
Price 2001; Wang, Joshi, and Khardon 2008; van Otterlo,
M. 2012; Sanner and Boutilier 2009). More recently, gen-
eral policies for planning have been learned from PDDL do-
mains and sample plans using deep learning (Toyer et al.
2018; Bueno et al. 2019; Garg, Bajpai, and Mausam 2020).
Deep reinforcement learning methods (Mnih et al. 2015)
have also been used to generate general policies from im-
ages without assuming prior symbolic knowledge (Groshev
et al. 2018; Chevalier-Boisvert et al. 2019), in certain cases
accounting for objects and relations through the use of suit-
able architectures (Garnelo and Shanahan 2019). Our work
is closest to the works of Bonet, Francès, and Geffner (2019)
and Francès et al. (2019). The first provides a model-based
approach to generalized planning where an abstract QNP
model is learned from the domain representation and sam-
ple instances and plans, which is then solved by a QNP
planner (Bonet and Geffner 2020). The second learns a gen-
eralized value function in an unsupervised manner, under
the assumption that this function is linear. Model-based ap-
proaches have an advantage over inductive approaches that
learn generalized plans; like logical approaches, they guar-
antee that the resulting policies (conclusions) are correct
provided that the model (set of premises) is correct. The ap-
proach developed in this work does not make use of QNPs
or planners but inherits these formal properties.

Planning

A (classical) planning instance is a pair P = 〈D, I〉whereD
is a first-order planning domain and I is an instance. The
domainD contains a set of predicate symbols and a set of ac-
tion schemas with preconditions and effects given by atoms
p(x1, . . . , xk), where p is a k-ary predicate symbol, and each
xi is a variable representing one of the arguments of the ac-
tion schema. The instance is a tuple I = 〈O, Init,Goal〉,
where O is a (finite) set of object names ci, and Init and
Goal are sets of ground atoms p(c1, . . . , ck), where p is a
k-ary predicate symbol. This is indeed the structure of plan-
ning problems as expressed in PDDL (Haslum et al. 2019).

The states associated with a problem P are the possible
sets of ground atoms, and the state graph G(P ) associated
with P has the states of P as nodes, an initial state s0 that
corresponds to the set of atoms in Init, and a set of goal
states sG with all states that include the atoms in Goal. In
addition, the graph has a directed edge (s, s′) for each state
transition that is possible in P , i.e. where there is a ground
action a whose preconditions hold in s and whose effects
transform s into s′. A state trajectory s0, . . . , sn is possible
in P if every transition (si, si+1) is possible in P , and it
is goal-reaching if sn is a goal state. An action sequence
a0, . . . , an−1 that gives rise to a goal-reaching trajectory,
i.e., where transition (si, si+1) is enabled by ground action
ai, is called a plan or solution for P .

Generalized Planning
A key question in generalized planning is how to repre-
sent general plans or policies when the different instances
to be solved have different sets of objects and ground ac-
tions. One solution is to work with general features (func-
tions) that have well defined values over any state of any
possible domain instance, and think of general policies π
as mappings from feature valuations into abstract actions
that denote changes in the feature values (Bonet and Geffner
2018). In this work, we build on this intuition but avoid the
introduction of abstract actions (Bonet and Geffner 2021).

Policy Language and Semantics
The features considered are boolean and numerical. The
first are denoted by letters like p, and their (true or false)
value in a state s is denoted as p(s). Numerical features n
take non-negative integer values, and their value in a state is
denoted as n(s). The complete set of features is denoted as
Φ and a joint valuation over all the features in Φ in a state s
is denoted as φ(s), while an arbitrary valuation as φ. The ex-
pression JφK denotes the boolean counterpart of φ; i.e., JφK
gives a truth value to all the atoms p(s) and n(s) = 0 for
features p and n in Φ, without providing the exact value of
the numerical features n if n(s) 6= 0. The number of possi-
ble boolean feature valuations JφK is equal to 2|Φ|, which
is a fixed number, as the set of features Φ does not change
across instances.

The possible effects E on the features in Φ are p and
¬p for boolean features p in E, and n↓ and n↑ for nu-
merical features n in E. If Φ = {p, q, n,m, r} and E =
{p,¬q, n↑,m↓}, the meaning of the effects in E is that p
must become true, q must become false, n must increase its
value, and m must decrease it. The features in Φ that are not
mentioned in E, like r, keep their values. A set of effects
E can be thought of as a set of constraints on possible state
transitions:
Definition 1. Let Φ be a set of features over a domain D,
let (s, s′) be a state transition over an instance P of D, and
let E be a set of effects over the features in Φ. Then the
transition (s, s′) is compatible with or satisfies E when 1) if
p (¬p) in E, then p(s′) = true (resp. p(s′) = false), 2) if
n↓ (n↑) in E, then n(s) > n(s′) (resp. n(s) < n(s′)), and
3) if p and n are not mentioned in E, then p(s) = p(s′), and
n(s) = n(s′) respectively.
The form of the general policies considered in this work can
then be defined as follows:
Definition 2. A general policy πΦ is given by a set of rules
C 7→ E where C is a set (conjunction) of p and n literals
for p and n in Φ, and E is an effect expression.

The p and n-literals are p, ¬p, n=0, and ¬(n=0), abbre-
viated as n>0. For a reachable state s, the policy πΦ is a
filter on the state transitions (s, s′) in P :
Definition 3. A general policy πΦ denotes a mapping from
state transitions (s, s′) over instances P ∈ Q into boolean
values. A transition (s, s′) is compatible with πΦ if for some
policy rule C 7→ E, C is true in φ(s) and (s, s′) satisfiesEi.
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As an illustration of these definitions, we consider a policy
for achieving the goals clear(x) and an empty gripper in any
Blocksworld instance with a block x.
Example. Consider the policy πΦ given by the following
two rules for features Φ={H,n}, where H is true if a block
is being held, and n tracks the number of blocks above x:

{¬H,n > 0} 7→ {H,n↓} ; {H,n > 0} 7→ {¬H} . (1)

The first rule says that when the gripper is empty and there
are blocks above x, then any action that decreases n and
makes H true should be selected. The second one says that
when the gripper is not empty and there are blocks above x,
any action that makes H false and does not affect the count
n should be selected (this rules out placing the block being
held above x, as this would increase n).

The conditions under which a general policy solves a class
of problems are the following:
Definition 4. A state trajectory s0, . . . , sn is compatible
with policy πΦ in an instance P if s0 is the initial state of
P and each pair (si, si+1) is a possible state transition in
P compatible with πΦ. The trajectory is maximal if sn is a
goal state, there are no state transitions (sn, s) in P compat-
ible with πΦ, or the trajectory is infinite and does not include
a goal state.
Definition 5. A general policy πΦ solves a class Q of in-
stances over domain D if in each instance P ∈ Q, all maxi-
mal state trajectories compatible with πΦ reach a goal state.

The policy expressed by the rules in (1) can be shown to
solve the class Qclear of all Blocksworld instances.

Non-deterministic Policy Rules
The general policies πΦ introduced above determine the ac-
tions a to be taken in a state s indirectly, as the actions a that
result in state transitions (s, s′) that are compatible with a
policy rule C 7→ E. If there is a single rule body C that is
true in s, for the transition (s, s′) to be compatible with πΦ,
(s, s′) must satisfy the effect E. Yet, it is possible that the
bodies Ci of many rules Ci 7→ Ei are true in s, and then for
(s, s′) to be compatible with πΦ it suffices if (s, s′) satisfies
one of the effects Ei.

For convenience, we abbreviate sets of rules Ci 7→ Ei,
i = 1, . . . ,m, that have the same body Ci = C, as C 7→
E1 | · · · |Em, and refer to the latter as a non-deterministic
rule. The non-determinism is on the effects on the features:
one effect Ei may increment a feature n, and another effect
Ej may decrease it, or leave it unchanged (if n is not men-
tioned in Ej). Policies πΦ where all pairs of rules C 7→ E
andC ′ 7→ E′ have bodiesC andC ′ that are jointly inconsis-
tent are said to be deterministic. Previous formulations that
cast general policies as mappings from feature conditions
into abstract (QNP) actions yield policies that are determin-
istic in this way (Bonet and Geffner 2018; Bonet, Francès,
and Geffner 2019). Non-deterministic policies, however, are
strictly more expressive.
Example. Consider a domain Delivery where a truck has to
pick upm packages spread on a grid, while taking them, one
by one, to a single target cell t. If we consider the collection

of instances with one package only, call them Delivery-1, a
general policy πΦ for them can be expressed using the set
of features Φ = {np, nt, C,D}, where np represents the
distance from the agent to the package (0 when in the same
cell or when holding the package), nt represents the distance
from the agent to the target cell, and C and D represent that
the package is carried and delivered respectively. One may
be tempted to write the policy πΦ by means of the four de-
terministic rules:

r1 : {¬C, np>0} 7→ {np↓} ; r2 : {¬C, np=0} 7→ {C}
r3 : {C, nt>0} 7→ {nt↓} ; r4 : {C, nt=0} 7→ {¬C,D} .

The rules say “if away from the package, get closer”, “if
don’t have the package but in the same cell, pick it up”, “if
carrying the package and away from target, get closer to tar-
get”, and “if carrying the package in target cell, drop the
package”. This policy, however, does not solve Delivery-1.
The reason is that transitions (s, s′) where the agent gets
closer to the package satisfy the conditions ¬C and np > 0
of rule r1 but may fail to satisfy its head {np↓}. This is be-
cause the actions that decrease the distance np to the pack-
age may affect the distance nt of the agent to the target, con-
tradicting r1, which says that nt does not change. To solve
Delivery-1 with the same features, rule r1 must be changed
to the non-deterministic rule:

r′1 : {¬C, np > 0} 7→ {np↓, nt↓} | {np↓, nt↑} | {np↓},

which says indeed that “when away from the package, move
closer to the package for any possible effect on the distance
nt to the target, which may decrease, increase, or stay the
same.” We often abbreviate rules like r′1 as {¬C, np > 0} 7→
{np↓, nt?}, where nt? expresses “any effect on nt.”

Learning General Policies: Formulation
We turn now to the key challenge: learning the features Φ
and general policies πΦ from samples P1, . . . , Pk of a target
class of problemsQ, given the domain D. The learning task
is formulated as follows. From the predicates used in D and
a fixed grammar, we generate a large poolF of boolean and
numerical features f , like in (Bonet, Francès, and Geffner
2019), each of which is associated with a measure w(f) of
syntactic complexity. We then search for the simplest set of
features Φ ⊆ F such that a policy πΦ defined on Φ solves
all sample instances P1, . . . , Pk. This task is formulated as
a Weighted Max-SAT problem over a suitable propositional
theory T , with score

∑
f∈Φ w(f) to minimize.

This learning scheme is unsupervised as the sample in-
stances do not come with their plans. Since the sample in-
stances are assumed to be sufficiently small (small state
spaces) this is not a crucial issue, and by letting the learn-
ing algorithm choose which plans to generalize, the resulting
approach becomes more flexible. In particular, if we ask for
the policy πΦ to generalize given plans as in (Bonet, Francès,
and Geffner 2019), it may well happen that there are policies
in the feature space but none of which generalizes the plans
provided by the teacher.

We next describe the propositional theory T assuming that
the feature pool F and the feature weights w(f) are given,
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and then explain how they are generated. Our SAT formula-
tion is different from (Bonet, Francès, and Geffner 2019) as
it is aimed at capturing a more expressive class of policies
without requiring QNP planners.

Learning the General Policy as Weighted Max-SAT
The propositional theory T = T (S,F) that captures our
learning task takes as inputs the pool of features F and the
state space S made up of the (reachable) states s, the possi-
ble state transitions (s, s′), and the sets of (reachable) goal
states in each of the sample problem instances P1, . . . , Pn.
The handling of dead-end states is explained below. States
arising from the different instances are assumed to be differ-
ent even if they express the same set of ground atoms. The
propositional variables in T are

• Select(f): feature f from pool F makes it into Φ,

• Good(s, s′): transition (s, s′) is compatible with πΦ,

• V (s, d): num. labels V (s) = d, V ∗(s) ≤ d ≤ δV ∗(s).

The true atoms Select(f) in the satisfying assignment de-
fine the features f ∈ Φ, while the true atoms Good(s, s′),
along with the selected features, define the policy πΦ. More
precisely, there is a rule C 7→ E1 | · · · |Em in the policy
iff for each effect Ei, there is a true atom Good(s, si) for
which C = Jφ(s)K, and Ei captures the way in which the
selected features change across the transition (s, si). The
formulas in the theory use numerical labels V (s) = d, for
V ∗(s) ≤ d ≤ δV ∗(s) where V ∗(s) is the minimum distance
from s to a goal, and δ ≥ 1 is a slack parameter that controls
the degree of suboptimality that we allow. All experiments
in this paper use δ = 2. These values are used to ensure that
the policy determined by the Good(s, s′) atoms solves all
instances Pi as well as all instances Pi[s] that are like Pi but
with s as the initial state, where s is a state reachable in Pi

and is not a dead-end. We call the Pi[s] problems variants
of Pi. Dead-ends are states from which the goal cannot be
reached, and they are labeled as such in S .

The formulas are the following. States s and t, and transi-
tions (s, s′) and (t, t′) range over those in S , excluding tran-
sitions where the first state of the transition is a dead-end or a
goal. ∆f (s, s′) expresses how feature f changes across tran-
sition (s, s′): for boolean features, ∆f (s, s′) ∈ {↑, ↓,⊥},
meaning that f changes from false to true, from true to false,
or stays the same. For numerical features, ∆f (s, s′) ∈ {↑, ↓
⊥}, meaning that f can increase, decrease, or stay the same.
The formulas in T = T (S,F) are:

1. Policy:
∨

(s,s′)Good(s, s′), s is non-goal state,

2. V1.: Exactly-1 {V (s, d) : V ∗(s) ≤ d ≤ δV ∗(s)},1

3. V2: Good(s, s′)→ V (s, d) ∧ V (s′, d′), d′ < d,

4. Goal:
∨

f :Jf(s)K 6=Jf(s′)K Select(f), one {s, s′} is goal,

5. Bad trans: ¬Good(s, s′) for s solvable, and s′ dead-end,

6. D2-sep: Good(s, s′) ∧ ¬Good(t, t′) → D2(s, s′; t, t′),
where D2(s, s′; t, t′) is

∨
∆f (s,s′)6=∆f (t,t′) Select(f).

1This implies that V (s, 0) iff s is a goal state.

The first formula asks for a good transition from any non-
goal state s. The good transitions are transitions that will
be compatible with the policy. The second and third formu-
las ensure that these good transitions lead to a goal state,
and furthermore, that they can capture any non-deterministic
policy that does so. The fourth formulation is about separat-
ing goal from non-goal states, and the fifth is about exclud-
ing transitions into dead-ends. Finally, the D2-separation
formula says that if (s, s′) is a “good” transition (i.e., com-
patible with the resulting policy πΦ), then any other transi-
tion (t, t′) in S where the selected features change exactly
as in (s, s′) must be “good” as well. ∆f (s, s′) above cap-
tures how feature f changes across the transition (s, s′), and
the selected features f change in the same way in (s, s′) and
(t, t′) when ∆f (s, s′) = ∆f (t, t′).

The propositional encoding is sound and complete in the
following sense:
Theorem 6. Let S be the state space associated with a set
P1, . . . , Pk of sample instances of a class of problems Q
over a domainD, and letF be a pool of features. The theory
T (S,F) is satisfiable iff there is a general policy πΦ over
features Φ ⊆ F that discriminates goals from non-goals
and solves P1, . . . , Pk and their variants.

For the purpose of generalization outside of the sample in-
stances, instead of looking for any satisfying assignment of
the theory T (S,F), we look for the satisfying assignments
that minimize the complexity of the resulting policy, as mea-
sured by the sum of the costs w(f) of the clauses Select(f)
that are true, wherew(f) is the complexity of feature f ∈ F .

We sketched above how a general policy πΦ is extracted
from a satisfying assignment. The only thing missing is the
precise meaning of the line “Ei captures the way in which
the selected features change in the transition from s to si”.
For this, we look at the value of the expression ∆f (s, si)
computed at preprocessing, and place f (¬f ) in Ei if f is
boolean and ∆f (s, si) is ‘↑’ (resp. ↓), and place f↑ (f↓) in
Ei if f is numerical and ∆f (s, si) is ‘↑’ (resp. ↓). Duplicate
effects Ei and Ej in a policy rule are merged. The resulting
policy delivers the properties of Theorem 6:
Theorem 7. The policy πΦ and features Φ that are deter-
mined by a satisfying assignment of the theory T solves the
sample problems P1, . . . , Pk and their variants.

Feature Pool
The feature pool F used in the theory T (S,F) is ob-
tained following the method described by Bonet, Francès,
and Geffner (2019), where the (primitive) domain predicates
are combined through a standard description logics gram-
mar (Baader et al. 2003) in order to build a larger set of
(unary) concepts c and (binary) roles r. Concepts represent
properties that the objects of any problem instance can fulfill
in a state, such as the property of being a package that is in
a truck on its target location in a standard logistics problem.
For primitive predicates p mentioned in the goal, a “goal
predicate” pG is added that is evaluated not in the state but
in the goal, following (Martı́n and Geffner 2004).

From these concepts and roles, we generate cardinality
features |c|, which evaluate to the number of objects that
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satisfy concept c in a given state, and distance features
Distance(c1, r, c2), which evaluate to the minimum num-
ber of r-steps between two objects that (respectively) satisfy
c1 and c2. We refer the reader to the appendix for more de-
tail (Francès, Bonet, and Geffner 2021a). Both types of fea-
tures are lower-bounded by 0 and upper-bounded by the total
number of objects in the problem instance. Cardinality fea-
tures that only take values in {0, 1} are made into boolean
features. The complexity w(f) of feature f is given by the
size of its syntax tree. The feature pool F used in the experi-
ments below contains all features up to a certain complexity
bound kF .

Experimental Results

We implemented the proposed approach in a C++/Python
system called D2L and evaluated it on several problems.
Source code and benchmarks are available online2 and
archived in Zenodo (Francès, Bonet, and Geffner 2021b).
Our implementation uses the Open-WBO Weighted Max-
SAT solver (Martins, Manquinho, and Lynce 2014). All ex-
periments were run on an Intel i7-8700 CPU@3.2GHz with
a 16 GB memory limit.

The domains include all problems with simple goals
from (Bonet, Francès, and Geffner 2019), e.g. clearing a
block or stacking two blocks in Blocksworld, plus standard
PDDL domains such as Gripper, Spanner, Miconic, Visitall
and Blocksworld. In all the experiments, we use δ = 2 and
kF = 8, except in Delivery, where kF = 9 is required to
find a policy. We next describe two important optimizations.

Exploiting indistinguishability of constraints. A fixed
feature pool F induces an equivalence relation over the set
of all transitions in the training sample that puts two tran-
sitions in the same equivalence class iff they cannot be dis-
tinguished by F . The theory T (S,F) above can be simpli-
fied by arbitrarily choosing one transition (s, s′) for each of
these equivalence classes, then using a single SAT variable
Good(s, s′) to denote the goodness of any transition in the
class and to enforce the D2-separation clauses.

Incremental constraint generation. Since the number
of D2-separation constraints in the theory T (S,F) grows
quadratically with the number of equivalence classes among
the transitions, we use a constraint generation loop where
these constraints are enforced incrementally. We start with a
set τ0 of pairs of transitions (s, s′) and (t, t′) that contains all
pairs for which s = t plus some random pairs from S . We
obtain the theory T0(S,F) that is like T (S,F) but where
the D2-separation constraints are restricted to pairs in τ0.
At each step, we solve Ti(S,F) and validate the solution to
check whether it distinguishes all good from bad transitions
in the entire sample; if it does not, the offending transitions
are added to τi+1 ⊃ τi, and the loop continues until the so-
lution to Ti(S,F) satisfies the D2-separation formulas for
all pairs of transitions in S , not just those in τi.

2https://github.com/rleap-project/d2l.

Results
Table 1 provides an overview of the execution of D2L over
all generalized domains. The two main conclusions to be
drawn from the results are that 1) our generalized policies
are more expressive and result in policies that cannot be cap-
tured in previous approaches (Bonet, Francès, and Geffner
2019), 2) our SAT encoding is also simpler and scales up
much better, allowing to tackle harder tasks with reasonable
computational effort. Also, the new formulation is unsuper-
vised and complete, in the sense that if there is a general
policy in the given feature space that solves the instances,
the solver is guaranteed to find it.

In all domains, we use a modified version of the Pyper-
plan planner3 to check empirically that the learned poli-
cies are able to solve a set of test instances of significantly
larger dimensions than the training instances. For standard
PDDL domains with readily-available instances (e.g., Grip-
per, Spanner, Miconic), the test set includes all instances
in the benchmark set,4 whereas for other domains such
as Qrew, Qdeliv or Qbw, the test set contains at least 30
randomly-generated instances.

We next briefly describe the policy learnt by D2L in each
domain; the appendix contains detailed descriptions and
proofs of correctness for all these policies (Francès, Bonet,
and Geffner 2021a).

Clearing a block. Qclear is a simplified Blocksworld where
the goal is to get clear(x) for a distinguished block x. We
use the standard 4-op encoding with stack and unstack ac-
tions. Any 5-block training instance suffices to compute the
following policy over features Φ = {c,H, n} that denote,
respectively, whether x is clear, whether the gripper holds a
block, and the number of blocks above x:5

r1 : {¬c,H, n = 0} 7→ {c,¬H} ,
r2 : {¬c,¬H,n > 0} 7→ {c?, H, n↓} ,
r3 : {¬c,H, n > 0} 7→ {¬H} .

Rule r1 applies only when x is held (the only case where
n = 0 and ¬c), and puts x on the table. Rule r2 picks any
block above x that can be picked, potentially making x clear,
and r3 puts down block y 6= x anywhere not above x. Note
that this policy is slightly more complex than the one defined
in (1) because the SAT theory enforces that goals be distin-
guishable from non-goals, which in the standard encoding
cannot be achieved with H and n alone.

Stacking two blocks. Qon is another simplification of
Blocksworld where the goal is on(x, y) for two designated
blocks x and y. One training instance with 5 blocks yields
a policy over features Φ = {e, c(x), on(y), ok, c}. The first
four are boolean and encode whether the gripper is empty, x
is clear, some block is on y, and x is on y; the last is numer-
ical and encodes the number of clear objects. This version

3https://github.com/aibasel/pyperplan.
4We have used the benchmark distribution in https://github.

com/aibasel/downward-benchmarks.
5All features discussed in this section are automatically derived

with the description-logic grammar, but we label them manually
for readability.
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|Pi| dim S S/∼ dmax |F| vars clauses tall tSAT cΦ |Φ| k∗ |πΦ|
Qclear 1 5 1, 161 55 7 532 7.9K 243.7K(242.3K) 6 < 1 8 3 4 3
Qon 1 5 1, 852 329 10 1, 412 17.3K 376.6K(281.5K) 33 22 13 5 5 7
Qgrip 1 4 1, 140 61 12 835 6.5K 102.6K(100.8K) 2 < 1 9 3 4 4
Qrew 1 5× 5 432 361 15 514 5.5K 214.9K(98.9K) 2 < 1 7 2 6 2
Qdeliv 2 4× 4 42, 473 5442 56 1, 373 753.4K 38.2M(23.5M) 3071 2902 30 4 14 6
Qvisit 1 3× 3 2, 396 310 8 188 13.9K 244.5K(160.6K) 3 < 1 7 2 5 1
Qspan 3 (6, 10) 10, 777 96 19 764 85.0K 2.2M(2.2M) 32 < 1 9 3 6 2
Qmicon 2 (4, 7) 4, 706 4, 636 14 1, 073 23.8K 23.6M(2.4M) 41 61 11 4 5 5
Qbw 2 5 4, 275 4, 275 8 1, 896 22.1K 9.3M(390.0K) 80 40 11 3 6 1

Table 1: Overview of results. |Pi| is number of training instances, and dim is size of largest training instance along main general-
ization dimension(s): number of blocks (Qclear,Qon,Qbw), number of balls (Qgrip), grid size (Qrew,Qdeliv,Qvisit), number
of locations and spanners (Qspan), number of passengers and floors (Qmicon). We fix δ = 2 and kF = 8 in all experiments
except Qdeliv , where kF = 9. S is number of transitions in the training set, and S/∼ is the number of distinguishable equiva-
lence classes in S . dmax is the max. diameter of the training instances. |F| is size of feature pool. “Vars” and “clauses” are the
number of variables and clauses in the (CNF form) of the theory T (S,F); the number in parenthesis is the number of clauses in
the last iteration of the constraint generation loop. tall is total CPU time, in sec., while tSAT is CPU time spent solving Max-SAT
problems. cΦ is optimal cost of SAT solution, |Φ| is number of selected features, k∗ is cost of the most complex feature in the
policy, |πΦ| is number of rules in the resulting policy. CPU times are given for the incremental constraint generation approach.

of the problem is more general than that in (Bonet, Francès,
and Geffner 2019), where x and y are assumed to be initially
in different towers.

Gripper. Qgrip is the standard Gripper domain where a
two-arm robot has to move n balls between two rooms A
and B. Any 4-ball instance is sufficient to learn a simple
policy with features Φ = {rB , c, b} that denote whether the
robot is at B, the number of balls carried by the robot, and
the number of balls not yet left in B:

r1 : {¬rB , c = 0, b > 0} 7→ {c↑} ,
r2 : {rB , c = 0, b > 0} 7→ {¬rB} ,
r3 : {rB , c > 0, b > 0} 7→ {c↓, b↓} ,
r4 : {¬rB , c > 0, b > 0} 7→ {rB} .

In any non-goal state, the policy is compatible with the tran-
sition induced by some action; overall, it implements a loop
that moves balls from A to B, one by one. Bonet, Francès,
and Geffner (2019) also learn an abstraction for Gripper, but
need an extra feature g that counts the number of free grip-
pers in order to keep the soundness of their QNP model. Our
approach does not need to build such a model, and the poli-
cies it learns often use features of smaller complexity.

Picking rewards. Qrew consists on an agent that navigates
a grid with some non-walkable cells in order to pick up scat-
tered reward items. Training on a single 5 × 5 grid with
randomly-placed rewards and non-walkable cells results in
the same policy as reported by Bonet, Francès, and Geffner
(2019), which moves the agent to the closest unpicked re-
ward, picks it, and repeats. In contrast with that work, how-
ever, our approach does not require sample plans, and its
propositional theory is one order of magnitude smaller.

Delivery. Qdeliv is the previously discussed Delivery prob-
lem, where a truck needs to pick m packages from different
locations in a grid and deliver them, one at a time, to a single

target cell t. The policy learnt by D2L is a generalization to
m packages of the one-package policy discussed before.

Visitall. Qvisit is the standard Visitall domain where an
agent has to visit all the cells in a grid at least once. Training
on a single 3×3 instance produces a single-rule policy based
on features Φ = {u, d} that represent the number of unvis-
ited cells and the distance to a closest unvisited cell. The
policy, similar to the one for Qrew, moves the agent greed-
ily to a closest unvisited until all cells have been visited.

Spanner. Qspan is the standard Spanner domain where an
agent picks up spanners along a corridor that are used at
the end to tighten some nuts. Since spanners can be used
only once and the corridor is one-way, the problem becomes
unsolvable as soon as the agent moves forward and leaves
some needed Spanner behind. We feed D2L with 3 training
instances with different initial locations of spanners, and it
computes a policy with features Φ = {n, h, e} that denote
the number of nuts that still have to be tightened, the num-
ber of objects not held by the agent and whether the agent
location is empty, i.e. has no spanner or nut in it:

r1 : {n > 0, h > 0, e} 7→ {e?} ,
r2 : {n > 0, h > 0,¬e} 7→ {h↓, e?} | {n↓} .

The policy dictates a move when the agent is in an empty
location; else, it dictates either to pick up a spanner or
tighten a nut. Importantly, it never allows the agent to leave
a location with some unpicked spanner, thereby avoiding
dead-ends. Note that the features and policy are fit to the
domain actions. For instance, an effect {e?} as in r1 could
not appear if the domain had no-op actions, as the result-
ing no-op transitions would comply with r1 without making
progress to the goal. The learned policy solves the 30 in-
stances of the learning track of the 2011 International Plan-
ning Competition, and can actually be formally proven cor-
rect over all Miconic instances.
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Miconic. Qmicon is the domain where a single elevator
moves across different floors to pick up and deliver passen-
gers to their destinations. We train on two instances with a
few floors and passengers with different origins and destina-
tions. The learned policy uses 4 numerical features that en-
code the number of passengers onboard in the lift, the num-
ber of passengers waiting to board, the number of passengers
waiting to board on the same floor where the lift is, and the
number of passengers boarded when the lift is on their tar-
get floor. The policy solves the 50 instances of the standard
Miconic distribution.

Blocksworld. Qbw is the classical Blocksworld where the
goal is to achieve some desired arbitrary configuration of
blocks, under the assumption that each block has a goal des-
tination (i.e., the goal picks a single goal state). We use a
standard PDDL encoding where blocks are moved atomi-
cally from one location to another (no gripper). The only
predicates are on and clear, and the set of objects consists
of n blocks and the table, which is always clear. We use a
single training instance with 5 blocks, where the target lo-
cation of all blocks is specified. We obtain a policy over the
features Φ = {c, t′, bwp} that stand for the number of clear
objects, the number of objects that are not on their target
location, and the number of objects such that all objects be-
low are well-placed, i.e., in their goal configuration. Inter-
estingly, the value of all features in non-goal states is always
positive (bwp > 0 holds trivially, as the table is always well-
placed and below all blocks). The computed policy has one
single rule with four effects:

{c > 0, t′ > 0, bwp > 0} 7→ {c↑} | {c↑, t′?, bwp↑} |
{c↑, t′↓} | {c↓, t′↓} .

The last effect in the rule is compatible with any move
of a block from the table into its final position, where ev-
erything below is already well-placed (this is the only move
away from the table compatible with the policy), while the
remaining effects are compatible with moving into the table
a block that is not on its final position. The policy solves a
set of 100 test instances with 10 to 30 blocks and random
initial and goal configurations, and can actually be proven
correct.

Discussion of Results. On dead-end free domains where
all instances of the same size (same objects) have isomor-
phic state spaces, D2L is able to generate valid policies from
one single training instance. In these cases, the only choice
we have made regarding the training instance is selecting a
size for the instance which is sufficiently large to avoid over-
fitting, but sufficiently small to allow the expansion of the
entire state space. As we have seen, though, the approach
is also able to handle domains with dead-ends (Qspan) or
where different instances with the same objects can give
rise to non-isomorphic state spaces (Qrew,Qmicon). In these
cases, the selection of training instances needs to be done
more carefully so that sufficiently diverse situations are ex-
emplified in the training set.

As it can be seen in Table 1, the two optimizations dis-
cussed at the beginning are key to scale up in different do-

mains. Considering indistinguishable classes of transitions
instead of individual transitions offers a dramatic reduction
in the size of the theory T (S,F) for domains with a large
number of symmetries such as Spanner, Visitall, and Grip-
per. On the other hand, the incremental constraint generation
loop also reduces the size of the theory up to one order of
magnitude for domains such as Miconic and Blocksworld.

Overall, the size of the propositional theory, which is the
main bottleneck in (Bonet, Francès, and Geffner 2019), is
much smaller. Where they report a number of clauses for
Qclear, Qon, Qgrip and Qrew of, respectively, 767K, 3.3M,
358K and 1.2M, the number of clauses in our encoding is
242.3K, 281.5K, 100.8K and 98.9K, that is up to one order
of magnitude smaller, which allows D2L to scale up to sev-
eral other domains. Our approach is also more efficient than
the one in (Francès et al. 2019). which requires several hours
to solve a domain such as Gripper.

Conclusions
We have introduced a new method for learning features and
general policies from small problems without supervision.
This is achieved by means of a novel formulation in which
a large but finite pool of features is defined from the predi-
cates in the planning examples using a general grammar, and
a small subset of features is sought for separating “good”
from “bad” state transitions, and goals from non-goals. The
problems of finding such a “separating surface” while label-
ing the transitions as “good” or “bad” are addressed jointly
as a Weighted Max-SAT problem. The formulation is com-
plete in the sense that if there is a general policy with fea-
tures in the pool that solves the training instances, the solver
will find it, and by computing the simplest such solution,
it ensures a better generalization outside of the training set.
In comparison with existing approaches, the new formula-
tion is conceptually simpler, more scalable (much smaller
propositional theories), and more expressive (richer class of
non-deterministic policies, and value functions that are not
necessarily linear in the features). In the future, we want to
study extensions for synthesizing provable correct policies
exploiting related results in QNPs.
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