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Abstract

We address the problem of efficient exploration for transition
model learning in the relational model-based reinforcement
learning setting without extrinsic goals or rewards. Inspired
by human curiosity, we propose goal-literal babbling (GLIB),
a simple and general method for exploration in such prob-
lems. GLIB samples relational conjunctive goals that can be
understood as specific, targeted effects that the agent would
like to achieve in the world, and plans to achieve these goals
using the transition model being learned. We provide theoret-
ical guarantees showing that exploration with GLIB will con-
verge almost surely to the ground truth model. Experimen-
tally, we find GLIB to strongly outperform existing methods
in both prediction and planning on a range of tasks, encom-
passing standard PDDL and PPDDL planning benchmarks
and a robotic manipulation task implemented in the PyBul-
let physics simulator. Video: https://youtu.be/F6lmrPT6TOY
Code: https://git.io/JIsTB

1 Introduction
Human curiosity often manifests in the form of a question:
“I wonder if I can do X?” A toddler wonders whether she
can climb on the kitchen counter to reach a cookie jar. Her
dad wonders whether he can make dinner when he’s missing
one of the key ingredients. These questions lead to actions,
actions may lead to surprising effects, and from this surprise,
we learn. In this work, inspired by this style of playful exper-
imentation (Gil 1994; Cropper 2019), we study exploration
via goal-setting for the problem of learning relational tran-
sition models to enable robust, generalizable planning.

Transition model learning is central to model-based rein-
forcement learning (RL), where an agent learns an approx-
imate transition model through online interaction with its
environment. The learned transition model can be used in
combination with a planner to maximize a reward function
or reach a goal. If the transition model is relational, that is,
represented in terms of lifted relations between objects in
the environment, then it generalizes immediately to prob-
lems involving new and different objects than those previ-
ously encountered by the agent (Džeroski, De Raedt, and
Driessens 2001; Tadepalli, Givan, and Driessens 2004).
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Figure 1: We study goal babbling as a paradigm for explo-
ration in relational transition model learning. Left: A robot in
our PyBullet domain sets itself a goal of holding the blue
object. Middle: The robot (mistakenly) believes the goal can
be achieved by executing pick on the blue object. When it
tries this plan, it fails due to the purple object in the way.
From this and previous data, the robot can update its transi-
tion model. In this case, the robot learns that a precondition
of picking an object is that nothing is on top of it. Right:
In more complex environments involving novel objects, the
robot can plan with its learned model to achieve goals.

In this paper, we address the problem of efficient explo-
ration for online relational transition model learning. This
setting isolates the exploration problem in model-based RL,
and can be understood as model-based RL without an ex-
trinsic reward function. Previous approaches to exploration
for relational model-based RL have considered extensions
of classical tabular methods like R-MAX and E3 to the re-
lational regime (Lang, Toussaint, and Kersting 2012; Ng
and Petrick 2019). Prior work in the AI planning literature
has also considered exploration for learning and refining
planning operators (Gil 1994; Shen and Simon 1994; Wang
1996; Rodrigues et al. 2011). In practice, these approaches
tend to be myopic, exploring locally and cautiously while
leaving far-away regions of the state space unexplored.

In pursuit of an exploration strategy that can drive an
agent toward interesting regions of the state space, we
propose a novel family of exploration methods for rela-
tional transition model learning called Goal-Literal Bab-
bling (GLIB). The basic approach is illustrated in Figure 1.
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Goals in GLIB are conjunctions of literals (relations); infor-
mally, these can be understood as specific, targeted effects
that the agent would like to achieve in the world. Goals
are proposed according to a novelty measure (Lehman and
Stanley 2008). A particular instantiation of GLIB is charac-
terized by an integer k, which bounds the number of liter-
als involved in each goal conjunction, and a choice between
lifted or ground goals. Lifted GLIB (GLIB-L) drives the agent
to situations that are radically new, like creating a stack of
three blocks for the first time. Ground GLIB (GLIB-G) may
be preferable when interesting transitions are difficult to ex-
press with a short lifted conjunction.

To try to achieve the goals babbled by GLIB, we plan us-
ing the current (often flawed) transition model that we are in
the process of learning. Conventional wisdom suggests that
planning with incorrect models should be avoided due to the
potential for compounding errors, especially in a learning-
to-plan setting, where these errors could lead the agent to
build a model that is incorrect and irreparable. However,
we show both in theory and in practice that this intuition
does not apply: we provide theoretical guarantees that GLIB
cannot get stuck in a subregion of the reachable state space
(Section 5), and we show empirically that GLIB yields very
strong performance across a range of tasks (Section 6).

This work has the following contributions. (1) We pro-
pose GLIB, a novel family of exploration methods for on-
line relational transition model learning. (2) We prove that
exploration under GLIB is almost surely recurrent (in the
sense of Markov chains) and almost surely converges to the
ground truth model given mild assumptions on the planner,
learner, and domain. (3) We evaluate model prediction error
and planning performance across six tasks, finding GLIB to
consistently outperform several prior methods. (4) We assess
the extent to which GLIB is sensitive to the particular choice
of model-learning algorithm, finding GLIB to be the best per-
forming exploration method regardless of the model learner.
We conclude that GLIB is a simple, strong, and generally ap-
plicable exploration strategy for relational model-based RL.

2 Related Work
Learning and Refining Planning Operators. Learning re-
lational transition models has been the subject of a long line
of work in the planning literature (Benson 1995; Rodrigues
et al. 2011; Cresswell, McCluskey, and West 2013; Zhuo
et al. 2010; Arora et al. 2018). These methods, which focus
on the learning problem, rather than the exploration prob-
lem, are typically offline, assuming a fixed dataset as part of
the problem specification. Our focus is on online exploration
problem, where the agent must collect its own data.

Other work in the planning community has considered
planning operator refinement: gathering data to improve an
imperfect set of operators (Gil 1994; Shen and Simon 1994;
Wang 1996). These methods are useful when one has a de-
cent model in hand and an error is discovered; they sug-
gest actions for gathering data to correct the error. Existing
methods for relational model refinement, such as EXPO (Gil
1994), can be combined with a fallback strategy that se-
lects actions when no existing operators require refinement.
However, these methods lack intrinsic drive; there is nothing

directing the agent toward unexplored regions of the state
space. We use EXPO as a baseline in our experiments.

Exploration in Model-Based RL. Exploration is one of
the fundamental challenges of reinforcement learning (RL).
Exploration strategies for model-based RL are particularly
relevant to our setting, though typically the agent is given
rewards to optimize. E3 (Kearns and Singh 2002) and R-
MAX (Brafman and Tennenholtz 2002) are two such clas-
sic strategies. Dyna (Sutton 1990) was one of the first RL
approaches to plan with the model being learned. More re-
cently, Sekar et al. (2020) consider exploration for deep
model-based RL, using learned transition models to plan in a
latent space via backpropagation; this work shares with ours
the idea of planning for exploration. In contrast to all these
works, though, our focus is on the relational regime.

Walsh (2010) proves the existence of a KWIK (knows what
it knows) algorithm for efficient exploration in relational
model learning. As pointed out by Lang, Toussaint, and Ker-
sting (2012), Walsh’s algorithm provides theoretical insight
but has never been realized in practice. Lang, Toussaint, and
Kersting (2012) propose REX, which extends E3 to the re-
lational regime. IRALe (Rodrigues et al. 2011) learns lifted
rule-based transition modules using the heuristic that an ac-
tion should be explored if its preconditions almost hold. Un-
like other methods, IRALe does not perform lookahead with
the learned model. Recent work by Ng and Petrick (2019)
proposes ILM, an extension of REX that incorporates a no-
tion of model reliability into the count function that is used
to determine whether a state is worth exploring. We include
REX, IRALe, and ILM as baselines in our experiments.

Goal Babbling, Robotics, Deep RL. Our use of the term
“babbling” is an homage to prior work in robotics on goal
babbling, originally proposed for learning kinematic mod-
els (Rolf, Steil, and Gienger 2010; Baranes and Oudeyer
2013). Forestier and Oudeyer (2016) use goal babbling in a
continuous model-based setting where trajectory optimiza-
tion suffices for planning. Other recent work considers goal
babbling for automatic curriculum generation in model-
free deep RL (Florensa et al. 2017; Forestier, Mollard, and
Oudeyer 2017; Laversanne-Finot, Pere, and Oudeyer 2018;
Campero et al. 2020). For instance, Nair et al. (2018) con-
sider “imagining” goals for RL from visual inputs. Our work
continues this line of work on goal babbling for exploration,
but unlike these prior works, we are interested in learning
relational models that are amenable to symbolic planning.

3 Problem Setting
We study exploration for online transition model learning in
stochastic, relational domains. As in typical RL settings, an
agent interacts episodically and online with a (fully observ-
able) environment, defined by a state space S; action space
A; transition model P (s′ | s, a) with s, s′ ∈ S, a ∈ A;
initial state distribution I; and episode length T . The agent
does not know the transition model, but it does know S and
A. As it takes actions in the environment, the agent observes
states sampled from the transition model.

A predicate is a Boolean-valued function. A predicate ap-
plied to objects (resp. variables) is a ground (resp. unground

11783



or lifted) literal. Objects and variables may be typed or un-
typed. All states s ∈ S are relational with respect to a known
set of predicates P; that is, each s is represented as a set
of ground literals constructed from the predicates in P . Any
ground literal not in s is considered to be false. The set of ob-
jects is finite and fixed within an episode but varies between
episodes. Actions in our setting are also relational over the
same object set; an action a ∈ A is a ground literal con-
structed from a known set of predicates Q. Since P , Q and
the set of objects are all finite, the state and action spaces are
also finite (but typically very large).

Evaluation. Unlike in typical RL settings, here the agent
does not have a reward function to optimize; rather, its ob-
jective is to learn a model that is as close as possible to the
true environment transition model (Ng and Petrick 2019).
We measure the quality of the learned model by evaluating
its prediction error on random (state, action) pairs. However,
we are also interested in the agent’s ability to use its learned
model to solve tasks via planning. We therefore also measure
the quality of the learned model by testing it on a set of plan-
ning problems, where each planning problem is made up of
an initial state and a goal (a binary classifier, expressed in
predicate logic, over states). For each planning problem, the
agent uses a planner and its learned model to find a policy
π : S → A. This planner may return failure if it is unable to
find a policy. If a policy is returned, it is executed from the
initial state for a fixed horizon or until the goal is reached.1

The Importance of Exploration. The overall problem
setting is summarized in the pseudocode above. As the agent
interacts with the environment, it builds a dataset D of tran-
sitions it has seen thus far, and uses these transitions to learn
a model P̂ (s′ | s, a). The accuracy of this model will de-
pend critically on the quality of the dataset D. The EX-
PLORE method is responsible for choosing actions to gather
the dataset; it must guide the agent through maximally infor-
mative parts of the transition space. Our objective in this pa-
per is to design an EXPLORE method that efficiently gathers
data and leads to good prediction and planning performance
with as few environment interactions as possible.

4 Relational Learning and Planning
Online transition model learning requires implementations
of LEARNMODEL and EXPLORATION; our focus in this
work is the latter, which we address in Section 5. In this
section, we briefly describe the two existing techniques for
LEARNMODEL that we use in our experiments.

Following prior work on exploration for relational model-
based RL (Lang, Toussaint, and Kersting 2012; Ng and Pet-
rick 2019), we consider transition models that are parameter-
ized by noisy deictic rules (Pasula, Zettlemoyer, and Kael-
bling 2007). A noisy deictic rule (NDR) is made up of an un-
ground action literal, a set of preconditions, which are (pos-
sibly negated) unground literals that must hold for the rule to
apply, and a categorical distribution over effects, where each

1In deterministic environments, a planner returns a sequential
plan rather than a policy. Going forward, we will not make this dis-
tinction between plans and policies; at an intuitive level, a planner
simply produces actions that drive the agent toward a given goal.

Problem Setting ONLINE MODEL LEARNING
Input: State space S and action space A.
Input: Sampler from initial state distribution I.
Input: Episode length T .
Initialize: D ← ∅, a dataset of transitions.
Initialize: P̂ , an initial transition model estimate.
while P̂ is still improving do

s ∼ I
for T timesteps do

a←EXPLORE(S,A,D, P̂ , s)
Execute a, observe next state s′.
D ← D ∪ {(s, a, s′)}
P̂ ← LEARNMODEL(D, P̂ )
s← s′

return final learned model P̂

possible outcome is a set of (possibly negated) unground
literals whose variables appear in the action literal or pre-
conditions. An NDR effect distribution may include a spe-
cial noise outcome to capture any set of effects not explic-
itly modeled by the other elements of the distribution. An
NDR covers a state s and action a when there exists a bind-
ing of the NDR’s variables to objects in (s, a) that satisfy
the action literal and preconditions of the NDR. Each action
predicate is associated with a default NDR, which covers
(s, a) when no other NDR does. A collection of NDRs is a
valid representation of a transition model when exactly one
NDR covers each possible (s, a). The associated distribu-
tion P (s′ | s, a) is computed by 1) identifying the NDR that
covers (s, a), 2) grounding the effect sets with the associated
binding, and 3) applying the effects (adding positive literals
and removing negative literals) to s to compute s′.

Pasula, Zettlemoyer, and Kaelbling (2007) propose a
greedy search algorithm for learning a collection of NDRs;
we call this method Learning NDRs (LNDR) and use it as
our first implementation of LearnModel, following prior
work (Lang, Toussaint, and Kersting 2012; Ng and Petrick
2019).2 To assess the extent to which the relative perfor-
mance of different implementations of Explore are de-
pendent on the transition model learner, we also consider a
second implementation of LearnModel, TILDE (Blockeel
and De Raedt 1998), which is an inductive logic program-
ming method for rule learning in deterministic domains.

Noisy deictic rules are plug-compatible with PPDDL
(Younes and Littman 2004), the probabilistic extension of
PDDL, which is a standard description language for sym-
bolic planning problems. PPDDL planners consume a spec-
ification of the transition model, initial state, and goal, and
return a policy. FF-Replan (Yoon, Fern, and Givan 2007)
is a PPDDL planner that determinizes the transition model
and calls the FastForward planner (Hoffmann 2001), replan-
ning when an observed transition does not match the deter-
minized model. We use FF-Replan with single-outcome de-
terminization as our planner for all experiments.

2The exploration method used in this original LNDR work is
called “action babbling” in our experiments.
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5 Exploration via Goal-Literal Babbling
In this section, we describe GLIB (goal-literal babbling), our
novel implementation of the EXPLORE method for online re-
lational transition model learning. See Algorithm 1 for pseu-
docode and Figure 2 for an illustration of GLIB in the Keys
and Doors domain (Konidaris and Barto 2007a).

Goal-Literal Babbling (GLIB)
GLIB builds on the intuition that an exploration method
should drive an agent to large, interesting regions of the
transition space, even when such regions are far from the
agent’s initial state. To this end, the first key idea of GLIB is
that the agent should randomly set itself, or babble, goals
that are conjunctions of a small number of literals. Intu-
itively, these goal literals represent a targeted set of effects
that the agent would like to achieve in the world. For exam-
ple, in the Keys and Doors domain (Figure 2), the agent may
rapidly move to a location with a key by setting itself the
goal ∃X,Y. at(X)∧ keyAt(Y, X). GLIB has two main
parameters: k, an upper bound on the conjunction size; and
a mode, representing whether the chosen goals are lifted, as
in the example above, or ground, as in at(3-3).

The second important aspect of GLIB is that each goal lit-
eral G is proposed not in isolation, but together with an ac-
tion aG that the agent should execute if and when that goal is
achieved. The motivation for babbling actions in addition to
goals is that to learn an accurate transition model, the agent
must thoroughly explore the space of transitions rather than
states. A proposed goal-action pair (G, aG) can be inter-
preted as a transition that the agent would like to observe.
Like the goals, actions can be ground or lifted, optionally
sharing variables with the goal in the lifted case. For exam-
ple, in the Keys and Doors domain, the agent might babble
the action pick(Y) alongside the goal ∃X,Y.at(X) ∧
keyAt(Y, X), indicating that it should pick the key while
it is at the key’s location (Figure 2).

If we were to naively sample goals uniformly from all
possible (≤ k)-tuples of literals, this may lead the agent
to repeatedly pursue the same goals. Instead, GLIB uses a
novelty measure (Lehman and Stanley 2008), only select-
ing goals that have never appeared as a subset of any previ-
ous state. For this reason, the SAMPLEGA method in Algo-
rithm 1 takes as input the current dataset D. In practice, we
use caching to make this computation very efficient. Empiri-
cally, we found that sampling only novel goals is imperative
to the overall performance of GLIB.

Once the agent has selected a goal-action pair (G, aG), it
uses a planner to find a policy for achieving G from the cur-
rent state s, under the current learned model P̂ . If a policy
is found (i.e., the planner does not return failure), aG is ap-
pended as its final action. In lifted mode, aG will be lifted,
so we first run GROUNDACTION, which grounds aG by ran-
domly sampling values for any variables that are not already
bound in the goal; see Figure 2 for examples. We then ex-
ecute the policy until it terminates. If a policy is not found
after N tries, we fall back to taking a random action.

The choice of mode (ground or lifted) can have signifi-
cant effects on the performance of GLIB, and the best choice

depends on the domain. On one hand, novelty in lifted mode
has the tendency to over-generalize: if location5 is the
only one containing an object, then lifted novelty cannot dis-
tinguish that object being at location5 versus elsewhere.
On the other hand, novelty in ground mode may not gener-
alize sufficiently, and so can be much slower to explore.

Filtering out unreasonable goals. We ensure that the
goals babbled by SAMPLEGA are reasonable by filtering
out two types of goals: static goals and mutex goals. Static
goals are goals where every literal in the conjunction is pre-
dicted to be left unchanged by the current learned model P̂ ;
such a goal will be either always true or always false un-
der P̂ , and is therefore not useful to babble. Mutex goals
are goals where any pair of literals in the conjunction can-
not be satisfied simultaneously under P̂ ; such a goal can
never hold, and there is no use in expending planning effort
to try to find a policy for achieving it. Mutex detection is
known to be as hard as planning in the worst case, but there
is a rich body of work on approximation methods (Sadeqi,
Holte, and Zilles 2013b, 2014; Helmert 2006). In this paper,
we use MMM (Sadeqi, Holte, and Zilles 2013a), a Monte
Carlo algorithm that extracts approximate mutexes from a
set of samples of reachable states, which we obtain through
random rollouts of P̂ . Note that the sets of static and mutex
goals must be recomputed each time P̂ is updated.

Is Planning for Exploration Wise?
GLIB rests on the assumption that planning with a faulty
transition model can ultimately lead to a better model. In
general, planning with faulty models is risky: prediction er-
rors will inevitably compound over time. However, when
planning for exploration in particular, it is important to dis-
tinguish two failure cases: (1) a policy is found with the
learned model and it does not execute as expected; (2) no
policy is found, even though one exists under the true model.
Interestingly, (1) is not problematic; in fact, it is ideal, be-
cause following this policy gives useful data to improve the
model. The only truly problematic case is (2). Wang (1996)
identifies a similar problem and attempts to reduce its oc-
currence by using a learning algorithm that errs on the side
of “more general” models. In our setting, a “most general”
model is not well-defined. Instead, if no policy is found af-
ter N babbling tries, we fall back to a random action. This
allows us to escape situations where no goals seem possible.

Theoretical Guarantees
We now present theoretical guarantees for the asymptotic
behavior of GLIB. Our main theorem gives conditions under
which exploration with GLIB is almost surely (a.s.) recur-
rent; with probability 1, the agent will not get infinitely stuck
in any subregion of the transition space. We follow with a
corollary that gives conditions under which the learned tran-
sition model will converge (a.s.) to the ground truth.

We say that a state s ∈ S is reachable if there exists
any sequence of at most T actions that, with positive prob-
ability, leads to s from an initial state. Let Ω be the set of
all reachable transitions: state-action pairs (s, a) where s is
any reachable state in S and a is any action in A. Note that
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Figure 2: An agent exploring with GLIB-L in Keys and Doors. The agent begins with a trivial transition model that predicts
empty effects for all actions. Under this model, no goals are achievable, so the agent randomly samples move(7-9). Observing
the subsequent transition, the agent updates its transition model for move, but overgeneralizes, believing now that moving
anywhere is possible, when in fact the agent may only move to unlocked rooms. (NDR probabilities are omitted for clarity.)
Later, the agent babbles a goal and action that induce a two-step plan to move to and pick the green key. After executing the plan,
the agent updates its model for pick. Finally, the agent babbles another goal and action that induce a plan to move to a locked
location. Observing the failure of this plan, the agent updates its model for move, correcting its previous overgeneralization.

Algorithm EXPLORE: GOAL-LITERAL BABBLING

Input: S,A,D, P̂ , s. // See (Section 3).
Hyperparameter: Bound on literal count k.
Hyperparameter: The mode [ground or lifted].
Hyperparameter: Number of sampling tries N .
Internal state: Policy in progress π. Starts null.
if π is not null then

return π(s)
for N iterations do

// Sample novel goal-action pair.
(G, aG)← SAMPLEGA(S,A,D, k,mode)
// Plan from current state.

π ← PLAN(s, G, P̂ )
if π found then

if mode is lifted then
aG ← GROUNDACTION(aG, G, s, π)

Make aG be the final output of π.
return π(s)

// Fallback: random ground action.
return SAMPLE(A)

Algorithm 1: Pseudocode for the goal-literal babbling
(GLIB) family of algorithms. See text for details.

any policy π induces a Markov chain over state-action pairs
(s, a). Let MC(π, I,S,A) denote this Markov chain, and
let RANDOM denote a uniformly random policy. Let St and
At be random variables for the state and action at time t.
Definition 1 (Recurrent environment). A recur-
rent environment is one in which the Markov chain
MC(RANDOM, I,S,A) is recurrent over Ω, that is,
∀(s, a) ∈ Ω, ∀t ≥ 0, ∃t′ > t s.t. Pr(St′ = s,At′ = a) > 0.

Informally, a recurrent environment is one in which a ran-
dom policy will infinitely revisit all reachable states.
Definition 2 (ε-sound planner). A planner PLAN is ε-
sound if for any state s, goal G, and transition model P̂ ,

PLAN(s,G, P̂ ) returns a policy π only if following π from s

reaches G within the horizon T in model P̂ with probability
at least ε. If no such π exists, PLAN(s,G, P̂ ) reports failure.

If an ε-sound planner returns a policy, that policy is guar-
anteed to have at least ε probability of succeeding. (If the
planner reports failure, there are no guarantees.)
Definition 3 (Consistent learner). A transition model
learner LEARNMODEL is consistent if for all s ∈ S, a ∈ A,
the estimate P̂ (St+1 | St = s,At = a) converges a.s. (Stout
1974) to the ground truth P (St+1 | St = s,At = a) as
samples are drawn from the latter.

The following Lemma says, given a consistent learner, a
goal, and a policy, we will a.s. either reach the goal, or learn
a model under which the policy cannot reach the goal.
Lemma 1. Suppose that LEARNMODEL is consistent.
Given any state s ∈ S , goal G, and policy π, consider tran-
sitions sampled from the ground truth distribution P by re-
peatedly starting at s and following π for T steps. Let P̂t

be the transition model returned by calling LEARNMODEL
on the first t transitions. Then a.s., either (1) G is eventually
reached; or (2) the probability that π would reach G from s

under P̂t converges to 0 as t→∞.

Proof. See Appendix C.

Theorem 1 (GLIB is a.s. recurrent). Suppose that the
environment is recurrent, LEARNMODEL is consistent,
and PLAN is ε-sound. Then for any integer k > 0,
MC(GLIB(k), I,S,A) is a.s. recurrent over Ω.

Proof. See Appendix C.

Definition 4 (Sufficiently representative). Given a consis-
tent learner LEARNMODEL, a set of state-action pairs Γ ⊆
S ×A is sufficiently representative if the learned transition
model P̂ converges a.s. to the ground truth model P as tran-
sitions starting from (s, a) ∈ Γ are drawn from P .
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Corollary 1. Suppose Ω is sufficiently representative. Then
under the assumptions of Theorem 1, the model learned from
following GLIB will converge a.s. to the ground truth model.

Proof sketch. By Theorem 1, the Markov chain induced by
GLIB is a.s. recurrent over Ω; thus, all state-action pairs
(s, a) ∈ Ω are revisited infinitely many times. By Defini-
tion 4, P̂ will a.s. converge to P .

The consistency and ε-soundness assumptions are mild
and hold, respectively, for the implementations of LEARN-
MODEL and PLAN that we use in experiments. The assump-
tion of environment recurrence also holds for the environ-
ments we consider in our problem setting, because the inter-
action is episodic; every T timesteps, a new initial state is
sampled, guaranteeing that all reachable states will get vis-
ited infinitely often under a uniformly random policy.

The challenge of proposing a practical exploration
method with strong sample-complexity guarantees still re-
mains open. Walsh (2010) and Mehta, Tadepalli, and Fern
(2011) provide algorithms with guarantees that are in-
tractable in practice; Rodrigues et al. (2011) and Lang, Tous-
saint, and Kersting (2012) provide practical algorithms with-
out guarantees. To compare GLIB against previous practical
methods, we now turn to empirical investigations.

6 Experiments
In this section, we present empirical results for GLIB and
several baselines. We begin by describing the experimental
setup, with additional details in Appendix A.

Experimental Setup
Domains. We evaluate on six domains: three classical
PDDL planning tasks, two benchmark PPDDL planning
tasks, and one simulated robotic manipulation task.
• Blocks (Long and Fox 2003). This is the classic IPC

deterministic Blocksworld domain, containing an agent
that can pick, place, stack, and unstack blocks on a table.
We train and evaluate on problems containing between 5
and 7 objects, yielding between 26 and 50 state literals.

• Gripper (Long and Fox 2003). This is the classic IPC
deterministic Gripper domain, containing an agent that
can move, pick, and drop a ball. We train and evaluate on
problems containing between 8 and 16 objects, yielding
between 28 and 68 state literals.

• Keys and Doors (Figure 2). This deterministic domain,
inspired by Lightworld (Konidaris and Barto 2007b),
features a robot navigating a gridworld with rooms to
reach a goal. There are keys throughout the world, each
unlocking some room. We train and evaluate on prob-
lems containing between 35 and 93 objects, yielding be-
tween 132 and 1169 state literals.

• Triangle Tireworld (Bryce and Buffet 2008). Also con-
sidered by the two closest prior works, REX (Lang, Tou-
ssaint, and Kersting 2012) and ILM (Ng and Petrick
2019), this is the probabilistic IPC Tireworld domain,
containing an agent navigating a triangle-shaped net-
work of cities to reach a goal. With each move, there
is some probability that the agent will get a flat tire, and

tires can only be changed at certain cities. We train and
evaluate on problems containing between 6 and 15 ob-
jects, yielding between 43 and 241 state literals.

• Exploding Blocks (Bryce and Buffet 2008). Also con-
sidered by Lang, Toussaint, and Kersting (2012) and Ng
and Petrick (2019), this is the probabilistic IPC version
of Blocks, in which every time the agent interacts with
an object, there is a chance that this object is destroyed
forever. Therefore, even the optimal policy cannot solve
the task 100% of the time. We train and evaluate on prob-
lems containing between 5 and 7 objects, yielding be-
tween 31 and 57 state literals.

• PyBullet. Pictured in Figure 1 and inspired by tasks con-
sidered by Pasula, Zettlemoyer, and Kaelbling (2007)
and Lang, Toussaint, and Kersting (2012), this domain
can be understood as a continuous and stochastic version
of Blocks; a robot simulated in the PyBullet physics en-
gine (Coumans and Bai 2016) picks and stacks blocks
on a table. This domain involves realistic physics and
imperfect controllers (e.g., the robot sometimes drops
a block when attempting to pick it up); therefore, ro-
bustness to stochasticity is important. We hand-defined
a featurizer that converts from the raw (continuous) state
to (discrete) predicate logic, but the state transitions are
computed via the simulator. We train and evaluate on
problems containing 5 objects, yielding 37 state literals.

Exploration methods evaluated:
• Oracle. This method has access to the ground truth

model and is intended to provide an approximate up-
per bound on the performance of an exploration strategy.
The oracle picks an action for the current state whose
most likely predicted effects under the current learned
model and ground truth model do not match. If all match,
the oracle performs breadth-first search (with horizon 2)
in the determinized models, checking for any future mis-
matches, and falling back to action babbling when none
are found. We do not run the oracle for the PyBullet do-
main because there are no ground truth NDRs for it.

• Action babbling. A uniformly random exploration pol-
icy over the set of ground actions in the domain.

• IRALe (Rodrigues et al. 2011). This exploration method
uses the current learned model for action selection, but
does not perform lookahead with it.

• EXPO (Gil 1994). This operator refinement method al-
lows for correcting errors in operators when they are dis-
covered. Since we do not have goals at training time, we
run action babbling until an error is discovered.

• REX (Lang, Toussaint, and Kersting 2012) in E3-
exploration mode.

• ILM (Ng and Petrick 2019), which builds on REX by in-
troducing a measure of model reliability.

• GLIB-G (ours). GLIB in ground mode with k = 1.
• GLIB-L (ours). GLIB in lifted mode with k = 2. We

use a larger value of k in lifted mode than ground mode
because there are typically far fewer lifted goals than
ground ones for a given k value, and our preliminary
results found that GLIB-L with k = 1 was never better
than GLIB-L with k = 2.

Evaluation. We evaluate the learned models in terms of
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Figure 3: Success rate on planning problems (higher is bet-
ter) versus number of environment interactions. Top two
rows use the LNDR model learner, and bottom row uses the
TILDE model learner (which only works on deterministic
domains). All curves show averages over 10 seeds. Stan-
dard deviations are omitted for visual clarity. In all domains,
GLIB-L performs substantially better than all other methods,
except in Triangle Tireworld, where GLIB-G does so. Oracle
is not run in PyBullet because a ground truth model is not
available. GLIB-G and ILM are not run on Keys and Doors
due to the large space of ground literals in this domain.

prediction error, measured as the percentage of randomly
sampled ground-truth transitions that are not predicted by
the learned model as most likely, and planning performance,
measured on a suite of planning problems. We ensure that all
goals in the planning problems are sufficiently large (length
3 or more) conjunctions of literals so that they could not
possibly be babbled by the agent during GLIB exploration.

Results and Discussion
Figure 3 shows all results for planning problem success rates
as a function of the number of environment interactions. Fig-
ure 4 shows all results for prediction error rates as a function
of the number of environment interactions. It is clear, espe-
cially from Figure 3, that GLIB performs substantially better
than all other approaches, whether in ground mode for Tri-
angle Tireworld or in lifted mode for all other domains. In
some domains, such as Keys and Doors, exploration with
GLIB is up to two orders of magnitude more data-efficient
than all the baselines. In the Keys and Doors domain, to open
the door to a room, the agent must first move to and pick up
the key to unlock that door; in these bottleneck situations,
GLIB is able to shine, as the agent often sets goals that drive
itself through and beyond the bottleneck.

GLIB-G sharply outperforms GLIB-L in Triangle Tire-
world because there are very few predicates in this do-
main; just by randomly interacting with the world for a few
timesteps, the agent can see nearly all possible conjunctions

Figure 4: Prediction error rates (lower is better); see Fig-
ure 3 caption for details. These results together with Fig-
ure 3 make clear that modest advantages in prediction error
can translate into dramatic gains during planning.

of two lifted literals, and so GLIB-L with k = 2 has no re-
maining goals to babble. On the other hand, ground goals
continue to be interesting, and so GLIB-G allows the agent
to set itself goals such as reaching previously unvisited lo-
cations. This result illustrates that the choice of GLIB-L or
GLIB-G depends greatly on properties of the domain.

These results suggest that GLIB is a strong approach for
exploration; a natural next question is how long GLIB takes.
In Table 1 of Appendix B, we show that the per-iteration
speed of GLIB, especially in lifted mode, is competitive with
that of the two closest prior works, REX and ILM. We found
filtering out static and mutex goals was necessary for making
GLIB’s speed competitive, but did not affect Figures 3 and 4.

7 Conclusion
We have introduced Goal-Literal Babbling (GLIB) as a sim-
ple, efficient exploration method for transition model learn-
ing in relational model-based reinforcement learning. We
showed empirically that GLIB is a very strong exploration
strategy, in some cases achieving up to two orders of magni-
tude better sample efficiency than prior approaches.

There are several useful directions for future work. One is
to develop better fallback strategies, for instance, planning
to get as close to a babbled goal as possible when the goal
cannot be reached. While this would require an additional
assumption in the form of a metric over the state space, it
may help the agent better exploit the implicit Voronoi bias
resulting from bootstrapping exploration with goal-directed
search under the current learned model. Another line of
work could be to combine GLIB with other exploration meth-
ods; for instance, one could combine the insights of REX and
GLIB, planning for long horizons but only within known or
“trusted” parts of the state space under the current model.
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A Additional Experiment Details
Incremental Model Learning
Ng and Petrick (2019) propose an extension of LNDR to
the incremental regime, where the transition model is pro-
gressively improved as more data is collected. Their strat-
egy is to penalize NDR sets that deviate far from the previ-
ously learned set during the greedy search. We found that
simply initializing the greedy search with the previously
learned NDR set was sufficient to attain consistently good
performance. For TILDE, we introduced two extensions to
the method that allows it to be applied to the model-learning
setting: we allow for lifted literal classes (in order to describe
lifted effects), and we allow multiple output literals for a sin-
gle input (in order to capture conjunctive effects). Note that
TILDE is only applicable in deterministic domains. To im-
prove overall runtime, we retrain the model only when a new
transition disagrees with the most likely transition predicted
by the current model.

Software and Hyperparameters
For interacting with relational environments, we use the
PDDLGym library (Silver and Chitnis 2020), version 0.0.1.
All experiments were conducted on a quad-core AMD64
processor with 4GB RAM, in Ubuntu 18.04.

We use T = 25 as the episode length for all domains, ex-
cept for Triangle Tireworld which uses T = 8 and PyBullet
which uses T = 10. We chose these values for Tireworld and
PyBullet because T = 25 proved to be unnecessarily large
in these domains. All methods use FF-Replan (Yoon, Fern,
and Givan 2007) with single-outcome determinization as the
planner; FF-Replan uses Fast-Forward (Hoffmann 2001).
All planning calls have a timeout of 10 seconds. We set N ,
the number of sampling tries in Algorithm 1, to 100. Model
learning has a timeout of 3 minutes per iteration, at which
point we use the best model discovered so far. We did not
perform much tuning on these hyperparameters; the results
are already quite strong, but they could be improved even
further via a grid search.

B Timing Results
Table 1 presents timing results for GLIB and baseline meth-
ods, showing that GLIB’s strong performance does not come
at the expense of time. In the Gripper domain, ILM is quite
slow; this is because calculating the count for the current

BL GR KD EB TT PY

Action babbling 0.0 0.0 0.0 0.0 0.0 0.0

IRALe 0.0 0.0 0.3 0.0 0.0 0.0

EXPO 0.1 0.0 0.4 0.1 0.0 0.1

REX 0.0 0.1 1.1 0.0 0.0 0.2

ILM 0.2 28.9 — 0.2 0.4 0.6

GLIB-G (ours) 0.2 0.1 — 0.4 0.4 0.8

GLIB-L (ours) 0.1 0.1 0.2 0.1 0.2 0.2

Table 1: Average seconds per iteration taken by each explo-
ration method. Each column is a domain: BL = Blocks, GR
= Gripper, KD = Keys and Doors, EB = Exploding Blocks,
TT = Triangle Tireworld, PY = PyBullet. Every number is an
average over 10 random seeds. The number 0.0 indicates that
the time is< 0.05, not precisely zero. All times are obtained
using the LNDR model learner. We can see that the speed
of GLIB, especially in lifted mode, is competitive with that
of all baselines, especially the ones which perform looka-
head for exploration (REX and ILM). GLIB-G and ILM are
intractable on Keys and Doors because the space of ground
literals is prohibitively large in this domain.

state on each iteration requires looping over the dataset to
estimate applicability of each NDR.

C Proofs
Lemma 1. Suppose that LEARNMODEL is consistent.
Given any state s0 ∈ S , goal G, and policy π, consider
transitions sampled from the ground truth distribution P by
repeatedly starting at s0 and following π for T steps. Let P̂t

be the transition model returned by calling LEARNMODEL
on the first t transitions. Then a.s., either (1) G is eventually
reached; or (2) the probability that π would reach G from
s0 under P̂t converges to 0 as t→∞.

Proof sketch. If the probability that π reachesG from s0 un-
der the ground truth model is positive, then G will a.s. be
reached. Otherwise, for any sequence of states and actions
of length at most T that starts at s0, follows π, and ends atG,
there must be some transition (s, a, s′) s.t. P (s′|s, a) = 0.
Consider the first such transition (s, a, s′) in a particular se-
quence. With probability 1, the state-action pair (s, a) will
be seen in the sampled transitions infinitely many times.
Since LEARNMODEL is consistent, for any ε > 0, there will
a.s. be some time τ such that for all t > τ, P̂t(s

′|s, a) < ε;
the probability of the overall sequence reaching G must also
then be less than ε. Thus, since all of the sequences starting
at s0, following π, and ending at G a.s. have probabilities
converging to 0, and there are finitely many sequences given
that S,A and T are finite, the total probability of π reaching
G from s0 under P̂ also a.s. converges to 0.

Theorem 1 (GLIB is a.s. recurrent). Suppose that the
environment is recurrent, LEARNMODEL is consistent,
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and PLAN is ε-sound. Then for any integer k > 0,
MC(GLIB(k), I,S,A) is a.s. recurrent over Ω.

Proof. We begin by showing that a.s., any goal can only be
babbled by GLIB finitely many times. To see this, suppose
toward a contradiction that there is a goal G that, with mea-
sure greater than 0, is babbled infinitely many times. Be-
cause the state space is finite, there must exist some starting
state s ∈ S from which G is babbled infinitely many times.
Because both the state space and the action space are finite,
the space of policies is also finite; therefore, there must ex-
ist some policy π for achieving G from s that is returned by
PLAN infinitely many times, but never successfully reaches
G (because GLIB only babbles novel goals). Lemma 1 states
that a.s., G is eventually reached or eventually considered
unreachable, within probability ε, under the learned model.
In the latter case, since PLAN is ε-sound, and since goals
are only babbled if some policy is found for achieving that
goal,G would be babbled only finitely many times. Thus we
have a contradiction; a.s., each goal is babbled by GLIB only
finitely many times.

Since any goal can a.s. only be babbled finitely many
times, and there are finitely many goals, there exists a
timestep after which GLIB a.s. has no more goals to babble.
After this, GLIB will constantly fall back to taking random
actions, so its behavior will become equivalent to RANDOM.
The a.s. recurrence of GLIB follows from Definition 1.
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