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Abstract

Symbolic search has proven to be a useful approach to opti-
mal classical planning. In Hierarchical Task Network (HTN)
planning, however, there is little work on optimal planning.
One reason for this is that in HTN planning, most algorithms
are based on heuristic search, and admissible heuristics have
to incorporate the structure of the task network in order to
be informative. In this paper, we present a novel approach to
optimal (totally-ordered) HTN planning, which is based on
symbolic search. An empirical analysis shows that our sym-
bolic approach outperforms the current state of the art for op-
timal totally-ordered HTN planning.

Introduction
Hierarchical Task Network (HTN) planning describes the
problem to be solved in a twofold way: It provides a descrip-
tion of how the execution of actions changes the (proposi-
tional) state of the world and describes the ways and means
by which a plan must be derived. This derivation takes the
form of decompositions that are akin to derivation rules of
formal grammars. While satisficing HTN planning has made
significant progress, optimal HTN planning, i.e. the search
for a guaranteed cheapest plan, is a still under-researched
topic. This is witnessed by the small amount of planners
that can actually produce optimal solutions to HTN plan-
ning problems (mainly Progression (Höller et al. 2020),
Plan-Space-Search (Bercher et al. 2017), and SAT (Behnke,
Höller, and Biundo 2019b)). We will not cover the full
scope of HTN planning problems, but restrict ourselves to
Totally-Ordered HTN (TOHTN) planning problems. This
class has been the object of several independent investiga-
tions (e.g. (Nau et al. 1999; Schreiber et al. 2019)) and has an
independent track at the 2020 International Planning Com-
petition with twice as many competitors as the general track.

In this paper we propose a new way of solving HTN plan-
ning problems optimally – via symbolic search. In apply-
ing symbolic search, we draw from the success of symbolic
search in classical planning (Cimatti et al. 1997; Edelkamp,
Kissmann, and Torralba 2015). While explicit search tech-
niques consider individual states as their search nodes, sym-
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bolic search techniques consider sets of states. Using suit-
able compact representations, symbolic search techniques
can often outperform explicit search techniques. Symbolic
representations have been used in HTN planning before.
Kuter et al. (2005; 2009) used symbolic representations for
solving non-deterministic planning problems. In this case,
the purpose of a symbolic representation of sets of states was
to represent all outcomes of one plan compactly. Combining
states from multiple search nodes was not considered. This
is in stark contrast to our work, which considers multiple
states at the same time using symbolic representations.

Our work builds on research from the model-checking
community (Esparza et al. 2000; Esparza and Schwoon
2001). We extend their work in three ways: (1) we show that
their approach can be used to handle TOHTN planning prob-
lems, (2) we modify it to find cost-optimal plans, and (3) we
show how such cost-optimal plans can be reconstructed.

We start our paper by first introducing the basic concepts
of Totally-Ordered HTN planning and symbolic representa-
tions. We then present our approach in four steps: (1) we
explain how it works for state-free domains without regard
for costs, (2) we extend it to handle action costs, (3) we
show how to handle the propositional state of the world, and
(4) explain how plans can be reconstructed from a symbolic
search structure. We conclude with an empirical evaluation.

Preliminaries
In this paper we consider TOHTN planning problems (Erol,
Hendler, and Nau 1996). For an introduction into general
HTN planning we refer to Erol, Hendler, and Nau (1996) and
Geier and Bercher (2011). The difference between general
and TOHTN planning is that in the latter methods contain
sequences of tasks while for general HTNs they can contain
arbitrary partially ordered sets. This strictly increases ex-
pressivity (Erol, Hendler, and Nau 1996; Höller et al. 2014)
as the execution of parallel tasks can be interleaved.

A TOHTN planning problem Π = 〈P,A,M, s0, I〉 de-
scribes a grammar-like structure from which plans must be
derived. We distinguish two types of tasks: primitive ac-
tions P (terminals in a grammar) and abstract tasks A (non-
terminals in a grammar). The planning domain describes a
set M of decomposition methods, which are rules of the
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form A 7→ t1, . . . , tn, where A ∈ A is an abstract task
and t1, . . . , tn is a possibly empty sequence of tasks (either
primitive or abstract). With M(t) we refer to all methods
t 7→ t1, . . . , tn. Applying a method to a sequence of tasks (a
task network) t∗1, . . . , t

∗
i , A, t

∗
i+1, . . . , t

∗
m, yields the task net-

work t∗1, . . . , t
∗
i , t1, . . . , tn, t

∗
i+1, . . . , t

∗
m. The TOHTN prob-

lem specifies an initial abstract task I . A primitive task net-
work is a task network containing only actions, which is
derivable from I by applying decomposition methods.

In addition to the grammar-like structure, the TOHTN
problem also carries a state-transition semantics on its ac-
tions. Each action is associated with a set of preconditions
pre(a), add and delete effects add(a) and del(a), which are
disjoint subsets of the set of state variables V . An action a is
executable in a state s ⊆ V , iff pre(a) ⊆ s. The state result-
ing in executing a in s is γ(s, a) = (s \ del(a)) ∪ add(a).
A sequence of actions π = (a1, . . . , an) is executable in s0
if ai is executable in si−1, where si = γ(si−1, ai). A primi-
tive task network is a solution if it is executable in the initial
state s0. We are further given a cost function c : P → N0

associating a cost with every action. The cost of a solution
is the sum of the cost of all its actions. A solution is optimal
when there is no other solution with strictly lower costs.

Example 1 (Running Example). We will use the follow-
ing TOHTN planning problem to exemplify the developed
planning techniques. The problem has two abstract tasks:
I , and A and three primitive actions: a, b, and c, all with
cost 1. The initial abstract task is I . There are three decom-
position methods: r0 := I 7→ A, r1 := I 7→ A, a, and
r2 := A 7→ b, c. Consequently, there are two derivable prim-
itive task networks: bca, bc. The set of state variables V is
{v}. Further, b has the delete effect del(b) = {v} and a has
the precondition pre(a) = {v}. Thus executing b disables a.
All other precondition, add, and delete sets are empty. The
initial state s0 is {v}. Thus, the primitive task network bc is
a solution, while bca is not – as it is not executable.

Regularisation. The right-hand side of a decomposition
method can be any arbitrary sequence of actions and tasks.
For the purposes of this paper, however, we only consider
methods where the right-hand side consists of at most two
actions and tasks. We call such a planning problem a 2-
TOHTN problem. Given a general TOHTN planning prob-
lem, we can compile it into an equivalent 2-TOHTN prob-
lem by introducing new abstract tasks for methods contain-
ing more than two tasks on the right-hand side. For example,
we can replaceA 7→ a, b, c byA 7→ a,B andB 7→ b, c. This
compilation can be done in linear time and is performed by
our planner prior to planning, but after grounding. Note that
methods that decompose an abstract task into an empty se-
quence can be treated as single primitive actions with zero
cost, which we assume for simplicity in this paper.

Progression Search. A common way to solve HTN plan-
ning problems is progression search (Nau et al. 1999). As
its search nodes, it considers pairs 〈s, π〉 of states s and se-
quences of tasks and actions π = (t1, . . . , tn). The intuitive
meaning of such a search node is that we are currently in

the state s and still have to perform the tasks and actions
in π. We call this sequence of tasks the stack. If t1 is prim-
itive, the node has the successor 〈γ(s, t1), (t2, . . . , tn)〉 iff
t1 is executable in s. If t1 is abstract, the node has a suc-
cessor for every method t1 7→ t′1, . . . , t

′
m. This successor is

〈s, (t′1, . . . , t′m, t2, . . . , tn)〉. Progression search starts with
the node 〈s0, (I)〉. A solution has been derived if we have
reached the node 〈s, ε〉 for some state s (Alford et al. 2012).

Symbolic Representations
Symbolic search is a technique for exploring state spaces
that uses efficient data structures to represent and manipu-
late sets of states (McMillan 1993). The underlying idea is
to represent sets of states S ⊆ 2V via their characteristic
function χS : 2V 7→ {0, 1}, where χS(s) = 1 if s ∈ S and
χS(s) = 0 otherwise. In symbolic search, the most common
data structure to represent such functions are Binary Deci-
sion Diagrams or BDDs (Bryant 1986). A primitive action
p ∈ P can be represented as a transition relation (TR) that
is defined over sets of state pairs, namely predecessors and
successors. A TR Tp representing a primitive action p ∈ P
is a function χTp

: 2V × 2V
′ 7→ {0, 1} which maps the pairs

of states (s, s′) to 1 iff successor s′ is reachable from prede-
cessor s by applying p. Given a set of states S and a TR Tp,
the image operation computes all successors, referred to as
the image set I, of S with respect to p.

Symbolic Search for TOHTN Planning
We start by describing a restricted use-case of our symbolic
HTN planning algorithm and subsequently extend it to cover
full TOHTN problems. The underlying idea is to first create
a foundation to understand the concepts and ideas of the al-
gorithm, and then extend it to more sophisticated features.

State-free Reachability without Costs
In this section, we make two restrictive assumptions. First,
we assume that there are no state variables, i.e. all actions
are always applicable. Thus, every primitive task network
is a solution to the planning problem. Second, we will not
look for the cost-optimal solution, but only for any satisfic-
ing solution. Solving such a TOHTN planning problem boils
down to finding any derivable primitive task network – or to
formulate it in terms of a grammar G – any word in the lan-
guage of G. These assumptions, in particular ignoring costs,
make the model checking algorithm developed by Esparza
et al. (2000) applicable to TOHTN planning problems.

Esparza et al. (2000) showed that the set of all reachable
stacks S forms a regular language and argued that any reg-
ular language can be represented by a finite automaton. Fur-
ther, the automaton representing S can be constructed in-
crementally using the problem’s methods and actions. All
intermediate steps in this contruction also only involve au-
tomata, i.e. regular sets of stacks. This makes searching for
the empty stack possible. Intuitively, this follows the idea of
the HTN progression search. The objective is to find a goal
node, i.e. a search node with an empty stack 〈s, ∅〉. Since we
assume for now that all actions are always applicable, the
actual world state s of a search node 〈s, π〉 is ignored.
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Figure 1: Automata which are incrementally constructed by the algorithm of Esparza et al. (2000) for the running example
(Examples 1) each explained in one of the Examples 2 to 5.

Definition 1. An edge-labelled automaton A over the al-
phabet Σ = P ∪A is a 4-tuple (X, δ, x0, x?) where
1. X is a set of nodes1,
2. δ ⊆ X × Σ×X is a transition relation,
3. x0 ∈ X is the initial node of the automaton, and
4. x? ∈ X is the terminal node of the automaton
The set of stacks SA, i.e. the language, described byA is the
set of accepting words which are induced by all paths from
x0 to x?. We thus use paths and stacks interchangeably.

The algorithm (Esparza et al. 2000) for determining
whether S contains the empty stack ε starts with the au-
tomaton A0 = ({x0, x?}, {(x0, I, x?)}, x0, x?) describing
the set of stacks SA0

= {(I)}. The top automaton in Fig. 1a
shows the initial automaton. The idea is to incrementally
derive reachable stacks and add them to A0 until either no
more stacks can be added (then the problem is unsolvable)
or the empty stack is found (then the problem is solvable).
Note that the following construction ensures that x0 has only
outgoing edges and x? only incoming edges.

Let’s consider an automaton A = (X, δ, x0, x?) repre-
senting stacks SA and a queue τ of outgoing edges of x0,
i.e. τ = 〈(x0, t, x), (x0, t

′, x′), . . . 〉. We call these edges
heads. Initially, τ consist of a single element (x0, I, x?).
In every iteration of the algorithm, we pop the first element
(x0, t, x) of τ and process it. The head represents a subsets
of stacks Sh

A ⊆ SA which start with the same task t. Not
all stacks with the same starting task t must be necessarily
represented by this head, as there can be multiple outgoing
edges of x0 with the same edge label but leading to different
nodes. Overall, there are two cases, either the task t of the
head (x0, t, x) is a primitive action or t is an abstract task.

We consider a head (x0, t, x) where t ∈ A is an abstract
task. For each decomposition method t 7→ t′ which has a
single task as its result, it is possible to replace the task t
with the task t′ as the first element of the set of stacks Sh

A.
Therefore, we add new edges {(x0, t′, x) | t 7→ t′ ∈ A} to
δ of automaton A. All edges starting in x0 which are new,
i.e. which are not already included in δ, are added to τ .

Example 2. Consider Example 1, the initial automatonA0,

1We call the states of an automaton nodes in this paper to avoid
confusion with the state of the planning problem.

which represent stack SA0
= {(I)} and is shown in Fig. 1a

(top), and the queue τ = 〈(x0, I, x?)〉. Fig. 1a (bottom)
shows the automaton A1, which results from processing the
head (x0, I, x?) according to the method r0 := I 7→ A.
The automaton A1 represents the set of stacks SA1

=
{(I), (A)}. We add the edge (x0, A, x?) to τ .

Again, we consider a head (x0, t, x) where t ∈ A is an ab-
stract task. For each decomposition method r := t 7→ t′, t′′,
we have to add a new node to the automaton A. Following
Esparza et al. (2000), we create one new node xr and two
new edges (x0, t

′, xr) and (xr, t
′′, x) for each such method.

With this procedure the set of stacks {(t′, t′′, t1, . . . , tn) |
(t, t1, . . . , tn) ∈ Sh

A} is added to the set of stacks of the
automaton. All new edges (x0, t

′, xr) are added to τ .
Example 3. Consider Example 1 and the automaton
A1 shown in Fig. 1a (bottom). We process the current
head (x0, I, x?) according to the decomposition method
r1 := I 7→ A, a, which introduces a new node xr1 and
two edges (x0, A, xr1) and (xr1, a, x?) shown in red in
Fig. 1b. This intermediate automaton represents the set
of stacks {(I), (A), (A, a)}. Additionally, we add the edge
(x0, A, xr1) to τ , which already contains (x0, A, x?). For
the purpose of the example, we pop (x0, A, xr1) next. There
is one method for A: r2 := A 7→ b, c. Processing the
head results in the blue node and edges (Fig. 1b). The
final automaton A2 represents the set of stacks SA2

=
{(I), (A), (A, a), (b, c, a)}. The edge (x0, b, xr2) is added
to τ and we assume that this is the new first element of τ .

Now we consider a head (x0, p, x) where p ∈ P is a prim-
itive action. If the node x is the terminal node, i.e. x = x?,
we have found the empty stack and thus a solution. Other-
wise, we add new edges {(x0, t′, x′) | (x, t′, x′) ∈ δ} to δ of
the automaton A. In other words, we add additional edges
from x0 to all nodes that are directly reachable from x. Intu-
itively, this describes the progression through the primitive
action p and the automaton A then also represents the set of
stacks {(t1, . . . , tn) | (p, t1, . . . , tn) ∈ Sh

A}. Furthermore,
we add each edge starting in x0 which is new to τ . We also
store an epsilon set E , which is initially empty (Esparza et al.
2000). The epsilon set tracks the nodes x ∈ X \{x0, x?} for
which an incoming edge (x0, p, x) with p ∈ P has been
processed. We explain this in more detail below.
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Figure 2: Automata of the cost layers constructed for the running example (Example 1) explained in Example 6. Note that we
omit the epsilon sets as they are not relevant for the example.

Example 4. Consider Example 1, the automaton A2 shown
in Fig. 1b and the queue τ = 〈(x0, b, xr2), (x0, A, x?)〉.
The head (x0, b, xr2) is popped from the queue and pro-
cessed. The automaton A3 (Fig. 1c) is the result of process-
ing (x0, b, xr2), which represents the set of stacks SA3

=
{(I), (A), (A, a), (b, c, a), (c, a)}. The new edge (x0, c, xr1)
is added to τ and xr2 is added to the epsilon set, because the
edge (x0, b, xr2) was processed where b ∈ P .

Lastly, we discuss the purpose of the epsilon set. Let us
assume a head (x0, t, x) is processed according to a de-
composition method r := t 7→ t′, t′′ and the node xr and
the edge (x0, t

′, xr) are already contained in the automa-
ton. Further assume that xr ∈ E , implying that an edge
(x0, p, xr) with p ∈ P has already been processed. This
edge stems from previously processing the edge (x0, t

′, xr)
and possibly further edges which have been created and pro-
cessed subsequently. If we just insert the edge (xr, t

′′, x), we
may never process any of the stacks that contain (xr, t

′′, x)
as all possible heads of these stacks have already been pro-
cessed. The idea is to “reprocess” xr at this point and add
the edge (x0, t

′′, x) to the automaton A. This is necessary
for completeness and is crucial for efficiency as it avoids re-
dundant applications of operations.

Example 5. Consider Example 1, the automaton A3 shown
in Fig. 1c and the queue τ = 〈(x0, A, x?), (x0, c, xr1)〉.
The header (x0, A, x?) is popped from the queue τ and
processed according to the decomposition rule r2 :=
A 7→ b, c, resulting in one new edge, which is shown
in red in Fig. 1d. Note that xr2 already exists and is
part of the epsilon set. Since xr2 ∈ E , we add the edge
(x0, c, x?) to the automaton shown in blue in Fig. 1d
in order to consider the stack (b, c) which would be in-
complete. The automaton A4 (Fig. 1d) is the result of
processing (x0, A, x?), which represents the set of stacks
SA4

= {(I), (A), (A, a), (b, c, a), (b, c), (c, a), (c)}. Fi-
nally, the new edge (x0, c, x?) is added to τ . After a possible
progression of (x0, c, x?) the empty stack is derived.

Finally, the algorithm presented is complete and correct,
as it is a special case of the more general algorithm for stack-
automata by Esparza et al. (2000).

Adding Cost
Esparza et al. (2000) aimed at finding some solution. In op-
timal planning, we are interested in the cheapest plan. For
this purpose, we consider the stacks in S in ascending or-
der of associated cost and thus construct a sequence of au-
tomata with increasing cost. To allow for a more efficient
plan extraction, we will further introduce additional steps
into the sequence of automata based on how may zero-cost
operations were performed to get to them. In this, the gen-
erated layer or bucket structure is similar to the one used for
symbolic classical planning (Edelkamp and Kissmann 2009;
Torralba et al. 2017; Speck, Geißer, and Mattmüller 2018a).

We construct a sequence of automataAic where c is a cost
value and i is the layer-index inside of that cost value. SA0

c

contains all stacks reachable with cost at most c. The cost
of a stack π is the minimal cost through which we have
to progress to reach π. SAi

c
contains all stacks of SAi−1

c

and those that can be created from any stack in SAi−1
c

by
one zero-cost progression or one method application. We set
A0

0 = ({x0, x?}, {(x0, I, x?)}, x0, x?) (Fig. 2a).
AutomataAic are created in increasing order, first by layer

and if a layer has been completed (no more stacks are reach-
able with additional cost of 0) by cost. The first time the
empty stack is reached, a minimum cost plan is derived.
As the basis for constructing an automaton Aic, we take the
previous automaton, i.e. Ai−1c if i ≥ 1 or else the last au-
tomaton of cost c−1. For constructing the automata, we use
one queue τ ic per automatonAic and apply the operations de-
scribed in the previous section to the heads in τ ic . Each queue
contains all stack heads that have to be processed in order to
construct the automaton Aic. Separating the stack heads this
way is possible as handling a head incurs a cost solely de-
termined by the task t on the head (x0, t, x

′) and not by the
applied operation. If t ∈ P , progressing it will add cost c(t),
while applying any method does not add cost.

Let’s consider constructing the automatonAic and an edge
(x0, t, x

′) newly inserted intoAic. The question is into which
queue τ i

′

c′ it is inserted. If t is a primitive t ∈ P with non-zero
cost c(t) > 0, we add it to τ0c+c(t) as progressing through
this edge will incur additional cost. If either c(t) = 0 or
t ∈ A, we add it to τ i+1

c , as this does not incur costs, thus all
resulting stacks still have cost c.
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x0 x1 x?
A
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C

σ(x0, A, x1) = {(s1, s3), (s2, s4)}
σ(x1, B, x?) = {(s3, s3)}
σ(x1, C, x?) = {(s4, s4)}

Figure 3: An automaton with edge labels.

Example 6. Consider Example 1 and the initial automaton
in Fig. 2a. We add its only edge to τ10 as I is abstract. To con-
struct A1

0 (Fig. 2b), we apply the two methods I 7→ A and
I 7→ A, a. The two new heads (x0, A, x?) and (x0, A, xr1)
are inserted into τ20 , as A is abstract. We then construct
A2

0 (Fig. 2c) by applying the method A 7→ b, c to both
heads. These applications both insert the edge (x0, b, xr2)
into τ01 , since c(b) = 1. A0

1 is then constructed by pro-
gressing through this edge (Fig. 2d). Thus, (x0, c, x?) and
(x0, c, xr1) are added to τ02 . When constructing the next au-
tomaton A0

2, we would progress through the first edge and
thus reach the empty stack at cost 2. For the second edge, we
would insert the edge (x0, a, x?) into the automaton and τ03 ,
yielding the second solution at cost 3.

If we consider epsilon sets, we cannot use the same logic
when we add an edge (x0, t

′′, x′) for a method r := t 7→
t′, t′′ where xr ∈ E . This edge was inserted since the stack
(t′) induced by (x0, t

′, xr) can be processed into the empty
stack ε. This separately performed processing is re-used
when adding (x0, t

′′, x′). While processing this stack into ε,
we might have progressed through actions, whose costs we
have to account for. We determine a cost value κ(xr) that
provides for the cheapest way to process (x0, t

′, xr) into the
empty stack if xr ∈ E . The edge (x0, t

′′, x′) is then inserted
into a future automaton with c+ = c + κ(xr), s.t. it is ac-
tually possible to reach the stacks starting with (x0, t

′′, xr)
with the cost c+. If κ(xr) = 0, the edge is added to Aic
and treated as an ordinary edge. Otherwise (κ(xr) > 0), we
add the edge to A0

c+κ(xr)
. Furthermore, in the latter case we

consider the cost of t′′: if c(t′′) > 0, we add the edge to
τ0c+κ(xr)+c(t′′)

and else to τ1c+κ(xr)
.

The value of κ(xr) can be determined when xr is in-
serted into E . At this time, we are constructing some au-
tomaton Ai∗c∗ . Progressing towards xr was started when the
edge (x0, t

′, xr) was newly inserted into an automaton Ai0c0 .
The cost for processing (x0, t

′, xr) into the empty stack is
κ(xr) = c∗ − c0, since c∗ is the cheapest cost where the
edge (x0, t

′, xr) can be processed into the empty stack.
The addition of the edge (xr, t

′′, x′) can further lead
to multiple new paths from x0 via xr to x? because sev-
eral already existing paths can lead from x0 to xr. How-
ever, the cost of such paths not starting with the edge
(x0, t

′, xr) leading to xr are not accounted for yet. In or-
der to consider such costs, we add a cost label ν(xr, t

′′, x′)
to the edge (xr, t

′′, x′). When an edge (x0, p, xr) with
p ∈ P is processed for constructing Ajz , the resulting edge
(x0, t

′′, x′) which is caused by the edge (xr, t
′′, x′) will in-

corporate the cost label. The edge is added toA0
z+ν(xr,t′′,x′)

if ν(xr, t
′′, x′) > 0 and else to Aj+1

z . Insertion into τ works

similarly. In order to determine the additional cost associ-
ated with the edge (xr, t

′′, x′) we search for the automaton
Ai0c0 in which the edge (x0, t

′, xr) was added. We assign the
cost ν(xr, t

′′, x′) = c− c0 where c is the cost of the current
automaton. Intuitively, this is the cost which is necessary to
generate all paths leading from x0 to xr in automaton Aic.

Thm. 1 proves that all stacks reachable with a given cost
are actually contained in the respective automaton. Formal
proofs can be found in a technical report (Behnke and Speck
2021).
Theorem 1. The last automaton of every cost layer contains
all stacks reachable with that cost.

Thm. 1 does not guarantee that all costs are correctly com-
puted, as stacks of cost c can occur in automata with lower
cost. Thm. 2 shows that this is only possible for stacks that
contain edges carrying additional costs ν. Since the empty
stack can only be reached by progressing through an edge
(x0, t, x?) – which cannot carry addition costs, the cost of
this particular stack is correctly determined and hence also
the cost of the empty stack and the the optimal plan’s costs.
Theorem 2. For every automaton Aic, every stack in SAi

c

that does not contain an edge (x, t, x′) with ν(x, t, x′) > 0
can be reached with cost at most c.

Adding State Variables
So far, we have only considered a relaxed version of the
planning problem without state variables. The computa-
tional difficulty of HTN planning stems from the interaction
between the state variables and the decomposition hierarchy.
In this section, we describe how the previous construction
can be extended to also handle state variables. Our work is
based on Esparza and Schwoon’s (2001) extension of the
base algorithm without costs to cases with state variables.
As in their work, we will use BDDs to handle state variables
as they allow for compact representation and efficient ma-
nipulation of sets of states.

Up to now, an automatonA solely represented stacks. The
idea of Esparza and Schwoon is to memorise a set of states
associated which each stack in the automaton A. More pre-
cisely, for each stack π ∈ SA we maintain the set of states
S(π) that can be reached when we have the stack π still
to be processed. The automaton will thus represent a set of
progression search nodes given by {〈s, π〉 | π ∈ SA, s ∈
S(π)}. Intuitively, one might think that it suffices to mem-
orise a set of states S for every outgoing edge (x0, t, x

′) of
x0. This would imply that every stack starting with the edge
(x0, t, x

′) is combined with any state s ∈ S. This is prob-
lematic, as the representation by Esparza et al. (2000) forces
a maximally compact representation of all stacks by only in-
troducing a single state in the automaton per decomposition
method. Thus this simple representation of states is not suf-
ficient, since the required uniformity, i.e. every stack starting
with an edge can be paired with every state in S, is not given.
As an example consider the automaton depicted in Fig. 3
(left). It represents two stacks: (AB) and (AC). Now con-
sider two progression states 〈s1, (AB)〉 and 〈s2, (AC)〉 for
two propositional states s1 and s2. In order to represent them
in the automaton, we would annotate the edge (x0, A, x1)
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with {s1, s2}. This automaton also represents the progres-
sion states 〈s2, (AB)〉 and 〈s1, (AC)〉 – which is not in-
tended. By introducing additional nodes to the automaton,
it is still possible to represent only the two intended stacks,
but this would lead to a less compact representation.

Esparza and Schwoon (2001) propose a different way
of representing the possible current state associated with
stacks. Each edge (x, t, x′) of the automaton is annotated
with a set of pairs (s1, s2) of states denoted σ(x, t, x′). For
the outgoing edges of x0 a state s1 is one possible progres-
sion state. All other states are tracking states that are used to
denote which progression search states are represented by an
automaton and which are not.2 When determining whether
a specific progression search node is represented by the au-
tomaton, one does not simply traverse the states of automa-
ton. Instead one traverses pairs (x, s) consisting of a state x
of the automaton and a propositional state s. When travers-
ing from (x, s) via the task t to (x′, s′) it is both required
that the edge (x, t, x′) is present in the automaton and that
(s, s′) is part of σ(x, t, x′). A formal definition of a path that
is induced by such an automaton is given in Def. 2.
Definition 2. Given an Σ-edge-labelled automaton A =

(X, δ, x0, x?) and a function σ : X × Σ×X 7→ 22
V ×2V .

A path of A consisting of the edges
(x0, t0, x1), (x1, t1, x2), . . . , (xn, tn, x? = xn+1) is
induced by σ iff there is a sequence of states s0, s1, . . . , sn
s.t. ∀i ∈ {0, . . . , n− 1} : (si, si+1) ∈ σ(xi, ti, xi+1).

If we again consider the example depicted in Fig. 3
together with σ, we can see that the two paths
〈s1, A, s3, B, s3〉3 and 〈s2, A, s4, C, s4〉 are induced by σ.
In contrast no path starting in s1 and traversing (AC) is in-
duced by σ, neither is any path starting in s2 and traversing
(AB). Thus this automaton represents exactly the intended
progression search nodes: 〈s1, (AB)〉 and 〈s2, (AC)〉.

Conceptually, this construction is equivalent to consider-
ing a product automaton between the nodes of an original
automaton and the states of a planning task. Edges in this
automaton will take the form ((x, s1), t, (x′, s2)) and will
be present if the edge (x, t, x′) is present in the original au-
tomaton and σ(x, t, x′) = (s1, s2). Using σ sets introduced
by Esparza and Schwoon (2001) makes it possible to store
the associated sets of state pairs as BDDs.

Following Esparza and Schwoon (2001), the σ sets are
computed as follows. Whenever an edge (x, t, x′) is added
to Aic, also a set of state pairs is added to the edge’s BDD
σ(x, t, x′). The same holds if the algorithm attempts to add
an edge that is already present. τ only consists of edges and
an edge is considered new if new pair of states are added to
the edge’s BDD. Consider processing a head edge (x0, t, x

′).
Primitive actions. If we progress (x0, p, x

′), we apply p
to σ(x0, p, x

′) using transition relation Tp resulting in the
image set I = {(γ(s1, p), s2) | pre(p) ⊆ s1, (s1, s2) ∈

2These states are not chosen arbitrarily, but they are solely used
to track possible stacks in the automaton. As a general idea, the
tracking state leading to a state xr in A is the state in which the
method r was applied to the first task of the stack. For methods of
the form t 7→ t′ these states are actually inherited to other nodes.

3We add the intermediate states for easy readability.

σ(x0, p, x
′)}. For every outgoing edge (x′, t, x′′) we add

{(s1, s3) | (s1, s2) ∈ I, (s2, s3) ∈ σ(x′, t, x′′)} to
σ(x0, t, x

′′). The epsilon set stores sets of state pairs for
every node x referred to with E(x). When progressing
(x0, p, x

′) the resulting image set I is added to E(x′).
Methods with one subtask. Here the state does not

change, but the head task in the stack is replaced with an-
other. Therefore, σ(x0, t, x

′) is added to the new edge.
Methods with two subtasks. Consider method r := t 7→

t′, t′′. Recall, that this adds two new edges (x0, t
′, xr) and

(xr, t
′′, x′) to the automaton. We add {(s1, s1) | (s1, s2) ∈

σ(x0, t, x
′)} to σ(x0, t

′, xr) and σ(x0, t, x
′) to σ(xr, t

′′, x′).
Further, {(s1, s3) | (s1, s2) ∈ E(xr), (s2, s3) ∈ σ(x0, t, x)}
is added to σ(x0, t

′′, x′).
Finally, action costs have to be taken into account – which

was not considered by Esparza and Schwoon. The only el-
ement that needs modification is the computations of κ(xr)
and ν(xr, t

′′, x′) – as they have to incorporate states. The
costs κ(xr) must differentiate the state pairs with which we
can reach the node xr. It is not sufficient to store a single
state, as the second state s′ of the pair determines how the
stack may be continued after xr. Thus, instead of a func-
tion κ(xr) providing additional costs, we use one function
κz(xr) per cost z, which returns state pairs represented as a
BDD. If we progress (x0, p, xr) while constructing the au-
tomaton Aiv , we determine the state pairs in the image set
I that are not contained in κz(xr) for all additional costs z.
For each state pair (s1, s2) ∈ I we determine the automaton
Aiw in which (s2, s2) was first added to σ(x0, t, xr). The
state pair (s1, s2) is then added to κw−v(xr). We treat the
function ν(xr, t

′′, x′) in the same way, i.e. we consider a
family of function νz(xr, t′′, x′) that provide for each edge
(xr, t

′′, x′) and cost z those state pairs which are associated
with an additional cost of z. The state pairs for νz(xr, t′′, x′)
are computed when new state pairs are added to that edge
by applying a method with two subtasks. A formal proof of
correctness and completeness can be found in a technical re-
port (Behnke and Speck 2021).

Algorithm autoSym
The pseudo code of our BDD-based planning algorithm
(autoSym) is given in Alg. 1. We assume that every func-
tion returns the empty set if not otherwise initialised. The
algorithm proceeds by iterating over costs c and layers `
(line 6). Each iteration constructs the automaton A`c con-
taining all stacks that can be reached by progression through
actions with a total cost of at most c followed by ` layers
of applications of methods and zero-cost actions. To com-
pute A`c we first copy the previous automaton Alllc – the last
cost and last layer (line 7). We then consider all head edges
in τ `c which must be processed to complete A`c (line 8) and
call functions for handling the tree possible cases: actions
and empty methods (line 10), methods with one subtask
(line 13), and methods with two subtasks (line 15).

Alg. 2 adds new state pairs to the head edge (x0, t, x
′) and

adds the edge to the correct τ queue if necessary. Note that
the edge is added to a future queue as the newly inserted
head edge (x0, t, x

′) may incur costs if processed and the
state pairs added are those prior to performing t.
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Algorithm 1: Overall BDD-based Algorithm
1 Function autoSym(Π = 〈P,A,M, s0, I〉):
2 σ0

0(x0, I, x?) = {(s0, s0)}; τ10 = {(x0, I, x?)}
3 c = 0; ` = 1 // current automaton
4 lc = 0; ll = 0 // last/previous automaton
5 layers0 = 1 // #layers for cost 0

6 while ∃c′ ≥ c ∧ `′ ≥ ` : τ `
′

c′ 6= ∅ do
7 σ`

c = σll
lc

8 foreach (x0, t, x
′) ∈ τ `c do

9 if t ∈ P and (t 7→ ε) ∈M(t) then
10 done = handlePrimEmpty(c, `, lc, ll, t, x′)
11 if done then extractPlan
12 foreach (t 7→ t′) ∈M(t) do
13 addToAutomaton(c, `, t′, x′, σll

lc(x0, t, x
′))

14 foreach (r = t 7→ t′t′′) ∈M(t) do
15 handle2Tasks(c, `, lc, ll, x′, r)
16 lc = c; ll = `
17 // Next cost/layer to handle

18 if τ `+1
c = ∅ then

19 c = c+ 1 and ` = 0 and layersc = 0
20 else ` = `+ 1 and layersc = `
21 return unsolvable

Algorithm 2: Adding state pairs
1 // add set of state pairs statePairs to edge

(x0, t, x
′) at cost c and layer `

2 Function addToAutomaton(c, `, t, x′, statePairs):
3 newPairs = σ`

c(x0, t, x
′) \ statePairs

4 if newPairs 6= ∅ then
5 σ`

c(x0, t, x
′) = σ`

c(x0, t, x
′) ∪ newPairs

6 if t ∈ A or (t ∈ P and c(t) = 0) then
7 τ `+1

c = τ `+1
c ∪ {(x0, t, x′)}

8 else τ0c+c(t) = τ0c+c(t) ∪ {(x0, t, x′)}

Alg. 3 handles both primitive actions and tasks with an
empty method. We start by applying the actions transition
relation (or do nothing for abstract tasks; lines 2-4). If we
progressed through an edge leading to the final state x? of
the automaton, we signal to start plan extraction (called in
Alg 1, line 11) by returning true. Plan extraction is dis-
cussed in the next section. Thereafter, we compute the values
for κ (lines 7-12) and add new edges to A`c via calling the
addToQueue function, while taking the additional costs of
edges in ν into account (lines 13-21).

Alg. 4 handles methods with two subtasks and compute
the table ν used by handlePrimEmpty. Initially, we in-
sert the two main edges into the automaton (lines 3-4). For
state pairs that are already in the automaton (line 6), we take
extra costs κ into account (lines 8-12) and compute addi-
tional costs ν associated with (xt, t

′′, x′) (lines 13-16).

Plan Extraction
Esparza and Schwoon (2001) were only interested in deter-
mining whether – formulated for planning – the instance is
solvable. In planning, we are also interested in the resulting
plan. We follow the typical approach used by classical sym-

Algorithm 3: Primitive actions and empty methods
1 Function handlePrimEmpty(c, `, lc, ll, t, x′):
2 if t ∈ P then
3 I = {(γ(s1, t), s2) | pre(t)⊆s1,(s1, s2)∈σll

lc(x0, t, x
′)}

4 else I = σll
lc(x0, t, x

′) // t has empty method
5 if x′ = x? and I 6= ∅ then return true
6 newE = I \ E(x′); E(x′) = E(x′) ∪ I
7 if x′ 6= x? then
8 Let r = t′ 7→ t′′t′′′ ∈M(t′) s.t. xr ≡ x′
9 foreach c0 ∈ {0, 1, . . . , c} do

10 started = {(s1, s2) ∈ newE |
(s2, s2) ∈ σlayersc0

c0 (x0, t
′′, x′)}

11 newE = newE \ started
12 κc−c0(x′) = κc−c0(x′) ∪ started
13 foreach x′′ with σll

lc(xr, t
′′′, x′′) 6= ∅ do

14 new = {(s1, s2, s3) | (s1, s2) ∈ I,
(s2, s3) ∈ σll

lc(xr, t
′′′, x′′)}

15 foreach c+ ∈ {i | νi(xr, t′′′, x′′) 6= ∅} in ascending
order do

16 add = {(s1, s3) | (s1, s2, s3) ∈ new,
(s2, s3) ∈ νc+(xr, t

′′′, x′′))}
17 new=new\{(s1, s2, s3)∈new | (s1, s3)∈add}
18 if c+ = 0 then
19 addToAutomaton(c, `, t′′′, x′′, add)

20 else addToAutomaton(c+ c+, 0, t′′′, x′′, add)
21 addToAutomaton(c, `, t′′′, x′′,

{(s1, s3) | (s1, s2, s3) ∈ new})
22 return false

bolic planners (Torralba 2015; Speck, Mattmüller, and Nebel
2020): backwards search from the goal while using the con-
structed data structures as a heuristic. In classical planning,
we have constructed the perfect heuristic h∗ making this
search efficient. Our experiments show that in practice the
time it takes to extract the plan is low compared to the time
needed to construct the automata.

The plan extraction is started when the empty stack is
reached, i.e. when progressing through an edge (x0, p, x?),
where p ∈ P (Alg. 3, line 5). We then perform a backwards
search over the automataAic starting from a terminal state st.
The terminal state st to start reconstruction with, can be cho-
sen freely from {s1 | (s1, s2) ∈ I} where I is the image set
we have computed for the edge (x0, p, x?). During search,
we maintain a current progression search state 〈s, π〉 from
which the empty stack is reachable and which is contained in
the current automaton Aic. We not only memorise the stack
(i.e. the tasks) π, but also the intermediate automata states.
We thus start extraction with the pair 〈sg, x?〉 at the last con-
structed automaton. As an invariant, we maintain that 〈s, π〉
was newly inserted at layer i of cost c.

If we are given a current state s and a current stack (i.e.
path) π with the head (x0, t, x

′) (or the empty stack in the
beginning), we have to construct a predecessor pair 〈s∗, π∗〉
of 〈s, π〉 that was newly added to a previous automaton. For
this purpose, we keep track of which heads (x∗0, t

∗, x′∗) in
the queue τ ic caused the insertion of (x0, t, x

′) into Aic. Fur-
ther we memorise why the head (x∗0, t

∗, x′∗) was inserted
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Algorithm 4: Handling methods with two subtasks
1 Function handle2Tasks(c, `, lc, ll, x′, r = t 7→ t′t′′):
2 add = {(s1, s1) | (s1, s2) ∈ σll

lc(x0, t, x
′)}

3 addToAutomaton(c, `, t′, xr, add)
4 σ`

c(xr, t
′′, x′) = σ`

c(xr, t
′′, x′) ∪ σll

lc(x0, t, x
′)

5 // Extra costs (nodes/edges)

6 known = add ∩ σll
lc(x0, t

′, xr)
7 if known 6= ∅ then
8 foreach c+ ∈ {i | κi(xr) 6= ∅} in ascending order do
9 processed = {(s3, s1)∈κc+(xr) | (s1, s1)∈known}

10 if c+ = 0 then
11 addToAutomaton(c, `, t′′, x′, processed)
12 else addToAutomaton(c+ c+, 0, t′′, x′, processed)
13 foreach c0 ∈ {0, 1, . . . , c} do
14 started = known ∩ σlayersc0

c0 (x0, t
′, xr)

15 known = known \ started
16 νc−c0(xr, t

′′, x′) = νc−c0(xr, t
′′, x′)∪

{(s1, s2) ∈ σll
lc(x0, t, x

′) | (s1, s1) ∈ started}

into τ ic . These reasons are pairs of cost c− and layer i− s.t.
processing some head in τ i

−

c− has lead to (x∗0, t
∗, x′∗) be-

ing inserted into τ ic . To find the predecessor pair, we iterate
over the causes (x∗0, t

∗, x′∗) for the head (x0, t, x
′). Given

the cause, the performed operation is reversely applied to
〈s, π〉 – regressing t (if t ∈ P ) or un-applying a method for
t (if t ∈ A) – yielding 〈s∗, π∗〉. If they are present inAi−c− we
continue with reconstructing that pair, if not, we try the next
cause. We repeat this process until the extraction finishes by
reaching 〈s0, (x0, I, x?)〉 in A0

0. To find the actual sequence
of actions solving the planing problems, we iterate over the
backwards steps we have performed during search and add
an action to the plan whenever we regressed through it.
Example 7. Consider the automaton in Fig. 2d. We reach
the empty stack while constructing A0

2 when progressing
through (x0, c, x?). We thus start extraction at A0

2 with
〈∅, (x?)〉. The cause for reaching the empty stack is that
the edge (x0, c, x?) was inserted into A0

1, i.e. c− = 1 and
i− = 0. We thus apply the progression backwards and ob-
tain 〈∅, (x0, c, x?)〉. The cause for inserting the head edge
(x0, c, x?) was progressing through the edge (x0, b, xr2) in
A2

0, i.e. c− = 0 and i− = 2. We again apply progres-
sion backwards and obtain 〈{v}, (x0, b, xr2 , c, x?), which
was new for A2

0. Next, we consider the cause for inserting
the head edge (x0, b, xr2) – which was applying the meth-
ods r2 to the task A on the edge (x0, A, x?). Here c− = 0
and i− = 1. At this point, we have to apply the method
r2 = A 7→ bc backwards by removing b and c from the stack
and adding A. This results in 〈{v}, (x0, A, x?)〉, which was
new forA1

0. The cause for inserting (x0, A, x?) was process-
ing the edge (x0, I, x?) ofA0

0. We apply the method r0 back-
wards and obtain 〈{v}, (x0, I, s?)〉. Here we can extract the
solution plan bc, since we reached the initial state s0 = {v}
and the initial stack (I).

This extraction idea only works if the cause of adding an
edge was regularly processing an other edge. If the edge was
added due to additional costs (i.e. using the κ and ν tables),

we have to extract a plan corresponding to them, too. Con-
sider that we have added an edge due to a node xr ∈ E ,
which happens if we apply a method r := t 7→ t′, t′′ to
an edge (x0, t, x

′). We cannot “un-apply” the method r as
the task t′ is not currently on the stack. We “pause” the ex-
traction of the main plan. We then extract a plan that de-
composes the stack (x0, t

′, xr) into the empty stack (if the
method is r := t 7→ t′, t′′). As a result, we add (x0, t

′, xr)
to the stack, apply r backwards, and continue as normal.
Finding a plan decomposing (x0, t

′, xr) works as the main
extraction – while treating xr as x? and t′ as I and must
have cost κ(xr). Such sub-extractions can be nested inside
of each other. If we regress through an edge with additional
costs ν, we have to split the extraction into a sub-extraction
that extracts the correct plan to reach that edge and then con-
tinue the main extraction that caused the edge to be inserted.

Empirical Evaluation
We implemented the presented approach autoSym and em-
pirically compared it with other optimal (TO)HTN plan-
ners.4 autoSym is based on the PANDA planning frame-
work in its C++ version pandaPI (Höller et al. 2021).
Since autoSym operates on a grounded model, we use
parser and grounder of pandaPI (Behnke et al. 2020).5
autoSym uses the default pandaPI variable ordering for
the BDDs. Modern classical planners (Torralba et al. 2014;
Kissmann, Edelkamp, and Hoffmann 2014; Speck, Geißer,
and Mattmüller 2018b) use sophisticated methods to predict
good variable ordering, which can play a crucial role in sym-
bolic planning based on decision diagrams (Kissmann and
Hoffmann 2014). We leave this to future work. To represent
and manipulate BDDs we use CUDD 3.0.0 (Somenzi 2015).

Algorithm Sym. Search SAT A*

Domain (# Inst.) autoSym bin dec LM-cut TDG-c

Barman (20) 0 12 7 0 0
Blocks-GTOHP (20) 12 1 1 18 4
Blocks-HPDDL (20) 3 3 3 1 0
Childsnack (20) 2 6 6 0 0
Depots (20) 20 10 10 15 3
Entertainment (12) 12 10 12 5 5
Gripper (20) 20 20 20 17 4
Hiking (20) 7 0 0 0 0
Minecraft-Area (30) 15 0 0 0 0
Minecraft-Normal (30) 19 1 0 0 0
Multiarm-Blocks (74) 10 0 0 4 0
Robot (10) 1 1 1 0 0
Rover-GTOHP (20) 7 4 4 5 4
Rover-PANDA (20) 13 18 15 10 4
Satellite-GTOHP (20) 3 3 3 5 3
Satellite-PANDA (25) 25 25 25 25 22
SmartPhone (7) 6 7 7 5 4
Towers (14) 10 6 6 9 2
Transport (30) 24 14 12 5 2
UM-Translog (22) 22 22 22 22 22
Woodworking (11) 11 11 11 11 8

Overall (465) 242 174 165 157 87

Table 1: Coverage Table.

4https://github.com/galvusdamor/pandaPIengineSymbolic
5https://github.com/panda-planner-dev/pandaPIparser and

https://github.com/panda-planner-dev/pandaPIgrounder
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Domains. In contrast to the previous work by Behnke,
Höller, and Biundo (2019b), we have used a far more exten-
sive domain set. We have gathered as many domains as pos-
sible from former evaluations of (satisficing) TOHTN plan-
ners. This amounts to four different sources: (1) (Behnke,
Höller, and Biundo 2018) with 7 domains, (2) (Alford et al.
2016) with 4 domains, (3) (Schreiber et al. 2019) with 8
domains, and (4) (Wichlacz, Torralba, and Hoffmann 2019)
with 2 domains – with a total of 465 instances.

Planners. As stated in the introduction, optimal HTN
planning is a relatively new and so-far under-researched
topic. Thus, only few planners exist for comparison. We
compare autoSym against four other planners: (1&2)
the SAT-based planners SAT(bin) and SAT(dec) (Behnke,
Höller, and Biundo 2019b), (3) Progression search with
the LM-cut heuristics (Höller et al. 2020; Helmert and
Domshlak 2009), and (4) PANDA using the TDG-c heuris-
tics (Bercher et al. 2017). HTN2STRIPS (Alford et al. 2016)
is excluded as it was significantly less efficient in previous
evaluations. Tree-REX (Schreiber et al. 2019) does not pro-
duce optimal solutions, but only locally optimises satisficing
plans. Every planner was given 4 GB of RAM and 30 min-
utes of runtime on a compute cluster with nodes equipped
with two Intel Xeon Gold 6242 32-core CPUs, 20 MB cache
and 188 GB shared RAM running Ubuntu 18.04 LTS 64 bit.

Results. Tab. 1 shows the overall coverage of all five plan-
ners on the benchmark instances. autoSym outperforms its
next best competitor SAT(bin) by 68 instances. In 15 out of
21 domains autoSym solves more or as much as the other
planners. In four other domains (Blocks-GTOHP, Rover-
PANDA, SmartPhone, Satellite-GTOHP) it is comparable
in performance with the other planners. In the two remain-
ing domains (Barman, Childsnack) its performance is sig-
nificantly worse than that of the SAT-based planner. This is
due to the high number of methods in these instances, which
lead to a quite large automaton compared to the other in-
stances. In these two domains, autoSym cannot profit from
the compacted representation using BDDs. Improving this is
interesting for future research.

Figure 4 shows the coverage over time. The progression-
based planner (A* LM-cut) has an early lead, but autoSym
overtakes it after less than a second and dominates it af-
terwards. Figure 5 shows a per-instance runtime compar-
ison between the two best planners overall, autoSym
and SAT(bin). In most instances, which are solved by
both planners, autoSym is at least one order of magni-
tude faster. However, there are instances where autoSym
is significantly slower or which cannot be solved by
autoSym within the given memory and time limits. Over-
all, autoSym is a valuable addition to the state of the art, as
it is a technique that is orthogonal to the existing ones.

Finally, we would like to mention the time it takes for
the presented symbolic approach autoSym to reconstruct
a found solution. Plan extraction can take up to 64.88% of
the planner’s time, but this is usually only the case with in-
stances that are solved quickly. For instances solved in more
than one second, this percentage decreases to 22.66%, and
for one minute, it decreases further to 6.94%. The slowest
extraction took 38.66 sec. (Minecraft-Normal).
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Figure 4: Inverted Cactus Plot showing the runtime neces-
sary to solve a given amount of instances. Runtime in sec-
onds is on the x-axis (log scale). Number of solved instances
is on the y-axis. Planners are coded by colour.
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Figure 5: Runtime scatter plot (log scale) of autoSym and
SAT(bin) in sec. per instance. TLE=Time Limit Exceeded.

Conclusion
We have presented a new means to solve TOHTN planning
problems: symbolic search. We have build upon techniques
from the model-checking community. This technique has the
advantage of being able to produce guaranteed optimal solu-
tions. The resulting planner was shown to significantly out-
perform other state-of-the-art optimal TOHTN planners. In
the future, we may address the weaknesses of the algorithm
shown by the evaluation on some domains. This could be
possible through a more sophisticated method of variable
ordering or through the use of heuristics. While it has been
shown that the use of heuristics in the form of distance esti-
mates to the goal often does not pay off in symbolic search
(Speck, Geißer, and Mattmüller 2020), it might be possi-
ble here to use heuristics to prioritise the edges of the con-
structed automaton to be processed. Another interesting di-
rection is to extend the algorithm to partially-ordered HTN
planning (Behnke, Höller, and Biundo 2019a).
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