
Contract Scheduling With Predictions

Spyros Angelopoulos,1,2 Shahin Kamali3

1 Centre National de la Recherche Scientifique (CNRS)
2 Sorbonne Université, Laboratoire d’informatique de Paris 6, LIP6, Paris, France

3 University of Manitoba, Winnipeg, Manitoba, Canada
spyros.angelopoulos@lip6.fr, shahin.kamali@umanitoba.ca

Abstract

Contract scheduling is a general technique that allows to de-
sign a system with interruptible capabilities, given an algo-
rithm that is not necessarily interruptible. Previous work on
this topic has largely assumed that the interruption is a worst-
case deadline that is unknown to the scheduler. In this work,
we study the setting in which there is a potentially erroneous
prediction concerning the interruption. Specifically, we con-
sider the setting in which the prediction describes the time
that the interruption occurs, as well as the setting in which
the prediction is obtained as a response to a single or multi-
ple binary queries. For both settings, we investigate tradeoffs
between the robustness (i.e., the worst-case performance as-
suming adversarial prediction) and the consistency (i.e, the
performance assuming that the prediction is error-free), both
from the side of positive and negative results.

Introduction
One of the central objectives in the design of intelligent sys-
tems is the provision of anytime capabilities. In particular,
several applications such as medical diagnostic systems and
motion planning algorithms require that the system outputs
a reasonably efficient solution given the unavoidable con-
straints on computation time. Anytime algorithms offer such
a tradeoff between computation time and quality of the out-
put. Namely, in an anytime algorithm the quality of output
improves gradually as the computation time increases. This
class of algorithms was introduced first in (Boddy and Dean
1994) in the context of time-depending planning, as well as
in (Horvitz 1988) in the context of flexible computation.

(Russell and Zilberstein 1991; Zilberstein and Russell
1996) introduced a useful distinction between two differ-
ent types of anytime algorithms. On the one hand, there is
the class of contract algorithms, which describes algorithms
that are given the amount of allowable computation time (i.e,
the intended query time) as part of the input. However, if
the algorithm is interrupted at any point before this “con-
tract time” expires, the algorithm may output a result that
is meaningless. On the other hand, the class of interruptible
algorithms consists of algorithms whose allowable running
time is not known in advance, and thus can be interrupted
(queried) at any given point throughout their execution.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although less flexible than interruptible algorithms, con-
tract algorithms typically use simpler data structures, and
are thus often easier to implement and maintain (Bernstein,
Finkelstein, and Zilberstein 2003). Hence a natural question
arises: how can one convert a contract algorithm to an inter-
ruptible equivalent, and at which cost? This question can be
addressed in an ad-hoc manner, depending on the algorithm
at hand; however, there is a simple technique that applies to
any possible contract algorithm, and consists of repeated ex-
ecutions of the contract algorithm with increasing runtimes
(also called lengths). For example, consider a schedule of
executions of the contract algorithm in which the i-th exe-
cution has length 2i. Assuming that an interruption occurs
at time t, then the above schedule guarantees the comple-
tion of a contract algorithm of length at least t/4, for any
t, as shown in (Russell and Zilberstein 1991). The factor 4
measures the performance of the schedule, and quantifies the
penalty due to the repeated executions.

More formally, given a contract algorithm A, a schedule
X is defined by an increasing sequence (xi) in which xi is
the length of the i-th execution of A. For simplicity, we call
the i-th execution of A in X the i-th contract, and we call xi
its length. The acceleration ratio of X , denoted by acc(X),
relates an interruption T to the length of the largest contract
that has completed by time T in X , which we denote by
`(X,T), and is defined as

acc(X) = sup
T

T

`(X,T)
(1)

Intuitively, the acceleration ratio describes a trade-off
between processor speed and resilience to interruptions.
Namely, by executing the scheduleX to a processor of speed
equal to acc(X), one obtains a system that is as efficient as
a single execution of a contract algorithm that knows when
the interruption will occur, but runs in a unit-speed proces-
sor. Note that the schedule, and also its acceleration ratio,
are determined by the contract lengths.

Contract scheduling has been studied in a variety of set-
tings related to AI. It has long been known that the schedule
X = (2i) has optimal acceleration ratio equal to 4 (Russell
and Zilberstein 1991). Optimal schedules in multi-processor
systems were obtained in (Bernstein et al. 2002). The gen-
eralization in which there are more than one problem in-
stances associated with the contract algorithm was first

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11726

studied in (Zilberstein, Charpillet, and Chassaing 2003), in
which optimal schedules were obtained for a single pro-
cessor. The more general setting of multiple instances and
multiple processors was first studied in (Bernstein, Finkel-
stein, and Zilberstein 2003) and later in (López-Ortiz, An-
gelopoulos, and Hamel 2014). (Angelopoulos, López-Ortiz,
and Hamel 2008) considered the problem in which the in-
terruption is not a fixed deadline, but there is a “grace pe-
riod” within which the system is allowed to complete the
execution of the contract. Measures alternative to the accel-
eration ratio were proposed and studied in (Angelopoulos
and López-Ortiz 2009). More recently, (Angelopoulos and
Jin 2019) studied contract scheduling in the setting in which
the schedule is deemed “complete” once a contract reaches
some prespecified end guarantees.

Contract scheduling is an abstraction of resource alloca-
tion under uncertainty, in a worst-case setting. As such it
has connections to other problems of a similar nature, such
as online searching under the competitive ratio (Bernstein,
Finkelstein, and Zilberstein 2003; Angelopoulos 2015; Ku-
pavskii and Welzl 2018). Note, however, that previous work
follows a worst-case model of uncertainty, in which the per-
formance must be guaranteed under all circumstances, and
thus treats any prediction as adversarial and untrustworthy.

Our Setting: Contract Scheduling with Predictions
Previous work on contract scheduling has mostly assumed
that the interruption is unknown to the scheduler, and thus
can be chosen adversarially, in particular right before a con-
tract terminates. In practice, however, the scheduler may
have a certain prediction concerning the interruption. Con-
sider the example of a medical diagnostic system. Here,
the expert may know that the system will be likely queried
around a specific time, (i.e., prior to a scheduled surgery).
Another possible prediction may describe a partition of time
in intervals in which the system will likely be queried. In the
example of the medical diagnostic system, it is more likely
that the consultation will be required over a weekday, than
over a weekend.

We study two settings that capture the above scenarios. In
the first setting, there is a prediction τ concerning the inter-
ruption T . That is, we have information about the exact time
the interruption will occur. In the second setting, the predic-
tion is in the form of answers to n binary queries, where n
is a specified parameter. For example, a binary query can be
of the form “Will the interruption occur within a certain sub-
set of the timeline?”. For both settings, the prediction is not
necessarily trustworthy, and comes with an unknown error
η.

The performance of the schedule is determined by two pa-
rameters: the first is the robustness, which is the worst-case
acceleration ratio of the schedule assuming adversarial error
(i.e., an adversary manipulating the prediction). The second
is the consistency of the schedule, which is the acceleration
ratio assuming that the prediction is error-free. In between
these extremes, the acceleration ratio will be, in general,
a function of the prediction error. This follows the recent
framework in machine learning of robust online computation
with predictions, as introduced in (Lykouris and Vassilvitskii

2018) for the caching problem, and later applied in (Purohit,
Svitkina, and Kumar 2018) for other online problems such
as ski rental and non-clairvoyant scheduling.

Our paper differs from the above works in two impor-
tant aspects. The first is related to the nature of the results.
More precisely, our aim is to complement the positive results
obtained by specific schedules, with negative, i.e., impossi-
bility results. This is in the spirit of recent work (Rohatgi
2020) which showed lower bounds on the competitive ra-
tio of any caching algorithm, as a function of the prediction
error, the cache size and the optimal cost. We are also in-
terested in finding schedules that are Pareto-efficient with
respect to the tradeoff between robustness and consistency;
i.e., by fixing one of the two parameters, the other must be
optimized. This is inspired by (Angelopoulos et al. 2020)
which studied Pareto-efficient online algorithms with un-
trusted advice (Angelopoulos et al. 2020).

The second difference is related to the nature of the prob-
lem we study. Unlike “natural” online optimization prob-
lems in (Lykouris and Vassilvitskii 2018) and (Purohit,
Svitkina, and Kumar 2018), contract scheduling under the
acceleration ratio poses certain novel challenges. Most no-
tably, it is not the case that the performance improves mono-
tonically as the error decreases. To see this, consider an in-
terruption T , a prediction τ for T , and a schedule X for
prediction τ . Suppose that a contract finishes right before τ
inX: this is intuitively bad, because even with very small er-
ror, it is possible thatX barely misses to complete its largest
contract by time T . But it is also possible that if the error
is very large, T happens to occur right after another con-
tract terminates in the schedule. This is a “best-case” sce-
nario for the schedule: it completes a contract right on time.
This observation exemplifies the type of difficulties we face.
Another difficulty is that there may exist schedules that are
Pareto optimal for the pair of consistency and robustness,
but whose performance falls back to the worst-case acceler-
ation ratio for any non-zero error. Such schedules are clearly
undesirable, which is another challenge we must overcome.

Results
We first consider the setting in which the prediction τ is
the interruption time T . The prediction τ comes with an
error η ∈ [0, 1] such that T ∈ [τ(1 − η), τ(1 + η)]. We
show how to obtain a Pareto-optimal schedule by showing
a reduction from an online problem known as online bid-
ding (Chrobak and Kenyon-Mathieu 2006). This allows us
to use, as black-box, a Pareto-optimal algorithm of (An-
gelopoulos et al. 2020), and obtain a schedule with the
same ideal performance. But there are two complications:
this schedule cannot tolerate any errors (see the discussion
above), and is also fairly complex. We give another simple
schedule with the same robustness and consistency, and thus
also Pareto-optimal. We then show how to extend this sched-
ule to the realistic setting in which η 6= 0, and we comple-
ment the positive results with lower bounds on the perfor-
mance of any schedule.

In the second part we study the setting in which the pre-
diction is in the form of answers to n binary queries, for
some given parameter n, i.e., we would like to combine the

11727

advice of n binary experts. Thus, the prediction is an n-bit
string, and the prediction error η ∈ [0, 1] is defined as the
fraction of the erroneous bits in the string. First, we show an
information-theoretic lower-bound on the best-possible con-
sistency one can hope to achieve in this setting, assuming
optimal robustness equal to 4. We then present and analyze
a family of schedules, parameterized by the range of error
that each schedule can tolerate. There are several challenges
here: the analysis must incorporate several parameters such
as the error η, the number of queries n and the desired ro-
bustness r. Moreover, we need to define queries that are re-
alistic and have a practical implementation. To this end, each
query is a partition query of the form “Does interruption T
belong to T ?”, where T is a subset of the timeline.

Due to space limitations, we omit several technical proofs.
All omitted details can be found in (Angelopoulos and Ka-
mali 2020).

Other related work There are several recent works that
study algorithms with ML predictions in a status of uncer-
tainty. Examples include online rent-or-buy problems with
multiple expert predictions (Gollapudi and Panigrahi 2019),
queuing systems with job service times predicted by an or-
acle (Mitzenmacher 2020), online algorithms for metrical
task systems (Antoniadis et al. 2020), and online makespan
scheduling (Lattanzi et al. 2020). Clustering with noisy
queries was studied in (Mazumdar and Saha 2017). Our set-
ting is also related to the field of robust optimization (Kou-
velis and Yu 2013), in which the input is uncertain and the
objective is to devise efficient algorithms for any input real-
ization. In our setting, however, the concept of the “input”
is much broader, and entails potentially partial information
that could be helpful to the decision maker.

Concerning contract scheduling, the work that is clos-
est to ours is (Zilberstein, Charpillet, and Chassaing 2003),
in which there is stochastic information about the interrup-
tion, and the objective is to optimize the expected quality of
the output upon interruption. The optimal scheduling policy
in (Zilberstein, Charpillet, and Chassaing 2003) is based on
a Markov decision process, hence no closed-form solution
is obtained. More importantly, their schedule does not pro-
vide worst-case guarantees (i.e., a bound on the robustness),
but only average-case guarantees for the given distribution,
which is also assumed to be known.

Preliminaries
A contract schedule is defined by a sequence X = (xi)i≥1

of contract lengths, or contracts, where xi as the i-th con-
tract in X . We will always denote by T the time at which
an interruption occurs. We will make the standing assump-
tion that an interruption can occur only after a unit time has
elapsed. With no prediction on T , the worst-case accelera-
tion ratio of X is given by (1); this is the robustness of X ,
which we denote by rX , or simply r, if the schedule is im-
plied. With a prediction, the acceleration ratio ofX is simply
defined as T/`(X,T). Given a prediction, the consistency of
X is its acceleration ratio assuming η = 0. We will say that
a schedule has performance (r, s) if it has robustness r and

consistency s. We will refer to any schedule with robustness
at most r as r-robust. In a Pareto-optimal schedule, these are
in a Pareto-optimal relation.

Given a scheduleX = (xi), it is easy to see that the worst-
case interruptions occur infinitesimally prior to the comple-
tion of a contract. Hence the following useful formula.

rX = sup
i≥1

∑i
j=1 xj

xi−1
, (2)

where x0 is defined to be equal to -1.
The class of exponential schedules describes schedules in

which the i-th contract has length ai, for some fixed a, which
we call the base of the schedule. For several variants of the
problem, there are efficient schedules in this class. The ro-
bustness of an exponential schedule with base a is equal to
a2/(a − 1) (Zilberstein, Charpillet, and Chassaing 2003),
and for a = 2 the corresponding schedule has optimal ro-
bustness 4 (Russell and Zilberstein 1991). Let

cr =
r −
√
r2 − 4r

2
and br =

r +
√
r2 − 4r

2
,

then it is easy to verify that for any given r ≥ 4, an exponen-
tial schedule with base a ∈ [cr, br] has robustness at most 4.
This fact will be useful in our analyses.

In the online bidding problem (Chrobak and Kenyon-
Mathieu 2006), we seek an increasing sequence X = (xi)
of positive numbers (called bids) of minimum competitive
ratio, defined formally as

sup
u≥1

∑i
j=1 xj

u
: xi−1 < u ≤ xi, (3)

where u is the target value. In words, we seek a strategy (xi)
for submitting bids, given some unknown target (or thresh-
old) u, and we pay a cost equal to the sum of all bids up the
first bid that is at least as large as u. The competitive ratio of
the strategy is the maximum ratio of this cost divided by the
target u.

Without predictions, online bidding is equivalent to con-
tract scheduling: given an increasing sequence X = (xi),
both its acceleration ratio and its competitive ratio can be
described by (2). We say that a bidding sequence has per-
formance (r, s) with a given prediction if it has robustness r
and consistency s with respect to its competitive ratio.

Interruption Time as Prediction
We first consider the setting in which the prediction τ de-
scribes the interruption time T . The prediction comes with
an error η ∈ [0, 1], defined as follows. If T ≥ τ , then we
define η to be such that T/τ = (1 + η), and if T ≤ τ , then
we define η to be such that T/τ = (1 − η). In the former
case, we will say that the error is positive, otherwise we will
say that the error is negative. Regardless of the sign of error,
we have that T ∈ [τ(1− η), τ(1 + η)].

We will also study settings in which the error η is bounded
by a quantity H ≤ 1 which may or may not be known to the
schedule. We thus distinguish between H-oblivious and H-
aware schedules. Note that if η is bounded by H then

τ(1−H) ≤ τ(1− η) ≤ T ≤ τ(1 + η) ≤ τ(1 +H).

11728

We will first consider the ideal case in which either the
prediction is error-free (hence the robustness is evaluated for
η = 0), or it is adversarially generated (hence the consis-
tency is the worst-case acceleration ratio),

Theorem 1. Suppose that for every r ≥ 4, there is a se-
quence for online bidding that has performance (r, s) for
prediction equal to the target u. Then there is a contract
schedule with the same guarantees for the setting in which
the prediction is the interruption, and vice versa.

From (Angelopoulos et al. 2020), there is a Pareto-
optimal bidding sequence, which satisfies the conditions of
Theorem 1 with s = cr. This implies the following.

Corollary 1. For every r ≥ 4, there is a contract schedule
X∗
τ that has performance (r, cr), and this is Pareto-optimal.

We also obtain the following corollary.

Corollary 2. For any r-robust schedule X , and any time t,
it holds that `(X, t) ≤ t/cr. Moreover, for any ε > 0, there
exists i0 such that if xi = `, with i ≥ i0, then the completion
time of xi is at least cr`− ε.

There are two issues here. The first is that the schedule
obtained using the reduction to online bidding is fairly com-
plex, because the bidding algorithm in (Angelopoulos et al.
2020) is quite complex. We can give instead, a different
schedule, which is more intuitive and has the same perfor-
mance, hence also Pareto-optimal.

Definition 1. Consider the exponential schedule G = (bir).
Then there exists γ < 1 such that in the schedule X∗

τ
.
=

(γbir), there is a contract that completes at time precisely
equal to τ .

It is relatively easy to see that X∗
τ has also performance

(r, cr), and thus is also Pareto-optimal, from Corollary 1.
The intuition behind this schedule is that it is the r-robust ex-
ponential schedule with the largest possible contracts which
finishes by time τ .

Example. Suppose τ = 100 and r = 4.5, which gives
br = 3. Then we have b5r = 243, and hence γ = 100/243.

The second, and more significant issue, is that as in the
case of the online bidding algorithm of (Angelopoulos et al.
2020), in the presence of any error η 6= 0, the acceleration
ratio of X∗

τ becomes as bad as its robustness r. This is be-
cause if T = τ − ε, for infinitessimally small ε > 0, a long
contract in X∗

τ is not completed.
We will next adapt X∗

τ in order to obtain a more real-
istic schedule. The idea is to allow some “buffer” so that
the schedule can tolerate mispredictions as a function of the
buffer size. More precisely, for any p ∈ (0, 1), consider
the schedule X∗

τ(1−p). The following lemma gives an up-
per bound on the performance of this parameterized, andH-
oblivious schedule.

Lemma 1. For any p ∈ (0, 1), and r ≥ 4, X∗
τ(1−p) is r-

robust and has consistency min{ cr
1−p , r}. It also has accel-

eration ratio at most min{ cr(1+η)(1−p) , r} for positive error, at

most min{ cr(1−η)(1−p) , r} if η is negative error with η ≤ p, and
at most r, in every other case.

The above result provides a tradeoff between the accelera-
tion ratio ofX∗

τ(1−p), and the range in which it is sufficiently
good, as a function of the error. To illustrate this, consider
the case of negative error: If p is relatively small, then the
schedule has good acceleration ratio for relatively small η
(η < p), which however can (and will) become as large as r,
for a relatively big range of error, i.e, for η > p.

We now argue that these tradeoffs are unavoidable, in any
r-robust andH-oblivious scheduleX with prediction τ . Re-
call that `(X, τ) denotes the largest contract completed in
the schedule by time τ in X , and let p ∈ [0, 1] be such that
τ(1−p) is the completion time of this contract. From Corol-
lary 2 we know that `(X, τ) ≤ τ(1 − p)/cr, hence for neg-
ative error η ≤ p, the acceleration ratio is at least cr(1−η)1−p ,
and hence the consistency is at least cr

1−p . Moreover, there
exists x > 0 such that at time τ(1 + x), the largest com-
pleted contract does not exceed `(X, τ). Hence for positive
error η < x, the acceleration ratio is at least cr(1+η)1−p . Last,
since the schedule isH-oblivious, T can occur at points right
before a contract terminates, for all contracts that completed
before τ . In this latter case, the acceleration ratio will in-
evitably be as large as r, as T becomes large.

For these reasons we will next consider H-aware sched-
ules in which η ≤ H and H is known. A natural schedule
then is X∗

τ(1−H), in which the buffer p is determined by H .
Its performance is described in the following lemma, whose
proof follows similarly to Lemma 1, by setting p = H .
Lemma 2. X∗

τ(1−H) is r-robust, and has acceleration ra-

tio at most min{ cr(1+η)(1−H) , r} for positive error, and at most

min{ cr(1−η)(1−H) , r} for negative error.

Since η ≤ H , we have acc(X∗
τ(1−H)) ≤

min{ cr(1+H)
1−H , r}. The next lemma shows that H can

take values in a certain range, as function of cr, for which
no other r-robust schedule can be better.
Lemma 3. For any H that satisfies the condition 1+H

1−H <√
cr+1
cr
− δ, for any fixed δ > 0, the acceleration ratio of

anyH-aware r-robust schedule is at least min{ cr(1+H)
1−H , r}.

Proof. By way of contradiction, let X denote an H-
aware schedule that has acceleration ratio at most
min{ cr(1+H)

1−H , r}. Then given prediction τ , X must com-
plete by time τ(1−H) a contract, say x, of length at least

τ(1−H)2

cr(1 +H)
.

From Corollary 2, the completion time of x must be at least

cr ·
τ(1−H)2

cr(1 +H)
− ε = τ(1−H)2

1 +H
− ε,

for arbitrarily small ε > 0, since T can be arbitrarily large.
We now claim that x is also the largest contract completed

11729

by time τ(1 + H) in X . By way of contradiction, suppose
that there is a contract y that follows x, and which completes
by time τ(1 + H). Note that y must be at least as big as x.
Then it must be that

τ(1−H)2

1 +H
− ε+ τ(1−H)2

cr(1 +H)
≤ τ(1 +H),

and since ε can be arbitrarily small and smaller than δ, we
arrive at a contradiction, concerning the assumption on H .
Thus, if T = τ(1 +H) (i.e., for positive η = H , the largest
contract completed is x, and thus the acceleration ratio is at
least cr(1+H1−H)2 ≥ cr 1+H1−H .

We can also show that there is an even larger range for
H than that of Lemma 3 for which no other schedule can
dominateX∗

τ(1−H), in the sense that no schedule can have as
good an acceleration ratio asX∗

τ(1−H) on all possible values
of η ≤ H , and strictly better for at least one such value.

Lemma 4. For any H such that 1+H
1−H < cr+1

cr
− δ, no r-

robust H-aware schedule dominates X∗
τ(1−H).

Example. To put the above results into perspective, let us
consider the case r = 4 (best robustness). Then cr = 2,
and X∗

τ is 2-consistent, but can have acceleration ratio
4 for any η 6= 0. For given bound H , X∗

τ(1−H) has

acceleration ratio at most min{ 2(1+η)(1−H) , 4} for positive

error, and at most min{ 2(1−η)1−H , 4} if η is negative error.
Thus, an absolute upper bound on its acceleration ratio is
min{ 2(1+H)

1−H , 4}, whereas its consistency is min{ 2
(1−H) , 4}.

For any H < 0.101, no 4-robust H-aware schedule has
better acceleration ratio. Last, for H < 0.2, there is no
4-robust H-aware schedule that dominates X∗

τ(1−H).

Binary Predictions
In this section, we study the setting in which the prediction
is in the form of answers to n binary queries Q1, . . . , Qn ,
for some given n. Hence, the prediction P is an n-bit string,
where the i-th bit is the answer to Qi. It is worth pointing
out that even a single binary query can be quite useful. For
example, it can be of the form “Is T ≤ B, for some given
bound B”?, or “Is T ∈ [a, b], for some given a, b”? The
prediction error η ∈ [0, 1] is the fraction of erroneous bits in
P . We will assume, for simplicity, that the total number of
erroneous bits, that is ηn, is an integer.

Our approach to this problem is as follows. Let X be a set
of r-robust schedules. The prediction P will help choose a
good schedule from this class. For positive results, we need
to defineX , and show how the prediction can help us choose
an efficient schedule from X; moreover the prediction must
have a practical interpretation, and must tolerate errors. For
negative (i.e., impossibility) results, we need to show that
any choice of 2n r-robust schedules in X cannot guarantee
consistency below a certain bound. Note that in this scheme,
all schedules inX must be r-robust, because any schedule in
X can be chosen, if the prediction is adversarially generated.

We begin with a negative result, for the simple, but impor-
tant case r = 4, i.e., for optimal robustness. The following
theorem gives a lower bound on the consistency.

Theorem 2. For any binary prediction P of size n, any
schedule with performance (4, s) is such that s ≥ 21+

1
2n .

Proof sketch. The proof is based on an information-
theoretic argument. With n binary queries, the prediction P
can only help us choose a schedule from a classX of at most
2n 4-robust schedules. Let X1, X2, . . . , X2n describe these
schedules. By way of contradiction, suppose we could guar-
antee consistency S = 21+

1
2n − δ, with δ > 0. We show

that there exists an ordering of these schedules with the fol-
lowing property, which we prove by induction: there is a set
of 2n − 1 interruptions, T2, . . . , T2n−1 such that, for inter-
ruption Ti, with i ∈ [2, 2n − 1], no schedule of rank at most
i+1 in the ordering can guarantee consistency S. This means
that for interruption T2n−1, no schedule in X can guarantee
robustness S, a contradiction.

We complement Theorem 2 with the following positive
result. Consider the set X = {Xi, i ∈ [0, 2n − 1]} of sched-
ules, in which Xi = (xj,i)j≥1 is defined by xj,i = dj+

i
2n ,

for d > 1 that we will choose later. In words, Xi is a
near-exponential schedule with base d, and a scaling fac-
tor equal to d

i
2n . The prediction P then chooses an index,

in [0, 2n − 1], of the schedule in this X . We call IDEAL the
schedule obtained from X with prediction P .

Theorem 3. For every r ≥ 4, define d = br, if r ≤ (1+2n)2

2n ,
and d = 1 + 2n, otherwise. Then IDEAL has performance
(r, d1+

1
2n /(d− 1)).

For example, for r = 4, IDEAL has performance
(21+

1
2n , 4), which matches Theorem 2, and is, therefore,

Pareto-optimal.
IDEAL, as its name suggests, is not a practical schedule:

a single error in one of the queries can make its acceleration
ratio as bad as its robustness. Intuitively, this occurs because
the n queries implement a type of “binary search” in the
space of all 2n schedules in X , and which is not robust to
errors. We will instead propose a family of schedules, which
we callRobustp, where p ∈ [0, 1] is a parameter that defines
the range of error that the schedule can tolerate (this will
become more clear shortly). More precisely, we will define
a class of schedulesX , and the predictionP will be the index
of one of these schedules. However, this time there are only
n schedules in X instead of 2n, as in the case of IDEAL.
Each Xi ∈ X is defined as Xi = (xj,i)j≥0 = dj+

i
n , with

i ∈ [0, n− 1], and again d > 1 to be determined later.
We now describe the n queries that comprise the predic-

tion P . Each queryQi, for i ∈ [0, n−1] is of the form “Is the
best schedule, for the given interruption in {X0, . . . , Xi}?”.
Note that the queries obey a monotonicity property: if Qi is
“no”, and Qi+1 is “yes”, we know an error has occurred in
one of these queries. It is also important to note that each
of the queries Qi has an equivalent statement of the follow-
ing form: “Does the interruption T belong to a subset Si of

11730

the timeline?”. Thus each query asks whether T falls in a
certain partition of the timeline, which has a more natural,
and practical interpretation. This holds for both IDEAL and
Robustp.

If there were no errors (i.e., for η = 0), then the best
schedule in X would be the number of “no” responses to
the n queries, minus one to account for indexing from 0.
However, in the presence of errors, one needs to be careful,
because, once again, a single error can have an enormous
impact. For this reason, Robustp uses the parameter p. In
particular, it chooses schedule Xm, where m is defined as
(N−1−pn) mod n andN is the number of “no” responses
(again, for convenience we will assume that pn is integral).
In words, Robustp chooses a schedule of index “close and
above”, in the cyclic order of indices, to an index that would
correspond to an error-free prediction. The following theo-
rem bounds the performance of Robustp, and shows how to
choose the base d. We make two assumptions: that η ≤ p
(thus Robustp can only tolerate up to p fraction of query
errors), and that p ≤ 1/2 (otherwise, in the worst case, the
queries are too “corrupt” to be of any use).
Theorem 4. For every r ≥ 4, defineK to be equal to 2pn+1

n ,
and d to be equal to br, if r ≤ (1 + K)2/K, and 1 + K,
otherwise. Then Robustp is r-robust and has acceleration

ratio at most d
1+ 1

n
+2p

d−1 , assuming η ≤ p ≤ 1/2.

Proof. For interruption T , let l denote the index of the best
schedule in X . From the structure of X , this means that, in
worst-case, T occurs right before the completion of a con-
tract, say j, in the schedule X(l+1) mod n. We will consider
the case l 6= n− 1, thus (l + 1) mod n = l + 1; the outlier
case l = n − 1 follows similarly, but with a slightly dif-
ferent argument (namely, the worst case interruption occurs
right before the completion time of contract j + 1 of X0).
We express this interruption as

T =

j∑
i=1

xi,l+1 =

j∑
i=1

di+
l+1
n ≤ dj+1+ l+1

n

d− 1
.

Let m denote the index chosen by Robustp, as defined ear-
lier. The crucial observation is that in a cyclic ordering of the
indices,m and l are within a distance at most (η+p)n. Here,
a distance of at most ηn is due to the maximum number of
erroneous queries, and an additional distance of at most pn
is further incurred by the algorithm. Since η ≤ p, they are
within a distance at most 2pn.

We will give a lower bound on the largest contract length,
say L completed by time T in Robustp. We consider two
cases. First, suppose that m ≤ l, then by the structure of
X , L is at least the length xj,l−2pn = dj+

l−2pn
n . Next, sup-

pose that m > l. In this case, L is at least the length of
xj−1,n+l−2pn = dj−1+n+l−2pn

n = dj+
l−2p

n . In both cases
we conclude that L ≥ dj+

l−2pn
n . Therefore the acceleration

ratio is at most T/L ≤ d1+
1
n

+2p

d−1 . We now want to find d

such that d2/(d− 1) ≤ r and d1+
1
n

+2p

d−1 is minimized. Using
standard calculus, it follows that the best choice of d is as in
the statement of the theorem.

For example if r = 4, then for any given p ≤ 1/2,
Robustp is 4-robust, can tolerate at most a p ≤ 1/2 fraction
of erroneous responses, and has acceleration ratio at most
21+

1
n+2p. We can interpret the result of the theorem in two

ways. First, one can use p as a hedging parameter: with
larger p, better tolerance to errors can be achieved, at the
expense however of the acceleration ratio (akin to Lemma 1
and the discussion following it). Second, the acceleration
ratio improves rapidly as a function of the numbers (not as
rapidly as in IDEAL, but still very fast).

Experimental Results
In this section, we present the experimental evaluation of
our schedules. We use exponential schedules (without any
prediction) as the baseline for our comparisons. Recall that
for any r ≥ 4, any exponential schedule (ai) with base
a ∈ [cr, br] has robustness at most r. For the special but
important case of r = 4, there is only one such schedule
with a = 2. We report results for r = 4, but we note that for
r > 4 the experiments show the same trends.

Interruption Time as Prediction
We model τ ∈ [T −H,T +H] to be a random (truncated)
normal variable with mean T and standard deviation 1, such
that η ≤ H . Recall that an H-aware schedule knows H ,
whereas an H-oblivious one does not. Figure 1 depicts the
average acceleration ratio (y-axis) of the schedule X∗

τ(1−p)
for different values of p, as a function of the interruption
time T (x-axis), for fixed H = 0.1. The plot depicts the per-
formance of four schedules: theH-aware schedule, in which
p = H , and three H-oblivious schedules for p = 0.05,
p = 0.2 and p = 0.3. We run the experiment over 1,000
evenly spaced values of the interruption time in the interval
[2, 220]. For each value of T ∈ [2, 220], we compute the ac-
celeration ratio of the schedule for 1,000 random values of
τ ∈ [T −H,T +H], and report the average.

The figure shows that the H-aware schedule has an ad-
vantage over the schedules with different values of p. In par-
ticular, the expected value of the acceleration ratio of this
schedule is around 2.23 for all values of the interruption T ,
compared to acceleration ratios of 2.41 for the schedule with
buffer smaller than H (p = 0.05) and ratios 2.49 and 2.85
of the schedule whose buffer is larger than H (p = 0.2, 0.3,
respectively). As p decreases, the fluctuation of the acceler-
ation ratio due to the noise increases, since the interruption
becomes closer to the completion time of a contract.

As Figure 1 shows, our schedules with predictions do not
outperform the baseline algorithm for every interruption.
This is to be expected, since there is no schedule that can
dominate any other schedule. More precisely, even a sched-
ule of very bad robustness (e.g., a schedule with a huge con-
tract early on) will have excellent acceleration ratio for some
range of interruptions (e.g., for certain interruptions before
the completion time of the huge contract). Nevertheless, we
can quantify the advantage of the schedules with predic-
tions, as shown in Table 1. The table depicts the percentage
of interruptions in [2, 220] for which X∗

τ(1−p) outperforms

11731

interruption time

ac
ce

le
ra

tio
n

ra
tio

1.5

2.0

2.5

3.0

3.5

4.0

2.00E+5 4.00E+5 6.00E+5 8.00E+5 1.00E+6

Baseline Schedule p = 0.05 p = 0.1 (H-aware) p = 0.2 p = 0.3

Figure 1: Acceleration ratios of X∗
τ(1−p), for H = 0.1.

p = 0.05 p = 0.1 p = 0.2 p = 0.3

improvement 79.22% 88.71% 74.73% 57.04%
strong improv. 55.24% 66.43% 50.05% 28.47%

Table 1: Percentage of interruptions in [2, 220] for which
Xτ(1−p) outperforms the baseline schedule.

the baseline schedule, as well as the percentage of interrup-
tions for which the improvement is significant (at least by
20%). As expected, the H-aware schedule yields the best
improvements, but even the H-oblivious schedules tend to
perform much better than the baseline schedule. Thus, while
H-awareness yields improvements, it is not indispensable.

Similar conclusions can be drawn for different values of
H , but as H increases, the acceleration ratios of the sched-
ules X∗

τ(1−p) also smoothly increase, as expected. In addi-
tion, similar results are obtained for τ uniformly at random
in [T −H,T +H].

Binary Predictions
We evaluate experimentally the performance ofRobustp (as
mentioned earlier, IDEAL is not a practical schedule, and
thus we do not implement it). We fix the number n of queries
to be equal to 100, and as in the previous setting, we also set
H = 0.1. Given a binary prediction of size 100, we gen-
erate a noisy prediction by flipping a fraction η of the 100
bits (rounded down) where η is chosen uniformly at random
in [0, H]. Figure 2 depicts the average acceleration ratio (y-
axis) of Robustp for different values of the parameter p, as
a function of the interruption time T (x-axis). As earlier, the
expectation is taken over 1,000 random values of the error,
and the interruption time takes values in the interval [2, 220].

We consider Robustp with four values of the parameter
p, namely p ∈ {0.05, 0.1, 0, 2, 0.3}. Note that the theoreti-
cal upper bound of Theorem 4 applies only if p ≥ 0.1 in this
setting. For such values of p, the acceleration ratio is a “saw-
like” function of the interruption. There are some “critical”
interruptions at which the acceleration ratio drops, then gen-
tly increases until the next critical interruption, as shown in
Figure 2. The acceleration ratio of Robustp also increases
with p, as predicted by Theorem 4, but is much smaller than
the baseline acceleration ratio; for instance, for p = 0.3, it

interruption time

ac
ce

le
ra

tio
n

ra
tio

1.5

2.0

2.5

3.0

3.5

4.0

200000 400000 600000 800000 1000000

baseline schedule p = 0.05 p = 0.1 (H-aware) p = 0.2 p = 0.3

Figure 2: Acceleration ratios of Robustp, for H = 0.1.

p = 0.05 p = 0.1 p = 0.2 p = 0.3

improvement 89.81% 94.25% 86.07% 77.07%
strong improv. 74.33% 70.98% 60.94% 49.95%

Table 2: Percentage of interruptions in [2, 220] for which
Robustp outperforms the baseline schedule.

fluctuates in the interval [2.4, 2.6]. Note also that even for
p = 0.05 < H , Robustp performs better than the baseline
schedule, which is interesting because such a case is not cap-
tured by Theorem 4. This implies thatRobustp may work in
practice for a wider range of values of p than predicted by
the theorem, and that Robustp need not be H-aware to per-
form well.

To quantify the above observation, in Table 2 we report
the performance gain of Robustp for different values of p,
and fixed H = 0.1. Once again, the table shows the percent-
age of interruptions in the range [2, 220] for which Robustp
outperforms the baseline schedule, as well as the percentage
in which the performance gain is significant (at least 20%).

Conclusion
It is intriguing that a problem with a very simple state-
ment, namely contract scheduling under the acceleration ra-
tio, turns out to be quite challenging in the setting of predic-
tions. We explored the tradeoffs between the prediction ac-
curacy, the acceleration ratio, the consistency and the robust-
ness of schedules in two natural settings of prediction. In fu-
ture work, we would like to study the multi-instance setting,
as discussed in the introduction, for which a lot of work has
been done in the standard framework of no predictions. Last,
the techniques we developed in this work should be readily
applicable to the problem of searching on the line under the
competitive ratio, and to the settings studied recently in (An-
gelopoulos 2021) given the connections between this prob-
lem and contract scheduling (Bernstein, Finkelstein, and Zil-
berstein 2003; Angelopoulos 2015).

Acknowledgments
This research benefited from the support of the FMJH Pro-
gram PGMO and from the support to this program from
EDF-THALES-ORANGE.

11732

References
Angelopoulos, S. 2015. Further Connections Between
Contract-Scheduling and Ray-Searching Problems. In Pro-
ceedings of the 24th International Joint Conference on Arti-
ficial Intelligence (IJCAI), 1516–1522.

Angelopoulos, S. 2021. Online Search with a Hint. In 12th
Innovations in Theoretical Computer Science Conference,
ITCS, volume 185 of LIPIcs, 51:1–51:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.

Angelopoulos, S.; Dürr, C.; Jin, S.; Kamali, S.; and Renault,
M. P. 2020. Online Computation with Untrusted Advice.
In Proceedings of the 11th International Conference on In-
novations in Theoretical Computer Science (ITCS), 52:1–
52:15.

Angelopoulos, S.; and Jin, S. 2019. Earliest-Completion
Scheduling of Contract Algorithms with End Guarantees. In
Proceedings of the 28th International Joint Conference on
Artificial Intelligence, (IJCAI), 5493–5499.

Angelopoulos, S.; and Kamali, S. 2020. Contract scheduling
with predictions. arXiv 2011.12439 .

Angelopoulos, S.; and López-Ortiz, A. 2009. Interruptible
Algorithms for Multi-Problem Solving. In Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence (IJCAI), 380–386.

Angelopoulos, S.; López-Ortiz, A.; and Hamel, A. 2008.
Optimal Scheduling of Contract Algorithms with Soft Dead-
lines. In Proceedings of the 23rd AAAI Conference on Arti-
ficial Intelligence (AAAI), 868–873.

Antoniadis, A.; Coester, C.; Elias, M.; Polak, A.; and Simon,
B. 2020. Online metric algorithms with untrusted predic-
tions. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 11453–11463.

Bernstein, D.; Finkelstein, L.; and Zilberstein, S. 2003.
Contract Algorithms and Robots on Rays: Unifying Two
Scheduling Problems. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
1211–1217.

Bernstein, D.; Perkins, T. J.; Zilberstein, S.; and Finkelstein,
L. 2002. Scheduling Contract Algorithms on Multiple Pro-
cessors. In Proceedings of the 18th AAAI Conference on
Artificial Intelligence (AAAI), 702–706.

Boddy, M. S.; and Dean, T. L. 1994. Deliberation Schedul-
ing for Problem Solving in Time-Constrained Environments.
Artif. Intell. 67(2): 245–285.

Chrobak, M.; and Kenyon-Mathieu, C. 2006. SIGACT news
online algorithms column 10: Competitiveness via Dou-
bling. SIGACT News 37(4): 115–126.

Gollapudi, S.; and Panigrahi, D. 2019. Online Algorithms
for Rent-Or-Buy with Expert Advice. In Proceedings of
the 36th International Conference on Machine Learning
(ICML), 2319–2327.

Horvitz, E. 1988. Reasoning About Beliefs and Actions
Under Computational Resource Constraints. Int. J. Approx.
Reasoning 2(3): 337–338.

Kouvelis, P.; and Yu, G. 2013. Robust discrete optimization
and its applications, volume 14. Springer Science & Busi-
ness Media.
Kupavskii, A.; and Welzl, E. 2018. Lower Bounds for
Searching Robots, Some Faulty. In Proceedings of the 37th
ACM Symposium on Principles of Distributed Computing
(PODC), 447–453.
Lattanzi, S.; Lavastida, T.; Moseley, B.; and Vassilvitskii, S.
2020. Online Scheduling via Learned Weights. In Proceed-
ings of the 30th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 1859–1877.
López-Ortiz, A.; Angelopoulos, S.; and Hamel, A. 2014.
Optimal Scheduling of Contract Algorithms for Anytime
Problem-Solving. J. Artif. Intell. Res. (51): 533–554.
Lykouris, T.; and Vassilvitskii, S. 2018. Competitive
Caching with Machine Learned Advice. In Proceedings
of the 35th International Conference on Machine Learning
(ICML), 3302–3311.
Mazumdar, A.; and Saha, B. 2017. Clustering with Noisy
Queries. In Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), volume 30, 5788–5799.
Mitzenmacher, M. 2020. Scheduling with Predictions and
the Price of Misprediction. In Proceedings of the 11th
Innovations in Theoretical Computer Science Conference
(ITCS), volume 151, 14:1–14:18.
Purohit, M.; Svitkina, Z.; and Kumar, R. 2018. Improving
Online Algorithms via ML Predictions. In Annual Confer-
ence on Neural Information Processing Systems (NeurIPS),
volume 31, 9661–9670.
Rohatgi, D. 2020. Near-Optimal Bounds for Online Caching
with Machine Learned Advice. In Proceedings of the 30th
ACM-SIAM Symposium on Discrete Algorithms (SODA),
1834–1845.
Russell, S. J.; and Zilberstein, S. 1991. Composing real-
time Systems. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI), 212–217.
Zilberstein, S.; Charpillet, F.; and Chassaing, P. 2003. Opti-
mal Sequencing of Contract Algorithms. Ann. Math. Artif.
Intell. 39(1-2): 1–18.
Zilberstein, S.; and Russell, S. J. 1996. Optimal Composi-
tion of Real-Time Systems. Artif. Intell. 82(1-2): 181–213.

11733

