The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Decision-Guided Weighted Automata Extraction from Recurrent Neural Networks

Xiyue Zhang,' Xiaoning Du,”* Xiaofei Xie,”> Lei Ma,* Yang Liu,> Meng Sun'*
! Peking University, China
2 Monash University, Australia
3 Nanyang Technological University, Singapore
 Kyushu University, Japan
3> Hangzhou Xinzhou Network Technology Co., Ltd., China
{zhangxiyue, sunm} @pku.edu.cn, xiaoning.du@monash.edu, {xfxie, yangliu} @ntu.edu.sg, ma.lei@acm.org

Abstract

Recurrent Neural Networks (RNNs) have demonstrated their
effectiveness in learning and processing sequential data (e.g.,
speech and natural language). However, due to the black-box
nature of neural networks, understanding the decision logic
of RNNS is quite challenging. Some recent progress has been
made to approximate the behavior of an RNN by weighted
automata. They provide better interpretability, but still suffer
from poor scalability. In this paper, we propose a novel ap-
proach to extracting weighted automata with the guidance of
a target RNN’s decision and context information. In partic-
ular, we identify the patterns of RNN’s step-wise predictive
decisions to instruct the formation of automata states. Fur-
ther, we propose a state composition method to enhance the
context-awareness of the extracted model. Our in-depth eval-
uations on typical RNN tasks, including language model and
classification, demonstrate the effectiveness and advantage of
our method over the state-of-the-arts. The evaluation results
show that our method can achieve accurate approximation of
an RNN even on large-scale tasks.

1 Introduction

Over the past decade, Recurrent Neural Networks (RNNs)
have achieved great success in learning tasks of sequential
data, such as natural language processing (J6zefowicz et al.
2016; Mikolov et al. 2011) and speech recognition (Graves,
Mohamed, and Hinton 2013; Zweig et al. 2017). To reduce
impacts of vanishing gradient, the state-of-the-art RNNs
(e.g., LSTM, GRU) often adopt complex internal designs
(e.g., cell memory and gate control). However, the recursive
computation and complex internal control design make the
interpretation and understanding of RNNs rather challeng-
ing (Karpathy, Johnson, and Li 2015).

The stateful nature of RNNs inspired researchers to ex-
tract state transition rules through building an automaton to
simulate the RNN behaviors. The explicit states and tran-
sition rules provide a comprehensible interpretation of an
RNN’s decision logic. Automata extraction also paves a
practical way for RNN analysis by leveraging the exten-
sive techniques for automata (e.g., logical formalism (Gastin
and Monmege 2018; Balle, Gourdeau, and Panangaden

*Corresponding authors.
Copyright (©) 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11699

2017) and model checking (Baier and Katoen 2008)). Up
to present, existing attempts of stateful model extraction
largely fall into two directions: pedagogical approaches and
compositional approaches (Jacobsson 2005). Pedagogical
approaches usually leverage exact learning algorithms, such
as L* algorithm (Angluin 1987), to extract an exact behav-
ior surrogate of an RNN. However, exact learning is mostly
unable to scale up to practical RNN models with large al-
phabet size or states. On the other hand, the compositional
approach first collects concrete state transitions of an RNN
(by profiling with the training data). Then through applying
state and transition abstraction, an automaton is built to ap-
proximate the behaviors of an RNN. This approach provides
better scalability, and has been applied to adversarial attack
and detection on industrial level tasks (Du et al. 2019; Dong
et al. 2020). However, the compositional approach is often
difficult to achieve a satisfactory approximation accuracy. In
addition, the automaton extraction process is also unstable,
highly depending on the abstraction configuration without
systematic guidance.

To summarize, the major challenges along the automata
extraction line are: (1) Scalibility: to handle RNN tasks
with high complexity. Due to the exact-learning nature, tech-
niques based on L* algorithm are usually limited to dealing
with small synthetic tasks. However, RNNs used for prac-
tical applications are often of high complexity, which posts
challenges to the scalability of the extraction methods. (2)
Precision: to generate automaton with accurate behavior
approximation for the target RNN. In the case of determin-
istic automata extraction through compositional approach,
the extracted stateful model is usually with limited approx-
imation accuracy. Besides, the lack of guidance on hyper-
parameter selection also impairs the exploration towards an
optimal surrogate automaton. If the extracted automaton is
inaccurate, i.e., largely inconsistent with the RNN, behavior
analysis w.r.t. the surrogate model can be unreliable to be
applied to the original RNNss.

To this end, we propose a decision-guided approach
for Weighted Finite Automaton (WFA) extraction from an
RNN. Generally, our approach takes the state abstraction
method aligned with the compositional approach to deal
with the scalability challenge, and leverages the weighted
automaton to characterize the transition rules quantitatively
for more precise extraction. To counteract the lack of config-

uration guidance, we identify a finite set of decision patterns
of the target model based on their probabilistic prediction
tendency and utilize its size as a configuration estimation.
Further, we integrate state composition to enhance the state-
level context, which alleviates the impreciseness resulted
from the contextual loss during the abstraction procedure.
We also propose a synonym transition approach to comple-
menting the missing dynamics of new data, which realizes
a significant improvement on precision towards natural lan-
guage tasks. Overall, the proposed algorithm allows our ap-
proach to improve the extraction precision and scale up to
complex application scenarios.

The main contributions are: (1) an algorithm for WFA
extraction from RNN classifiers with better scalability and
precision; (2) three important techniques including the con-
figuration guidance for state abstraction by identifying deci-
sion patterns, the state composition to counteract contextual
loss, and the synonym transition to circumvent missing dy-
namics of new data; (3) an implementation of the algorithm
and evaluations over 15 benchmarks, including comparisons
with the state-of-the-art (Weiss, Goldberg, and Yahav 2019).

2 Weighted Automaton Extraction Scheme

We first present the notations and concepts used in the pa-
per, and then go through an algorithm outline for WFA ex-
traction from an RNN in Section 2.1. Solutions addressing
the challenges in the extraction procedure are presented in
Sections 2.2 to 2.4.

Notations Given a domain D, w € D* denotes a sequence
of elements from D, and is of length |w|; € denotes the empty
sequence; x is used to denote an element in D. w[: 4| indi-
cates the prefix of w with length ¢, w; is the i-th element
of w and w - = represents the sequence with x concatenated
to w. N and R denote the sets of natural numbers and real
numbers, respectively.

Definition 1 (RNN) A Recurrent Neural Network is a tuple
R = (X,8,Y,50,9,f), where X is the input space, S is
the internal state space,) is the probabilistic output space,
so € S is the initial state, g : S X X — S is the transition
function, and f : S — Y is the prediction function.

Specifically, for an m-classification RNN with internal
state of dimension n, the internal state space is a subset of
R™ and the output space is a subset of R"*, where m,n € N.
The predictive outputs in the RNN classifier can either be
logits or probabilities. In cases when the outputs are logits,
we can apply the softmax function to the outputs to obtain
the probabilistic outputs in the classification task.

RNN Configuration Here we look into the RNN config-
uration from two perspectives, and denote the configura-
tion in the internal state space as d4(w) and the configura-
tion in the probabilistic output space as d,(w). In particular,
the configuration d5(w) is defined as g* (s, w), where g* :
S x X* — S is the recursive application of g to a sequence.
Forw € X*and z € X, g*(so,w -) = g(g*(s0,w), z).
The configuration ¢, (w) is defined as f(g*(so,w)). Specif-
ically, 05(e) = so and 0,,(¢) = f(s0).

11700

To characterize the RNN behavior trace when dealing
with an input sequence, we record its configuration sequen-
tially after processing each input token, which forms a se-
quence of configurations. Given w of length n, the two types
of configurations after taking the first ¢ tokens are d4(w[: i])
and d,(wl: 4]), with 0 < ¢ < n. We refer [d5(w[: ©])]7, as
the internal state trace of input w, and [0, (w[: 7])]7, as the
decision trace of input w.

The internal trace usually has a higher complexity and
captures finer-grained behaviors of RNN than the decision
trace. However, in the real world, the internal states are not
always available either because the RNN is part of propri-
etary products or the possessor would like to keep it close-
sourced as a black box.

Definition 2 (WFA) A Weighted Finite Automaton over a
finite alphabet ¥ is a tuple A = (Q,%, (Es)oes, I, T),
where @ is a finite set of states; for any token o € %, E,
is a transition matrix with size |Q| X |Q|; I is the initial vec-
tor (a row vector), T is the final vector (a column vector),
both of which are vectors of dimension |Q)|.

Given an input sequence w, its weight over WFA is com-
puted through I - (TII"_, E,,,) - T. Starting from the initial
vector, it multiplies the transition matrix corresponding to
each input stimuli, and multiplies the final vector.

2.1 Weighted Automaton Extraction Algorithm

The steps to extract a WFA from a target RNN is elabo-
rated in Alg. 1. It takes as inputs the target RNN R, a set of
input sequences X, and yields the extracted WFA A. Intu-
itively, the WFA is established as a compact representation
of RNN’s behavior over the set of concrete inputs, and the
quantitative weights enable it to be predictive on new inputs.
As the first step (Lines 1-9), we execute R on the set of in-
puts X, and record the corresponding internal state traces
as t (Line 5). For each input sequence w, we collect its step-
wise transitions when seeing a new upcoming input element
in the form of triples (Line 7), composed of the source state,
triggering input element and the destination state. We also
collect the configurations and the input tokens, preparing for
the state abstraction and alphabet construction (Lines 8-9).
The next step is to develop an abstraction function for
the collected RNN configurations (Line 10). Existing tech-
niques usually leverage clustering algorithms to obtain the
discrete partitions. However, they all face the problem of
choosing an appropriate cluster number, the mis-selection of
which can cause quite unstable and rough approximation to
be useful. Our proposed heuristic method for automatic clus-
ter number estimation will be introduced later in Section 2.2.
After obtaining the state abstraction function A, we construct
the abstract states of the weighted automaton and record
the corresponding transition triples among the abstract states
(Lines 14-17). For each token in the alphabet 3, we follow
the transition diagram construction approach in (Wang et al.
2018b) to collect and count the number of transitions that
occurred between a state and its subsequent states. However,
instead of only keeping the most frequent transitions, we in-
troduce nondeterminism and calculate the transition matrix

Algorithm 1: Extraction of WFA from an RNN

input : R = (X, S,), s0, g, f): the target RNN,
X input sequences
output: A: the extracted WFA

1 A+]; > the array of transition triples
2 D <+ [so]; > the array of states
30 > the alphabet
4 forw e X do

s |t o(wl D)y s

6 fori:1+— |w|do

7 A.add((ti,hwi,hti)) 5

8 D.add(t;) ;

9 E.add(wifl);

A < fitStateAbstractor(D) ; > state abst. function

n A > the array of abst. transition triples
2 Q<+ 0; > the set of abst. states
B E—0; > the set of transition matrices

for ({s,a, s') € A do
| A.add((A(s), 0, M(s))):
for s € D do
| Q.add(X\(s));
for o in ¥ do
forge Q,¢ € Qdo
if A.count((q,0,-)) > 0 then

‘ Eolq, ¢ + Bcowntla.cd)),

A A.count((g,0,.)) ’

else
| Eslq,q] + G

L E.add(E5);
qo < A(s0), I < mqy;
forqg € Q do
Tlq] + 0, labels < [J;
for s € A7 (q) do

| labels.add(argmax(f(s)));
for [€ set(labels) do

L T[q,l] - labels.count(l) ,

|labels| ’

rgturnA =(Q,%,E,1,T)

22
23

24
25
26
27
28
29
30
31

by applying normalization to the well-counted transition fre-
quency among the states (Lines 18-24). The initial vector
is the initial distribution over the abstract states, and here
we set it to the one-point distribution (Line 25). Finally, we
calculate the labeling vector uniquely for each state in @
(Lines 26-31). For a state g, we count the output labels cor-
responding to the instance RNN configurations mapped into
q, and then transform the counts into a normalized label dis-
tribution. Note that A\~ is the reverse function of \, which
returns the set of instance configurations mapped to a given
abstract state.

Example We present the WFA extracted for a news clas-
sification task with our approach and show how it sum-
marizes and interprets the knowledge learned by RNN.
There are 7 labels in total, including business, US, health
and four others. We assume an input sequence w
[“recipes”, “for”, “health”, “roasted”, “leeks”], the label of

11701

which is health. Here we focus on the key token “health”,
and see whether RNN also deems it as an important im-
plication for the health label. The extracted WFA con-
tains 42 states. To ease the representation, we only keep
the three states over which the probability distribution
is mostly affected after taking ‘“health”. We assume the
probability distribution over states before taking ‘“health”
is I - E’recipes : Efo7'=[0'89(q0), 003(Q1), OO(QQ)] The
transition matrix of token “health” is shown in Equa-
tion (1). The updated probability distribution after consum-
ing “health” is [0.0(qp), 0.54(q1), 0.44(g2)]. To better un-
derstand the influence of “health” over the prediction, we
present the rows in the final matrix (formed by the final
vector of each label) associated with the three states. For
state qg, g1, and g2, the top predictions are with probability
[0.47(US), 0.30(business)], [0.40(US), 0.29(business),
0.25(health)] and [0.94(health),0.03(business)]. We can
see that go is highly likely to yield label health. Intuitively,
the transition matrix represents the specific semantics of
“health” under this classification. gy is an absorbing state
in the transition diagram of “health”, and it is also of high
probability for other states to transit to ¢o. Interpreted in
this way, we know that the semantics of “health” learned
by RNN complies with human perception.

0.0 0.56 0.42
Eheatth = 0.0 0.17 0.83 (1)
0.0 0.0 1.0

2.2 Decision-Guided State Abstraction

Challenge-I. As mentioned in Section 2.1, one of the big
challenges for obtaining a superior state abstractor is the
choice of cluster numbers. This is a common problem faced
by clustering algorithms, e.g., k-means.

To bridge the gap, we propose a method to estimate the
cluster number by identifying the decision patterns. The
probabilistic outputs stand out as a good choice for observ-
ing the patterns for two reasons. First, compared with the
internal state layer, the probabilistic output layer is a sum-
mation from high-dimensional space to a low-dimensional
space, which retains the important information and offers
more computation feasibility in the meanwhile. Second, the
probabilistic outputs carry clear semantics, which represent
the prediction confidence on the inputs, thus can naturally
inspire the heuristics of recognizing decision patterns. A
larger probability predicted over a label indicates that the
deep learning model is more confident about the decision.

For better illustration, we take an image classification task
as an example. Fig. 1 displays three snapshots when an RNN
consumes the pixels of an image row by row, and we observe
the top-2 predicted classes ranked by probabilities. For the
first snapshot, the classifier hesitates between “7” and “1”
after processing the first third rows, and the confidence for
both is quite similar. For the second snapshot, it tends to pre-
dict it as “0” after processing the first half information, but
the top confidence (0.63) is still not that high. However, for
the last one, after the model has a full view of the image,
it recognizes the number “8” with high confidence (0.98).
Interestingly, the model decisions observed from the proba-
bilistic outputs highly comply with the human perception, as

we also see both “0” and “9” from the middle image. With
such inspiration, we try to capture the decision patterns from
the perspective of prediction confidence.

Technically, we import a configuration parameter ¢, and
allow to split the probability range [0, 1] to ¢ equal intervals
and each probability value falls into one of the intervals. The
resulted set of intervals is {[0, 1), [+, 2),...,[£*, 1]} and
we denote it as I;. We also define a function n; : y — I;
which maps a probability value to one of the ¢ intervals.

Now we introduce the concept of Decision Confidence
Pattern (DCP), and define it in Definition 3. Note that an-
other configurable parameter k£ is introduced to specify the
number of primary prediction classes to observe when ex-
tracting the patterns. The configured DCP is called k£ deci-
sion confidence pattern, and is denoted as k-DCP. In general,
the £-DCP of a probability output captures the top-ranked
classes as well as their prediction confidence levels, i.e., the
probability intervals. Intuitively, if the outputs of two input
samples derive the same k-DCP, the inputs may share simi-
lar features. Further, we define dep®t : Y+ ([1,m] x I))*
as the function, which maps a probabilistic output to its k-
DCP.

Definition 3 (k-DCP) In an m-classification task, given a
probability distribution (yi,...,Yym) with X y; = 1,
we define its k Decision Confidence Pattern (k-DCP) as
((e1, Mt (Yer))s -+ - (ClesMe(Yey,), where (cq, ..., c) are the
top-k ranked classes, and n is the interval mapping function
with t as the splitting number.

Finally, we demonstrate how to estimate the parameter
(i.e., the number of the clusters) for the clustering. Given
an RNN R and an input sequence w, instead of focusing
purely on the final output prediction, we take its decision
trace, [0, (w[: ©])]7_, to better understand the gradual vari-
ation of decision patterns as with the consuming of input
stimuli. Similarly, for a set of input sequences, we aggre-
gate all the instance probabilistic outputs appearing in the
decision traces to form a set of outputs I',, formulated as
Iy = {0,(w[: {])|w € X,i € [0,|w|]} where X is the input
sequence set. The set of decision patterns can be developed
as P = {dep™*(y)|y € T',}. Naturally, | P| is the number of
the decision confidence patterns we estimate for clustering
algorithms (as in Line 10 in Alg. 1). The parameters k£ and
t could be configured to adjust the granularity of the pat-
terns. In such a way, we obtain a “preview” on the variation
diversity of the RNN states, which serves as an informative
heuristic guidance for the abstraction degree of clustering.

Note that the estimated cluster numbers can be used as the
guidance to construct the abstract states of automata either
under the internal state configuration or the probabilistic out-
put configuration. We experimentally evaluated the perfor-
mance variations when different configurations are utilized
(cf. Section 3 RQ4).

2.3 Context-Aware State Composition

Challenge-II. The original RNN configurations (in the
continuous domain) contain the exact contextual informa-
tion for processing the next input token. However, with the
abstraction, we lose a certain degree of the context preci-

11702

8:0.98
9:0.01

7:0.52
1: 0.41

0: 0.63
9:0.35

Figure 1: Examples of decision confidence.

o d Q2 J;
2-state
(90,90 (40,91 (41,92 (42,93)

Figure 2: An example of 2-state composition.

sion as a trade-off for the generalization capability of the
WFA. Precise contextual information is especially important
for the accuracy of inference. Hence, we propose a further
step to enhance the context characterization of WFA.
Inspired by n-grams, we propose a n-state composition
approach, which synthesizes a state with its previous n — 1
states and yields a new composite state, so as to enhance

the contextual information. Given an input sequence w,

and its internal state trace [7;] ‘;ﬂo the i-th n-state is 7; =

(Tien+1,- -+, 7i). Whenever there are less than n — 1 states
prior to a state, we pad with the first element of the sequence.
Here, we define p,, : D* — (D™)* as the function to de-
rive the n-state sequences from a sequence consisting of el-
ements in domain D. Then, the state abstraction can be ap-
plied to each component in the composite state, and derives
the abstract n-states. The next steps to establish the WFA
follow that in Alg. 1. Fig. 2 shows an example of state com-
position for 2-state. Via integrating the previous one state
to each state in the top sequence, we obtain the composite
2-states in the bottom sequence.

2.4 Synonym Transition for New Data Tolerance

Challenge-III. When constructing the transition matrix of
weighted automata (Lines 18-24 in Alg. 1), the matrix loses
its integrity once there are no observed transitions from a
source state via an input token. This is largely due to the fact
that the construction is based on a finite set of data samples.
However, in real practice, such as natural language process-
ing (NLP) tasks, it would be very common that previously
unseen tokens appear in new input sequences. Thus, it is nec-
essary to address this problem for a better tolerance of new
data, and further circumvent missing dynamics in the infer-
ence phase.

Faced with the same problem, (Weiss, Goldberg, and Ya-
hav 2019) suggested to use the uniform distribution over the
next states for fairness, provided no information of transi-
tion dynamics was learned. However, this mitigation is only
evaluated on small-scale formal language datasets and not
on larger natural languages. Actually, filling in with uniform

Object | WL* | WFA | WFA _context
Dataset |X| loss | CR NDCG Time(s) | CR NDCG Time(s) | CR NDCG Time(s)
SPiCe 0 4 1.16 | 0.87 0.97 954 0.88 0.96 1.6 0.93 0.97 1.9
SPiCe 1 20 2.77 | 0.86 0.97 142.5 0.95 0.70 51.5 0.96 0.70 140.4
SPiCe 2 10 2.13 | 0.90 0.96 4774 0.95 0.75 84.9 0.96 0.75 133.3
SPiCe 3 10 2.14 | 0.57 0.88 373.9 0.82 0.85 96.5 0.86 0.85 258.9
SPiCe 4 33 1.74 | 0.55 0.63 324.1 0.69 0.82 1.2 0.77 0.77 99.2
SPiCe 6 60 1.68 | 041 0.57 1073.1 0.36 0.60 8.6 0.56 0.71 12.5
SPiCe 7 20 1.79 | 0.28 0.52 388.6 0.44 0.69 116.1 0.58 0.78 143.5
SPiCe 9 11 1.15 | 0.70 0.85 307.4 0.82 0.83 5.6 0.92 0.86 14.0
SPiCe 10 20 2.09 | 0.35 0.54 602.7 0.69 0.78 139.0 0.78 0.82 2481.4
SPiCe 14 27 0.86 | 0.37 0.47 488.0 0.88 0.90 38.3 0.94 0.91 130.2
Average 22 1.75 ‘ 0.59 0.73 427.3 | 0.75 0.79 54.3 ‘ 0.83 0.81 341.5
UHL 1 2 0.70 | 1.00 1.00 18.0 1.00 0.99 2.3 1.00 0.99 2.6
UHL 2 5 1.32 | 1.00 1.00 99.5 1.00 0.96 29.6 1.00 0.97 47.1
UHL 3 2 0.84 | 0.76 0.99 72.9 0.81 0.96 20.8 0.82 0.96 26.1
Average 3 0.95 ‘ 0.92 1.00 63.5 | 0.94 0.97 17.6 ‘ 0.94 0.97 25.3

Table 1: Evaluation results on SPiCe and UHL datasets.

transitions would ignore the intrinsic semantics of newly-
seen tokens and lead to certain precision loss, which hin-
ders the application to larger-scale real-world tasks where
the amount of unknown tokens could be large.

For most RNN tasks, the (semantical) distance of in-
put elements is measurable. Taking NLP tasks for exam-
ple, according to our intuitive understanding on natural lan-
guages, the transition dynamics of two synonyms under the
same context are expected to be similar as well. For in-
stance, when processing two reviews, “this film is good” and
“this film is great”, inference on the final words “good” and
“great” should trigger similar transition dynamics. With this
insight, we propose a synonym transition method as the so-
lution to fill in the blanks of transition dynamics for unseen
tokens. When such tokens appear during the inference, we
select its “synonym”, characterized by the nearest distance
on the embedding vectors, and apply the synonym’s tran-
sition dynamics to the calculation. Specifically, to calculate
the transition dynamics of an unseen token at a certain state
, we first collect the tokens seen at that state and then rank
them according to the distance with the newly-seen token.
The corresponding row vector in the transition matrix of this
synonym is then assigned to substitute the transition dynam-
ics of the unseen token. Note that if the semantical distance
between tokens is not measurable (e.g., symbols in formal
languages), we take the uniform distribution instead.

3 Experiments

This section is devoted to evaluating the effectiveness, scala-
bility and usefulness of our approach. Four Research Ques-
tions (RQs) are to be answered: @ What is the approxima-
tion accuracy of the WFAs extracted through our approach?
® How effective is the context-aware state abstraction on
improving the approximation accuracy? ® How effective is
the synonym transition method, especially when applied to
large-scale tasks? @ What is the performance of the WFA
extracted from black-box RNNs?

11703

Datasets and Baselines We selected WL* (Weiss, Gold-
berg, and Yahav 2019), the state-of-the-art technique for
stateful model extraction from RNNSs, as the baseline. For
comparisons, we perform comprehensive evaluation with
a total of 13 benchmarks, including 10 datasets from the
SPiCe competition (Balle et al. 2017) and 3 artificial un-
bounded history languages (UHL) (2019). Besides, another
two real-world datasets from NLP domain are further se-
lected for evaluation of the scalability and usefulness, in-
cluding the CogComp QC Dataset (abbrev. QC) (Li and
Roth 2002) and the Jigsaw Toxic Comment Dataset (ab-
brev. Toxic) (Jigsaw 2018). We also tried WL* on these two
datasets, but its scalability issue forces us unable to do so.

Experimental Settings All SPiCe and UHL datasets are
split into training/validation/test sets with the percentage of
90%/5%/5% to train and test the RNN models. The RNN
architectures follow the same configurations as in (Weiss,
Goldberg, and Yahav 2019). For each dataset, a 2-layer
LSTM network with 50 hidden dimensions is trained, with
an exception for the SPiCe 4/6/9 datasets to be with 100 hid-
den dimensions and SPiCe 10/14 datasets with 20/30 hidden
dimensions, respectively. For the QC dataset, we use 20K
samples for training and 8K samples for testing, and train
a single-layer LSTM with 32 hidden units, which achieves
83.0% test accuracy. For the Toxic dataset, we use 25k
non-toxic samples and 25k toxic samples for model train-
ing (80%) and testing (20%). We train a single-layer LSTM
model with 128 hidden units, which achieves 90.4% test ac-
curacy. For all datasets, we established the automata based
on the training datasets and evaluated its performance based
on the test datasets.

Evaluation Metrics For our goal to extract an approxi-
mated model that is consistent with the target RNN’s deci-
sion logic, two evaluation metrics, consistency rate (CR) and
normalized discounted cumulative gain (NDCG), are used
to evaluate the approximation precision of the extracted au-

Dataset | Acc. | bl \ Config \ Synonym \ Uniform
| (%) | \ | CR NDCG Time(s) | CR NDCG Time(s)
Internal | 0.77 095 2562 | 050 0.84 8.3
Qc ‘ 830 ‘ 17317 ‘ Prob. ‘ 075 094 256.0 ‘ 056 0.86 8.3
. Internal | 0.86 097 5100 | 077 094 167
Toxie ‘ 904 ‘ 24806 ‘ Prob. ‘ 083 096 560.8 ‘ 077 094 162

Table 2: Evaluation results of WFA extracted for QC and Toxic datasets based on internal/probabilistic configuration.

tomata.

CR measures the ratio of consistency between the ex-
tracted automata and RNN prediction outputs over a dataset.
For an input dataset X = {x;},, the prediction results
given by the automaton and the target RNN are Y, =
{Ya, 1Y, and Y, = {y,, }I¥,, respectively. CR is calculated
as follows:

ZieN H(Z’/ai = ym)

N

where 1 is an indicator function, which maps to 1 when
Ya; = Yr, and O otherwise.

NDCG measures the probabilistic prediction difference
among the top k rankings. Given a m-classification task and
an input z, assuming the automaton and RNN’s top k pre-
diction labels are C, = {a;}*_; and C, = {r;}}_,, the
probabilistic outputs of the RNN is y, = (y;)/2; then the
NDCG is calculated as follows:

CR(Y,,Y,) =

Ya,;
log, (i+1)
Yry
log, (i+1)

Zie[l,k]
Zie[l,k]

The NDCG score over a dataset X is calculated as the aver-
age score of all samples in X.

NDCGE(C,,Cy) =

RQ1: Approximation Precision We conduct comparison
experiments with WL* on the SPiCe and UHL datasets,
in terms of CR, NDCG and extraction time cost (in sec-
onds), and summarize the results in Table 1. The column
“Object” shows the datasets, alphabet size and the test loss.
The parameter k is set to 5 and 2, respectively, for calculat-
ing NDCG scores. The WL* approach is experimented with
the default setting of variation tolerance, suffix and prefix
thresholds in (Weiss, Goldberg, and Yahav 2019). For our
approach, when setting the parameter k£ for DCP, we exam-
ine the cumulative prediction confidence of the top-k ranks,
and select the k£ which makes its average on the training
dataset reach 0.7. In this way, we focus the decision pat-
terns on predictions dominating the model’s confidence and
achieve a good trade-off between precision and computa-
tion cost. The equipartion level ¢ is set to 1 for the SPiCe
datasets, and to 15/10/10 for the UHL datasets. Basically, a
finer-grained partition is recommended for tasks with lower-
dimension probabilistic decision space.

Results on the three measurements are displayed in the
“WL*” and “WFA” columns in Table 1 and our approach
outperforms WL* on most of the datasets, especially on the
complex ones. For SPiCe datasets, our approach improves

11704

the consistency rate and NDCG score with 16% and 6%,
compared with that of WL*. In the meanwhile, the average
extraction time cost of our approach is 54.3s, which leads to
a reduction by 87.3% than WL*. Benefiting from the exact-
learning feature, WL* demonstrates advantage w.r.t. NDCG
score on the SPiCe 1 and SPiCe 2 datasets, which are rela-
tively smaller synthetic languages, while our approach still
outperforms with better CR scores. When the complexity
of the tasks grows, either with more sophisticated predic-
tion dynamics or with larger alphabet, our approach shows
better approximation performance. For UHL datasets, our
approach achieves better or comparable approximation ac-
curacy on both metrics. As for the time cost, our approach
takes several times less cost in all tasks. Moreover, the num-
ber of states in the extracted WFAs for the SPiCe and UHL
datasets are 126 on average. Compared with WL*, the re-
sulted automata realize a size reduction by 78.6%.

RQ2: Precision Enhancement by State Composition In
this experiment, we investigated whether the explicit state
composition for context enhancement could benefit the ap-
proximation performance. We performed experiments on
SPiCe and UHL datasets under 2-state composition and re-
ported the CR, NDCG metrics and the time cost under the
column “WFA _context” in Table 1.

For SPiCe datasets, the application of state composition
improves the consistency rate and NDCG score even further
to 0.83/0.81, which is an obvious advantage compared to the
0.75/0.79 of the procedure without contextual enhancement.
The average extraction time cost increases to 341.5s, but is
still 20.1% lower than that of WL*. For UHL datasets, eval-
uations without the contextual enhancement already achieve
an accurate approximation. After equipped with the state
composition, our approach improves the consistency rate for
UHL 3 and NDCG score for UHL 2 slightly, while achieving
the same performance on other indicators.

RQ3: Synonym Transition Effectiveness For the WFA
extraction of the QC task, k is set to 2 for the DCP recogni-
tion, following the same heuristics in RQ1, and the equipar-
tition level ¢ is set to 1. For the Toxic comment classification,
the WFAs are extracted with the partition level ¢ set to 50 and
k of DCP set as 1 (with single-dimension logits returned by
target models).

Table 2 shows the evaluation results on QC and Toxic
classification tasks. The column “Acc.” shows the test ac-
curacy of the trained RNN models and the column “|X|”
shows the alphabet size of the dataset. Column CR, NDCG

Object | WL* | WEFA (p) | WFA _context (p)

Dataset |X| loss | CR NDCG Time(s) | CR NDCG Time(s) | CR NDCG Time(s)
SPiCe 0 4 1.16 | 0.87 0.97 954 0.85 0.95 1.6 0.94 0.97 5.2
SPiCe 1 20 2.77 | 0.86 0.97 142.5 0.61 0.67 47.7 0.76 0.68 482.7
SPiCe 2 10 2.13 | 0.90 0.96 4774 0.57 0.71 50.1 0.88 0.74 520.6
SPiCe 3 10 2.14 | 0.57 0.88 373.9 0.76 0.81 92.8 0.81 0.82 387.0
SPiCe 4 33 1.74 | 0.55 0.63 324.1 0.70 0.80 1.2 0.81 0.73 184.6
SPiCe 6 60 1.68 | 0.41 0.57 1073.1 0.38 0.59 4.4 0.54 0.69 11.3
SPiCe 7 20 1.79 | 0.28 0.52 388.6 0.30 0.58 111.5 0.42 0.66 184.8
SPiCe 9 11 1.15 | 0.70 0.85 307.4 0.68 0.80 5.2 0.94 0.89 12.7
SPiCe 10 20 2.09 | 0.35 0.54 602.7 0.66 0.75 128.7 0.79 0.82 32717.3
SPiCe 14 27 0.86 | 0.37 0.47 488.0 0.71 0.80 40.3 0.91 0.88 461.0
Average 22 1.75 ‘ 0.59 0.73 427.3 | 0.62 0.75 48.3 ‘ 0.78 0.79 552.7
UHL 1 2 0.70 | 1.00 1.00 18.0 1.00 1.00 2.3 1.00 0.99 2.6
UHL 2 5 1.32 | 1.00 1.00 99.5 1.00 0.96 28.9 1.00 0.98 359
UHL 3 2 0.84 | 0.76 0.99 72.9 0.84 0.99 20.4 0.99 0.98 38.9
Average 3 0.95 ‘ 0.92 1.00 63.5 | 0.95 0.98 17.2 ‘ 1.00 0.98 25.8

Table 3: Evaluation results on SPiCe and UHL datasets based on probabilistic configuration.

and 7ime show the approximation precision in terms of con-
sistency rate and NDCG score, and time cost of WFA extrac-
tion. We set the parameter of NDCG score as the label size
of each dataset. The successful application of our approach
to two real-world NLP classification tasks naturally demon-
strates its scalability. Firstly, we look at the results under the
“Synonym” column with “Internal” configuration. For QC
dataset, the constructed WFA based on internal configura-
tion of the target RNN achieves 0.77 consistency rate and
0.95 NDCG score with extraction time as 256.2s. For Toxic
dataset, the WFA extracted based on internal configuration
makes a consistency rate of 0.86 and NDCG score of 0.97
while consuming time as 510.0s.

Now we look into the evaluations on how the synonym
transition method counteracts the challenge of unknown
transition dynamics when performing inference. In partic-
ular, we compare it with the uniform transition. The col-
umn “Uniform” in Table 2 displays the comparison results.
The results confirm the advantage of synonym transition
compared with the uniform method: the synonym transition
method leads to better extraction precision across different
RNN configurations and datasets. For instance, weighted
automata extracted from the internal configurations under
synonym transition demonstrate an improvement on con-
sistency rate by 54%/12% than that of uniform transition
for QC/Toxic tasks. As a trade-off, the synonym transition
method would lead to longer extraction time due to the dis-
tance calculation and order sorting among the tokens.

RQ4: WFA Extraction from Black-box RNNs We have
shown that WFAs constructed based on target RNN'’s inter-
nal state space through our approach are able to approx-
imate the target’s behavior accurately. However, there are
cases when the internal state space of a target model can-
not be accessed. In such cases, we are only allowed to query
the model and obtain the probabilistic outputs. In this ex-
periment, we evaluate the effectiveness of our approach on

11705

Iy
o

W= |nternal
W= Probabilistic

o o
o o

©
i

Consistency Rate

©
[N)

o
<)

UHL1
UHL2
UHL3

QC
Toxic

SPiCe0
SPiCel
SPiCe2
SPiCe3
SPiCe4
SPiCe9
SPiCel0
SPiCel4

Figure 3: Consistency rate comparison on all datasets for
WFAs extracted based on internal/probabilistic configura-
tion.

modeling black-box RNNs. We perform experiments on the
SPiCe, UHL, along with the QC and Toxic datasets, and
extract the WFAs solely based on the probabilistic output
space of the target RNNs, following the same configurations
in evaluations on the internal state space.

The experimental results of SPiCe and UHL datasets are
shown in columns “WFA(p)” and “WFA _context(p)” of Ta-
ble 3 and the results of QC and Toxic datasets can be found
in “Prob.” rows of Table 2. Compared with WL*, the ex-
tracted WFAs under black-box setting still outperform WL*
in almost all of the SPiCe tasks and achieve precise approx-
imation on UHL datasets. Compared with the automata ex-
tracted from internal state space with contextual enhance-
ment (column “WFA _context” of Table 1), the approxima-
tion precision of automata extracted under black-box setting
(column “WFA _context(p)” of Table 3) for SPiCe datasets
decreases with 5% and 2% in terms of consistency rate

and NDCG score on average. For UHL datasets, the WFAs
constructed for black-box RNNs achieve accurate approxi-
mation and even slightly better than the internal-space ex-
tracted ones. For the large-scale classification tasks, the per-
formance of the constructed WFAs from black-box RNNs
is discounted with 2%/3% regarding the consistency rate for
QC/Toxic, and 1% regarding NDCG for both QC and Toxic
tasks.

The bar chart in Fig. 3 shows the overall comparisons
of consistency rate between the automata constructed from
internal state space and probabilistic output space on all
the datasets. Basically, automata extraction under these two
types of configurations based on our approach demonstrates
competitive performance. We further conduct a statistical
significance test for the difference in between with Mann-
Whitney U test (Mann and Whitney 1947), and it is con-
firmed as non-significant with p > 0.05. We can con-
clude that WFAs extracted from black-box RNNs with our
approach could still make a good approximation, which
demonstrates the potential of our approach in assisting
black-box applications (e.g., adversarial attacks).

4 Related Work

Prior works have explored to extract finite state machines
from RNNs. The earlier series of researches (Omlin and
Giles 1996; Omlin, Giles, and Miller 1992; Omlin and Giles
1996; Schellhammer et al. 1998) focused on extracting a
succinct and interpretable surrogate from RNN-acceptors
(i.e., Boolean-output RNNSs). Jacobsson presented a review
of research efforts in rule extraction (in the form of finite
state machines) from RNNs and also highlighted that ex-
isting research mainly fall into two categories: pedagogical
approaches and compositional approaches.

Along the pedagogical thread, a recent work (Weiss,
Goldberg, and Yahav 2018) leveraged the exact learning al-
gorithm L* to extract deterministic finite automaton (DFA)
from RNN-acceptors. Later, they designed a weighted ex-
tension of L* algorithm to depict the behaviors of lan-
guage model RNNs, with probabilistic deterministic finite
automata. There are also works focusing on different types
of RNNs other than classifiers, or limited to model a spe-
cific type of languages. Okudono et al. proposed a weighted
extension of the L*-based procedure to extract weighted fi-
nite automata for real-value-output RNNs. Ayache, Eyraud,
and Goudian also focused on such RNNs but supported
generalization to a black-box setting. Their approaches are
not applicable to RNN classifiers. Michalenko et al. inves-
tigated the relationship between RNN internal representa-
tions and finite automata for formal regular language recog-
nition tasks. In contrast, our method supports automata ex-
traction from black-box RNN classifiers, and can deal with
both grammatical languages and natural languages.

Along the compositional thread, (Wang et al. 2018a,b)
made attempts to examine key factors (e.g., the grammar
complexity, the clustering parameters) that may influence
the reliability of extraction process of DFAs. Our approach
encodes the RNN representation in a similar way, but lever-
ages weighted automata to capture the quantitative transition
information for better preciseness.

11706

5 Conclusion

This paper proposed a decision-guided compositional ap-
proach to extract WFA from RNNs. We leveraged the vari-
ation diversity of decision confidence patterns to provide
guidance on the hyper-parameter selection for the abstrac-
tion procedure. With the enhancement of contextual infor-
mation, a finer-grained state abstraction was obtained with
improved approximation precision. The design of the syn-
onym transition allowed better tolerance on new inputs. The
effectiveness and scalibility of our approach were evaluated
on two large-scale tasks in practice.

Acknowledgments

We thank the anonymous reviewers for their comprehen-
sive feedback. This research was supported in part by the
Guangdong Science and Technology Department (Grant
No0.2018B010107004); the National Natural Science Foun-
dation of China under grant No.61772038, 61532019. It was
also supported by the National Research Foundation, Prime
Ministers Office, Singapore under its National Cybersecu-
rity R&D Program (Award No. NRF2018NCR-NCRO005-
0001), the Singapore National Research Foundation un-
der NCR Award Number NRF2018NCR-NSOE003-0001,
NREF Investigatorship NRFI06-2020-0022; JSPS KAKENHI
Grant No.20H04168, 19K24348, 19H04086, and JST-Mirai
Program Grant No.JPMIMI18BB and JPMIMI20BS, Japan.

References

Angluin, D. 1987. Learning Regular Sets from Queries and
Counterexamples. Inf. Comput. 75(2): 87-106. ISSN 0890-
5401.

Ayache, S.; Eyraud, R.; and Goudian, N. 2018. Explain-
ing Black Boxes on Sequential Data using Weighted Au-
tomata. In Unold, O.; Dyrka, W.; and Wieczorek, W., eds.,
Proceedings of the 14th International Conference on Gram-
matical Inference, ICGI 2018, Wroctaw, Poland, September
5-7, 2018, volume 93 of Proceedings of Machine Learning
Research, 81-103. PMLR.

Baier, C.; and Katoen, J. 2008. Principles of model checking.
MIT Press. ISBN 978-0-262-02649-9.

Balle, B.; Eyraud, R.; Luque, F. M.; Quattoni, A.; and Ver-
wer, S. 2017. Results of the Sequence PredIction ChallengE
(SPiCe): a Competition on Learning the Next Symbol in a
Sequence. In Verwer, S.; van Zaanen, M.; and Smetsers, R.,
eds., Proceedings of The 13th International Conference on
Grammatical Inference, volume 57 of Proceedings of Ma-
chine Learning Research, 132—136. Delft, The Netherlands:
PMLR.

Balle, B.; Gourdeau, P.; and Panangaden, P. 2017. Bisimu-
lation Metrics for Weighted Automata. In Chatzigiannakis,
I; Indyk, P.; Kuhn, F.; and Muscholl, A., eds., 44th In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, 103:1-103:14. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik.

Dong, G.; Wang, J.; Sun, J.; Zhang, Y.; Wang, X.; Dai,
T.; Dong, J. S.; and Wang, X. 2020. Towards Interpreting
Recurrent Neural Networks through Probabilistic Abstrac-
tion. In 35th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2020, Melbourne, Aus-
tralia, September 21-25, 2020, 499-510. IEEE.

Du, X.; Xie, X.; Li, Y.; Ma, L.; Liu, Y.; and Zhao, J. 2019.
DeepStellar: Model-Based Quantitative Analysis of Stateful
Deep Learning Systems. In Proceedings of the 27th ACM
Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (FSE),
477-487.

Gastin, P.; and Monmege, B. 2018. A unifying survey on
weighted logics and weighted automata - Core weighted
logic: minimal and versatile specification of quantitative
properties. Soft Comput. 22(4): 1047-1065.

Graves, A.; Mohamed, A.; and Hinton, G. 2013. Speech
recognition with deep recurrent neural networks. In 2013
IEEE International Conference on Acoustics, Speech and
Signal Processing, 6645—-6649.

Jacobsson, H. 2005. Rule Extraction from Recurrent Neural
Networks: A Taxonomy and Review. Neural Comput. 17(6):
1223-1263. ISSN 0899-7667.

Jigsaw. 2018. Toxic Comment Classification Chal-
lenge. https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge. Accessed: 2019-10-30.

Jézefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; and
Wu, Y. 2016. Exploring the Limits of Language Modeling.
ArXiv abs/1602.02410.

Karpathy, A.; Johnson, J.; and Li, F-F. 2015.
alizing and Understanding Recurrent Networks.
abs/1506.02078.

Li, X.; and Roth, D. 2002. Learning question classifiers. In
Proceedings of the 19th international conference on Com-
putational linguistics-Volume 1, 1-7. Association for Com-
putational Linguistics.

Mann, H. B.; and Whitney, D. R. 1947. On a test of whether
one of two random variables is stochastically larger than the
other. The annals of mathematical statistics 50-60.

Michalenko, J. J.; Shah, A.; Verma, A.; Baraniuk, R. G.;
Chaudhuri, S.; and Patel, A. B. 2019. Representing For-
mal Languages: A Comparison Between Finite Automata
and Recurrent Neural Networks. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net.

Mikolov, T.; Kombrink, S.; Burget, L.; Cernock}’/, J.; and
Khudanpur, S. 2011. Extensions of recurrent neural network
language model. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 5528—
5531.

Okudono, T.; Waga, M.; Sekiyama, T.; and Hasuo, 1. 2020.
Weighted Automata Extraction from Recurrent Neural Net-
works via Regression on State Spaces. AAAI .

Visu-
CoRR

11707

Omlin, C. W.; and Giles, C. L. 1996. Extraction of rules
from discrete-time recurrent neural networks. Neural net-
works 9(1): 41-52.

Omlin, C. W.; and Giles, C. L. 1996. Rule revision with re-
current neural networks. IEEE Transactions on Knowledge
and Data Engineering 8(1): 183-188.

Omlin, C. W.; Giles, C. L.; and Miller, C. B. 1992. Heuris-
tics for the extraction of rules from discrete-time recurrent
neural networks. In Proceedings 1992 IJCNN International
Joint Conference on Neural Networks, volume 1, 33-38
vol.1.

Schellhammer, 1.; Diederich, J.; Towsey, M.; and Brugman,
C. 1998. Knowledge Extraction and Recurrent Neural Net-
works: An Analysis of an Elman Network trained on a Nat-
ural Language Learning Task. In New Methods in Language
Processing and Computational Natural Language Learning.

Wang, Q.; Zhang, K.; Ororbia, A. G.; Xing, X.; Liu, X.; and
Giles, C. L. 2018a. A Comparative Study of Rule Extraction
for Recurrent Neural Networks. arXiv: Learning .

Wang, Q.; Zhang, K.; Ororbia II, A. G.; Xing, X.; Liu, X.;
and Giles, C. L. 2018b. An empirical evaluation of rule ex-
traction from recurrent neural networks. Neural computa-
tion 30(9): 2568-2591.

Weiss, G.; Goldberg, Y.; and Yahav, E. 2018. Extracting
Automata from Recurrent Neural Networks Using Queries
and Counterexamples. In Dy, J.; and Krause, A., eds., Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research. Stockholmsmaéssan, Stockholm, Sweden: PMLR.

Weiss, G.; Goldberg, Y.; and Yahav, E. 2019. Learning
Deterministic Weighted Automata with Queries and Coun-
terexamples. In Wallach, H.; Larochelle, H.; Beygelzimer,
A.;d Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 32, 8560-8571.
Curran Associates, Inc.

Zweig, G.; Yu, C.; Droppo, J.; and Stolcke, A. 2017. Ad-
vances in all-neural speech recognition. In 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), 4805-4809. IEEE.

