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Abstract

The robustness of neural networks can be quantitatively indi-
cated by a lower bound within which any perturbation does
not alter the original input’s classification result. A certified
lower bound is also a criterion to evaluate the performance of
robustness verification approaches. In this paper, we present a
tighter linear approximation approach for the robustness ver-
ification of Convolutional Neural Networks (CNNs). By the
tighter approximation, we can tighten the robustness verifi-
cation of CNNs, i.e., proving they are robust within a larger
perturbation distance. Furthermore, our approach is applica-
ble to general sigmoid-like activation functions. We imple-
ment DeepCert, the resulting verification toolkit. We evalu-
ate it with open-source benchmarks, including LeNet and the
models trained on MNIST and CIFAR. Experimental results
show that DeepCert outperforms other state-of-the-art robust-
ness verification tools with at most 286.3% improvement to
the certified lower bound and 1566.8 times speedup for the
same neural networks.

Introduction
Robustness is becoming crucial to neural networks with the
successful application of deep learning to safety-critical do-
mains such as self-driving (Gopinath et al. 2018) and access
control by face and voiceprint recognition (Goswami et al.
2018; Shen et al. 2018). AI systems powered by non-robust
neural networks are vulnerable and fragile to the perturba-
tion from the environment and adversarial attack (Moosavi-
Dezfooli, Fawzi, and Frossard 2016; Fawzi et al. 2017).
Therefore, the robustness must be certified before a neural
network is deployed (Balunovic et al. 2019).

Formal methods, which have been proved successful
in verifying traditional software and hardware (Woodcock
et al. 2009), also show its capability to verify the robust-
ness of neural networks (Huang et al. 2017; Katz et al.
2017). A comprehensive survey on robustness verification
using formal methods can be referred to (Huang et al. 2020).
Most existing robustness verification approaches fall into
two classes. One is to check whether a given neural network
is robust or not with respect to a concrete input and a per-
turbation distance. An adversarial example is usually gener-
ated as a witness in the non-robustness case. The other is to
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compute a lower bound for a neural network and an input.
All the perturbed inputs around the original input within the
computed lower bound have the same classification result
as the original input. A certified lower bound quantitatively
describes the robustness of a neural network.

Computing a certified lower bound for neural networks
is a computationally expensive task, e.g., NP-complete even
for ReLU-based networks (Katz et al. 2017). Thus, acceler-
ation techniques based on approximation or abstraction are
necessary to achieve scalability (Singh et al. 2019b; Wan
et al. 2020). There is a trade-off between the precise of com-
puted lower bound and the scalability (Wong et al. 2018).
In general, the tighter an approximation is, the more pre-
cise lower bound it can compute while consuming more re-
sources, i.e., time and memory (Lyu et al. 2020). Therefore,
besides efficiency, certified lower bound is also a criterion to
evaluate robustness verification approaches’ performances.

This paper proposes a fine-grained linear approximation
approach to the robustness verification of Convolutional
Neural Networks (CNNs). The essence of linear approxima-
tion is to determine an upper-bound linear constraint and a
lower-bound linear constraint to approximate a non-linear
function f (x) between an interval [l, u]. In our approach, to
achieve a tighter approximation, we calculate the slopes of
the two linear constraints according to the value of l, u, and
the property of f (x) between [l, u], such as convexity and
monotonicity of derivatives. Another advantage of our ap-
proach is that its computational complexity is constant time,
and consequently the scalability of overall verification only
depends on LP solving. By the tighter approximation, we
can tighten the robustness verification of CNNs by prov-
ing neural networks are robust within a greater lower bound
of perturbation. Furthermore, the approximation approach is
general and applicable to sigmoid-like activation functions.

We implement the fine-grained approximation approach
atop the state-of-the-art robustness verification framework
CNN-Cert (Boopathy et al. 2019). We call this extended ver-
sion DeepCert. We evaluate it with open-source benchmarks
including LeNet models (LeCun et al. 1998) and neural net-
works trained on MNIST and CIFAR datasets. Experimental
results show that DeepCert outperforms relevant tools such
as CNN-Cert, CROWN (Zhang et al. 2018) and its extended
version FROWN (Lyu et al. 2020) with 76.6%, 286.3%,
252.8% improvement to the certified lower bound, respec-
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tively. Meanwhile, DeepCert has better scalability with up
to 1.2, 3.7 and 1566.8 times speedup compared with CNN-
Cert, CROWN, and FROWN, respectively.

In summary, this work follows the previous sequel of ro-
bustness verification approaches based on linear approxima-
tions and makes the following two major contributions:

1. A fine-grained linear approximation approach for com-
puting a larger robust lower bound of CNNs with general
activation functions.

2. A verification toolkit DeepCert which outperforms the
state-of-the-art tools with at most 286.3% improvement
to the certified lower bound and 1566.8 times speedup.

Related Work. There have been many efforts made to-
wards the robustness verification of neural networks. Most
are focused on ReLU-based fully-connected neural net-
works for the simplicity of network architecture and the
piece-wise linearity of the ReLU activation function (Liu
et al. 2019). It can be equivalently reduced to a mixed inte-
ger linear programming (MILP) problem (Tjeng et al. 2019),
an satisfiability modulo theory (SMT) based problem (Katz
et al. 2017), and some other abstracted models for better
scalability (Weng et al. 2018; Botoeva et al. 2020).

There is some recent work on the verification of more
complex networks such as CNN and those that contain more
complex activation functions such as Sigmoid, Tanh, and
Atan. The pioneering work (Szegedy et al. 2014) first pro-
posed an approximation-based approach to generate adver-
sarial examples for neural networks with general activation
functions. CROWN (Zhang et al. 2018) is the first frame-
work for efficiently certifying non-trivial robustness for
general activation functions in neural networks. Recently,
CROWN is extended to FROWN with a tighter approxi-
mation approach to compute a larger certified lower bound
(Lyu et al. 2020). However, both the two tools are limited to
fully-connected neural networks. CNN-Cert (Boopathy et al.
2019) is one of the state-of-the-art robustness verification
frameworks which support both CNNs and non-ReLU acti-
vation functions. CNN-Cert’s basic idea is to compute a cer-
tified lower bound by linear bounding techniques separately
on the non-linear operations in neural networks.

Besides approximation, there are some other techniques
employed for the robustness verification problem of gen-
eral neural networks. For instance, the approaches (Mir-
man, Gehr, and Vechev 2018; Gehr et al. 2018; Singh et al.
2019a) based on abstract interpretation (Cousot 1996) are
proposed by transforming neural networks into abstract do-
mains that can be efficiently solved. Another approach uses
the Lipschitz continuity feature of neural networks to ana-
lyze their reachability properties, including safety and ro-
bustness (Ruan, Huang, and Kwiatkowska 2018).

Preliminaries
This section briefly introduces some necessary preliminar-
ies and notations to understand our approach. Specifically,
we summarize the essence of the approximation-based ap-
proaches for computing certified lower bounds in the most
relevant works CNN-Cert, CROWN and FROWN.

Notations. Let Φ denote an m-layer convolutional neural
network. Its output of an input example x0 is vector Φ(x0).
We want to certify the robustness of Φ near a selected input
example x0. ∀t ∈ {0, 1, ...,m}, we use φt(x) to represent the
output of layer t, where φ0(x) = x, φm(x) = Φ(x). In fully-
connected layers, φt(x) is a vector; while in convolutional
layers it is a tensor, which can be regarded as an array of
matrices. We use σ to indicate the activation function used
by Φ, W t to indicate the connection weight (Weights) from
layer t − 1 to layer t, and bt to indicate the bias of layer t.
Both W t and bt are matrices in fully-connected layers, while
in convolutional layers they are tensors.

Note that if layer t is a fully connected layer or a convo-
lutional layer with an activation function, then φt(x) repre-
sents the output before the activation function is processed.
It means that when layer t is a fully connected layer, then
φt(x) = W tσ(φt−1(x)) + bt; when layer t is a convolutional
layer, then φt(x) = W t ∗ σ(φt−1(x)) + bt.

Let Bp(x0, ε) be an ε-bounded `p norm-ball, which is the
set of all the vectors x such that ‖x − x0‖p ≤ ε.
Definition 1 (Minimum adversarial distortion) The min-
imum adversarial distortion εmin of a neural network Φ w.r.t.
an input x0 and `p norm-ball is the smallest perturbation
‖δ‖p such that argmaxiΦi(x0) , argmaxiΦi(x0 + δ).

Apparently, for any ε ≤ εmin, all the inputs in Bp(x0, ε) are
predicted by Φ to the same class as x0 is. Computing εmin
is essentially an optimization problem, which is computa-
tionally expensive, e.g., NP-Complete even for the simple
fully-connected ReLU-based neural networks (Katz et al.
2017). Therefore, it is more practical to compute a bound
lower than εmin and prove that all the inputs in the bounded
norm-ball are classified to the same result as x0 is.
Definition 2 (Certified lower bound) εcert is called a certi-
fied lower bound of a neural network Φ w.r.t. an input x0
and `p norm-ball if argmaxiΦi(x) = argmaxiΦi(x0) for all x
in Bp(x0, εcert).

There are basically two ways of computing a non-trivial
certified lower bound. One is to compute directly by reduc-
ing it to an optimization problem, which is a dual problem of
computing εmin. The other is to assume a concrete bound first
and then check whether it satisfies the condition in Defini-
tion 2. Thus, it is reduced to a satisfiability problem. During
the process of reduction, a linear approximation is usually
employed to accelerate the decision procedure. The task of
linear approximation during the encoding is to approximate
the non-linear constraints using linear constraints, which can
be solved in polynomial time. Let Φ̃ denote a linear over-
approximation of Φ. If the following formula holds

∀x ∈ Bp(x0, εcert).argmaxiΦ̃i(x) = argmaxiΦ̃i(x0), (1)

then, εcert is a certified lower bound for Φ w.r.t. x0 and `p
norm. Note that if the formula does not hold, we cannot con-
clude εcert is not a certified lower bound because a counterex-
ample of the formula may not be a counterexample of the
original formula in Definition 2 due to the approximation.
In that case, one can try a smaller lower bound than εcert, or
use refinement techniques (Wang et al. 2018a) for a tighter
approximation based on the returned counterexample.
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Figure 1: Linear approximation of σ(x) between [l, u]

Linear Approximation. The key idea of linear approxi-
mation is to determine an upper linear constraint and a lower
linear constraint to enclose the non-linear constraint between
an interval. Non-linear constraints arise from network archi-
tecture and activation functions. A CNN usually consists of
convolutional layers, max-pooling layers, batch normaliza-
tion layers and residual blocks, and general activation func-
tions, all of which are non-linear. As for fully-connected
neural networks, non-linearity only comes from activation
functions. In our work, we make use of the linear approxi-
mation approach in CNN-Cert to deal with network layers
and focus on the approximation of general activation func-
tions. The readers who are interested in layer approximation
can refer to the work (Boopathy et al. 2019) for the details.

Four types of activation functions are commonly used in
neural networks, i.e., ReLU, hyperbolic tangent, inverse tan-
gent, and sigmoid. Except ReLU, we call other three func-
tions sigmoid-like. We only focus on the linear approxima-
tion to them as ReLU has been well studied in literature.

Definition 3 (Linear upper/lower bounds) Let σ(x) be a
non-linear function with x ∈ [l, u], αL, αU , βL, βU ∈ R, and

hU(x) = αU(x + βU), hL(x) = αL(x + βL).

hU(x) and hL(x) are called linear upper and lower bounds
of σ(x) if for all x in [l, u] there is hL(x) ≤ σ(x) ≤ hU(x).

Figure 1 depicts an example of linear approximation of
the sigmoid activation function σ(x) with x ∈ [l, u]. We
use hU(x) and hL(x) to represent the linear upper-bound and
lower-bound. Note that hU(x) and hL(x) are not unique and
do not necessarily have the same slope. For instance, h′U(x)
and h′L(x) represented by the dashed green and red lines are
two valid linear constraints for the approximation of σ(x).

The central task of linear approximation is to determine
hU(x) and hL(x), which directly affect the quality of cer-
tified lower bounds. The tighter the approximation is, the
closer the computed lower bounded is to the optimal one.
For instance, CNN-Cert takes h′U(x) and h′L(x) as the linear
upper and lower bounds for the approximation in Figure 1,
where h′U(x) and h′L(x) are two tangent lines of σ(x) on the
two points between l and u such that h′U(x) and h′L(x) cross
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Figure 2: Approximation when σ′(ltr) < k and σ′(ut
r) > k

the two endpoints (l, σ(l)) and (u, σ(u)), respectively. Ap-
parently, the approximation using h′U(x) and h′L(x) is tighter
than the one using hU(x) and hL(x).

Fine-Grained Linear Approximation
Given a bounded norm-ball Bp(x0, εcert), we assume that the
upper and lower bounds of the output of layer t before acti-
vation are ut

r and ltr, i.e., ltr ≤ φt
r(x) ≤ ut

r. Note that ut
r and

ltr are vectors consisting of constant scalars, which can be
computed layer by layer using interval arithmetic (Moore,
Kearfott, and Cloud 2009). To preserve variable dependence
among layers, the intervals can be computed more precisely
using symbolic interval propagation (Wang et al. 2018b).

We consider the linear approximation ofσ(φt
r(x)) between

[ltr, u
t
r], where σ is a sigmoid-like function. We compute the

tangent lines tangentl and tangentu of σ(φt
r(x)) at the two

endpoints (ltr, σ(ltr)) and (ut
r, σ(ut

r)). Then, we check whether
tangentl is above or below the point (ut

r, σ(ut
r)) and tangentu

is above or below the point (ltr, σ(ltr)). It is equivalent to com-
pare the slopes σ′(ltr) and σ′(ut

r) with k =
σ(ut

r)−σ(ltr)
ut

r−ltr
.

Case 1. When σ′(ltr) < k and σ′(ut
r) > k, there are two

sub-cases as shown in Figure 2, where tangentu (the or-
ange dashed line) is below (ltr, σ(ltr) and tangentl (the blue
dashed line) is below (ut

r, σ(ut
r). In the both two sub-cases,

we choose the line in green that connects the starting point
and the ending point as the linear upper bound, and the tan-
gent line in red of σ(x) at x = d such that σ′(d) = k as the
linear lower bound. Namely, we have ht

U,r = k(x− ltr) +σ(ltr)
and ht

L,r = k(x − d) + σ(d) with σ′(d) = k and ltr < d < ut
r.

Case 2. When σ′(ltr) > k and σ′(ut
r) < k, there are also two

sub-cases as shown in Figure 3. Apparently, they are sym-
metries of the two sub-cases of Case 1. Similar to Case 1,
we choose the line (in red) that connects the starting point
and the ending point of σ(x) in the interval as the linear
lower bound, and the tangent line (in green) of σ(x) at the
point (d, σ(d) such that σ′(d) is equal to the slope of the
lower bound. That is, we have ht

U,r = k(x − d) + σ(d) and
ht

L,r = k(x − ltr) + σ(ltr) with σ′(d) = k and ltr < d < ut
r.
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Figure 3: Approximation when σ′(ltr) > k and σ′(ut
r) < k

Case 3. When σ′(ltr) < k and σ′(ut
r) < k, there is only

one possible case when ltr < 0 < ut
r and σ(x) between

the interval is divided into two parts by the line connect-
ing the two endpoints. Figure 4 shows an example of the
case. Under this situation, we take the tangent line of σ over
(ltr, σ(ltr)) whose cut point is d1 > 0 (the green one) as the lin-
ear upper bound, and the tangent line of σ over (ut

r, σ(ut
r))

whose cut point d2 < 0 (the red one) as the linear lower
bound. Namely, there are ht

U,r = σ′(d1)(x − ltr) + σ(ltr) and
ht

L,r = σ′(d2)(x − ut
r) + σ(ut

r) where, d1, d2 meet the equa-

tions σ′(d1) =
σ(d1)−σ(ltr)

d1−ltr
and σ′(d2) =

σ(d2)−σ(ut
r)

d2−ut
r

, respec-
tively. Note that σ′(d1) and σ′(d2) are not necessarily the
same, which depends on ltr and ut

r.
Another case when σ′(ltr) > k and σ′(ut

r) > k is impossi-
ble because it is never satisfiable for sigmoid-like functions.
Thus, we do not need to consider approximation in this case.

Note that the approximation of ReLU can be considered
a special case of our approach. In the cases of lrt < ur

t ≤ 0
and 0 ≤ lrt < ur

t , we have ReLU(x)=0 and x, respectively.
When lrt < 0 < ur

t , it can be over-approximated like the case
of Figure 2(b) by choosing the lower bound line to be kx.

We briefly discuss the difference of our approximation ap-
proach to sigmoid-like functions from those of CNN-Cert
and CROWN. The major difference arises in the cases shown
in Figures 2(b) and 3(b). In the two cases, CROWN takes
the same approximation as the one in Case 3. We consider
the case of Figure 2(b) as an example. The upper and lower
bounds taken by CROWN are denote by the the dashed green
and red lines in Figure 5. Note that the lower bound line is
not fully shown in the figure due to space limit. Its lower
endpoint is the intersection with the vertical line crossing
(l, σ(l)). CNN-Cert chooses the same upper bound as ours,
but it takes the same lower bound as CROWN does. Appar-
ently, compared with the other two approximations, ours is
the tightest in these two cases, by which we can compute a
lower robustness bound that is closer to the optimal one.
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Figure 4: Approximation when σ′(ltr) < k and σ′(ut
r) < k
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Figure 5: Comparison with existing approaches in case 1(b)

Lower Robustness Bound Computation
It consists of two steps to compute a lower robustness bound
for a neural network i.e., computing upper and lower out-
put bounds for all input under a perturbation threshold, and
computing a lower bound such that all perturbed inputs have
the same classification result as the original input.

Computing upper and lower bounds of neural network
output. Given an m-layer CNN Φ, an input x0, and a per-
turbation threshold ε with an `p norm, we estimate the up-
per and lower bounds of Φ for all input in the norm-ball
Bp(x0, ε). First, we define linear upper and lower bounds
that over-approximate Φ(x). Figure 6 depicts the classical
layer-by-layer approximation process of Φ(x). According to
Boopathy et al. (2019), each layer φt(x) for 0 < t ≤ m
in a CNN can be over-approximated using a linear upper
bound and a linear lower bound. The linear approximation
of a layer consists of two steps. The first step is to approx-
imate the activation functions in the previous layer, and the
second step is to approximate matrix operations such as con-
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Figure 6: Linear approximation process of Φ(x)

volution, batch normalization and pooling. We make use of
our approach to the approximation of activation functions,
and reuse the approaches in (Boopathy et al. 2019) for the
approximation of matrix operations.

We assume that a layer φt(x) can be represented in the
linear form of the output of its previous layer φt−1, i.e.,

At
L ∗ φ

t−1(x) + Bt
L ≤ φ

t(x) ≤ At
U ∗ φ

t−1(x) + Bt
U . (2)

Particularly, there are φ0(x) = x and φm(x) = Φ(x). Then,
Φ(x) on the domain Bp(x0, ε) is over-approximated by the
following linear lower and upper bounds:

AL ∗ x + BL ≤ Φ(x) ≤ AU ∗ x + BU , (3)
where,

AL = Π1
i=mAi

L, BL = Bm
L + Σ1

i=m−1(Πi+1
j=mA j

L)Bi
L,

AU = Π1
i=mAi

U , BU = Bm
U + Σ1

i=m−1(Πi+1
j=mA j

U)Bi
U .

Note that the operator Π means convolution multiplication.
By the inequality 3, we can compute the upper and lower

bounds ΦU and ΦL of Φ(x), which are maximal and minimal
vectors consisting of the classification probabilities for the
inputs in Bp(x0, ε). ΦU and ΦL are defined as follows:
ΦU = max

x∈Bp(x0,ε)
(AU ∗ x + BU), ΦL = min

x∈Bp(x0,ε)
(AU ∗ x + BU).

However, it is impractical to compute ΦU and ΦL by enumer-
ating all the inputs in Bp(x0, ε) based on the above equations.
We compute each element in the vectors separately using the
following deduced equation. We consider the rth element in
ΦL for example and denote it by ΦL,r. We use AL,r to denote
the rth convolution kernel of AL, and BL,r to denote the rth
element in BL. By the definition of the dual norm, we have:

ΦL,r = min
x∈Bp(x0,ε)

(AL,r ∗ x + BL,r)

= − max
x∈Bp(x0,ε)

(AL,r ∗ x) + BL,r

= − max
y∈Bp(0,1)

[AL,r ∗ (x0 + εy)] + BL,r

= −ε max
y∈Bp(0,1)

(AL,r ∗ y) + AL,r ∗ x0 + BL,r

= −ε max
y′∈Bp(0,1)

[vector(AL,r)y′] + AL,r ∗ x0 + BL,r

= −ε‖vector(AL,r)‖q + AL,r ∗ x0 + BL,r, (4)

Algorithm 1: Binary search for lower robustness bound
input : CNN Φ, input x0, norm ‖ · ‖
output: A certified lower robustness bound εcert

1 Y0 ← arg maxi Φi(x0) ; // Y0 is the predicted class of x0

2 εcert ← 0.05, εmin ← 0, εmax ← +∞ ; // Initialize variables
3 while εcert > 0 do
4 f lag← true ; // certification result flag
5 Compute ΦU ,ΦL of Φ(x) with x ∈ Bp(x0, εcert);
6 for i = 1 : len(Φ(x0)) do
7 if i! = Y0 and ΦU,i ≥ ΦL,Y0 then
8 f lag← false; // classified to i
9 break;

10 if flag==false then // decrease when failed to certify εcert

11 εmax ← εcert;
12 εcert ← max{ εcert

2 , εmax+εmin
2 };

13 else // increase when εcert is certified
14 εmin ← εcert;
15 εcert ← min{2εcert,

εmax+εmin
2 };

16 if εcert − εmin < 0.00001 then // terminate
17 return εcert;

where, vector(AL,r) is a vector obtained by expanding the rth
convolution kernel of AL, ‖ · ‖q is lq norm with q = p/(p−1).
Likewise, we have ΦU,r = ε‖vector(AU,r)‖q + AU,r ∗ x0 + BU,r.

Computing lower robustness bound. Because the com-
putational complexity of directly computing a non-trivial
lower robustness bound is high, we iteratively pick up a per-
turbation bound and check whether all the inputs under it
can be predicated to the same class as the original input is
according to the lower and upper output bounds. We make
use of binary search to accelerate the process.

Algorithm 1 sketches the binary search procedure. Let Y0
be the classification result (true label) of input example x0
predicted by Φ, i.e., Y0 = arg maxi Φi(x0). Then, we declare
three variables εcert, εmin and εmax, which store the present
bound to certify, and the lower and upper bounds to search,
respectively. The Boolean variable flag indicates the success
(true) or failure (false) of the certification result.

We first determine the upper and lower output bounds ΦU
and ΦL for the inputs in Bp(x0, εcert) using the aforemen-
tioned approach (line 5). For each class i other than Y0, we
check whether the upper bound of i is greater than or equal
to the lower bound of Y0, i.e., ΦU,i ≥ ΦL,Y0 (line 7). If the
evaluation result is true, it means that there exists some x
in Bp(x0, εcert) such that x is more likely to be classified to
i than Y0. Namely, Φ is not robust within the norm-ball un-
der the bound εcert. In that case, we decrease the value of
εcert (line 12). If there is no class i meeting the condition
ΦU,i ≥ ΦL,Y0 , it means εcert is certified to be a robustness
bound. We increase it for a larger one (line 15). The algo-
rithm terminates when the difference between εcert and εmin
is reasonablly small, e.g., 0.00001 in our algorithm.

Implementation. We implement our approach atop CNN-
Cert in Python as an extension named DeepCert. In the ex-
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Network BoundCNN-Cert BoundDeepCert Impr. (%) TimeCNN-Cert TimeDeepCert STDCNN-Cert STDDeepCert

l∞ l2 l1 l∞ l2 l1 l∞ l2 l1 l∞ l2 l1 l∞ l2 l1 l∞ l2 l1 l∞ l2 l1

MNIST Sig 0.066 0.353 0.779 0.068 0.378 0.835 3.2 7.1 7.2 1.1 1.1 1.1 1.1 1.1 1.1 0.015 0.059 0.121 0.017 0.073 0.148
4 layers Tan 0.023 0.157 0.374 0.025 0.163 0.389 5.1 4.2 4.0 1.4 1.4 1.4 1.3 1.4 1.5 0.007 0.035 0.072 0.007 0.037 0.078

8680 nodes Atan 0.024 0.149 0.358 0.025 0.160 0.386 4.6 7.6 7.9 1.1 1.1 1.2 1.1 1.2 1.2 0.007 0.033 0.074 0.025 0.038 0.081
MNIST Sig 0.086 0.348 0.740 0.103 0.419 0.890 20.6 20.6 20.1 17.0 16.3 16.9 16.1 16.2 16.1 0.019 0.061 0.113 0.027 0.086 0.890
8 layers Tan 0.013 0.076 0.176 0.014 0.082 0.190 9.4 8.9 8.1 17.1 17.0 17.2 16.7 16.8 16.9 0.003 0.076 0.029 0.004 0.018 0.190

14570 nodes Atan 0.012 0.072 0.178 0.013 0.081 0.200 12.7 12.3 12.2 16.3 16.3 16.4 16.2 16.3 16.5 0.003 0.072 0.178 0.004 0.081 0.200
MNIST Sig 0.013 0.064 0.168 0.013 0.064 0.169 0.8 0.6 0.5 12.7 12.9 12.8 12.7 13.6 12.7 0.002 0.010 0.025 0.002 0.010 0.025
LeNet-5 Tan 0.017 0.098 0.268 0.017 0.100 0.273 2.4 1.9 1.8 12.9 12.9 12.9 12.7 12.9 13.0 0.002 0.010 0.027 0.002 0.010 0.027
7 layers Atan 0.015 0.091 0.251 0.016 0.094 0.257 2.6 2.8 2.3 12.7 12.7 12.8 12.8 12.8 12.8 0.002 0.011 0.029 0.002 0.011 0.029
MNIST Sig 0.007 0.025 0.040 0.009 0.031 0.050 40.9 24.7 25.6 10.9 10.7 10.9 10.5 10.5 10.5 0.009 0.030 0.046 0.012 0.036 0.059
Resnet Tan 0.006 0.020 0.036 0.007 0.024 0.041 25.5 17.9 13.9 10.9 10.8 10.8 10.4 10.5 10.5 0.007 0.025 0.047 0.008 0.028 0.047

3 blocks Atan 0.005 0.015 0.027 0.006 0.019 0.034 18.8 22.7 22.7 10.5 10.4 10.4 10.4 10.5 10.4 0.008 0.026 0.046 0.010 0.032 0.056
MNIST Sig 0.005 0.023 0.045 0.007 0.033 0.062 44.9 45.6 37.3 28.3 28.4 28.4 28.3 27.9 28.0 0.006 0.028 0.055 0.009 0.037 0.072
Resnet Tan 0.006 0.019 0.033 0.007 0.023 0.041 19.0 20.1 24.6 28.7 28.5 28.6 28.2 27.9 28.2 0.008 0.027 0.044 0.009 0.032 0.055

4 blocks Atan 0.009 0.028 0.048 0.011 0.035 0.059 21.6 24.5 20.9 28.1 27.8 28.0 28.1 27.9 28.0 0.011 0.033 0.057 0.013 0.040 0.068
MNIST Sig 0.008 0.030 0.035 0.011 0.036 0.053 41.3 21.8 49.3 64.9 65.1 64.7 64.3 64.0 54.0 0.009 0.029 0.043 0.011 0.036 0.059
Resnet Tan 0.008 0.022 0.037 0.011 0.036 0.065 36.0 63.8 76.6 65.8 64.9 64.9 64.6 64.5 54.3 0.005 0.015 0.025 0.008 0.025 0.045

5 blocks Atan 0.004 0.016 0.028 0.005 0.019 0.033 12.2 17.9 18.5 64.6 63.6 64.2 64.9 54.0 64.1 0.005 0.019 0.033 0.006 0.023 0.039
CIFAR Sig 0.021 0.205 0.684 0.022 0.216 0.722 2.4 5.2 5.6 6.1 6.1 6.1 6.0 6.1 6.0 0.012 0.068 0.194 0.013 0.078 0.225
5 layers Tan 0.009 0.103 0.305 0.010 0.106 0.310 1.1 3.2 1.6 6.2 6.2 6.2 6.2 6.2 6.1 0.004 0.027 0.068 0.004 0.028 0.073

14680 nodes Atan 0.008 0.094 0.302 0.008 0.095 0.308 1.3 1.7 1.9 5.7 5.7 5.7 5.6 6.0 5.6 0.004 0.030 0.085 0.004 0.031 0.089

Table 1: Experiment I: Averaged certified lower bound εcert and execution time by CNN-Cert and DeepCert

tension, we reuse the approximation approaches of CNN-
Cert to the matrix operations in CNNs. It supports the CNNs
consisting of various types of layers, including convolution,
norm-batch, and max pooling. Moreover, it also supports the
commonly-used activation functions such as ReLU and all
the sigmoid-like functions.

Experimental Evaluation
This section aims to evaluate our approach’s effectiveness by
comparing it with three relevant tools CNN-Cert, CROWN,
and FROWN. We conducted comprehensive experiments on
open-source benchmarks including LeNet-5 models (LeCun
et al. 1998) and the CNNs trained on MNIST and CIFAR-
10. We compared the lower robustness bounds returned by
the tools and the time cost on the verification. All the ex-
periments were conducted on a workstation running an 8-
core Intel Xeon CPU E5-2620 v4, 32 GB of RAM, and an
NVIDIA Tesla K80 GPU.

Benchmarks and Metrics. We trained different types of
CNNs, including two pure CNNs and three residual net-
works trained on MNIST, a network that contains average
pooling layers with the same structure as LeNet-5, and a
CNN trained on CIFAR-10. The two pure CNN models
on MNIST only consist of convolutional layers and fully-
connected layers. One has 4 layers, 5 filters and 8680 hid-
den nodes, while the other has 8 layers, 5 filters and 14570
hidden nodes. Both of them use 3× 3 convolutions. LeNet-5
contains 3 convolutional layers, 2 average pooling layers and
2 fully-connected layers. The three residual networks con-
tain 3, 4 and 5 residual blocks respectively with each block
consisting of two convolutions. The network on CIFAR-10
is pure CNN with 5 layers, 5 filters and 14680 nodes. For
each network architecture, we choose three commonly-used
sigmoid-like activation functions sigmoid, tanh, arctan in

the trained networks. Namely, we trained three variant neu-
ral networks using the three different activation functions for
each architecture. It is worth mentioning that LeNet-5 takes
only tanh as its activation function. We trained two variants
of LeNet-5 by replacing only tanh with sigmoid, arctan in
the same architecture. We also consider the cases with dif-
ferent types of norms including l1, l2 and l∞ norms.

We compare DeepCert with the other three tools in terms
of the lower robustness bound the tools to certify that. We
first check whether the labels of test images given by the
network are correct, and then select those with correct la-
bels to compute the targeted certified lower bound. We use
(ε′cert−εcert)/εcert to quantitatively represent the improvement,
where ε′cert and εcert indicate the lower bounds certified by
DeepCert and other tools, respectively. Likewise, the effi-
ciency is indicated by the average of execution time cost on
the ten images, and we use t/t′ to represent the speedup of
our approach, where t′ and t are the time cost by DeepCert
and other tools, respectively.

Experiment I. In the first experiment, we compare Deep-
Cert with CNN-Cert. We fix 100 input images and take the
average of 100 certified lower bounds as the final result for
each tool. Table 1 shows the experimental results on the 21
neural networks under the seven different network architec-
tures, including the certified bounds, improvement, averaged
execution time, and the standard deviation. It can be clearly
seen that our tool almost always returns a larger lower bound
than CNN-Cert, up to 76.6% improvement in all tests. Par-
ticularly, DeepCert has a much better performance on resi-
dent networks because back layers repeatedly use the output
of front layers in resident networks. Consequently, the com-
puted lower bound for resident networks is more sensitive to
the precision of activation function approximation than the
one for pure CNNs. For the networks that contain pure con-
volutional layers, the more activation functions they contain,
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Network `p Certified Bounds εcert Bound Improvement (%) Certification Time (sec) Time Speedup

Tool CROWN FROWN DeepCert vs. CROWN vs. FROWN CROWN FROWN DeepCert vs. CROWN vs. FROWN

Sig l∞ 0.061 0.067 0.067 10.4 1.0 1.9 1292.8 1.3 1.4 986.8
l2 0.217 0.335 0.372 72.0 11.1 2.3 1930.4 1.3 1.8 1473.6
l1 0.482 0.634 0.821 70.3 29.5 2.5 2052.5 1.3 1.9 1566.8

MNIST l∞ 0.012 0.015 0.023 96.6 60.3 1.1 1152.7 1.4 0.8 823.4
4 layers Tanh l2 0.066 0.066 0.158 140.2 140.2 1.0 1417.5 1.5 0.7 964.3
5 filters l1 0.150 0.145 0.378 151.4 159.9 1.0 1583.1 1.5 0.7 1048.4

8680 nodes l∞ 0.013 - 0.022 77.8 - 0.8 - 1.1 0.7 -
Atan l2 0.077 - 0.150 94.9 - 0.8 - 1.1 0.7 -

l1 0.178 - 0.365 105.0 - 0.8 - 1.2 0.7 -

Sig l∞ 0.083 0.111 0.099 19.6 -11.1 4.0 5211.1 16.1 0.3 323.1
l2 0.338 0.428 0.407 20.3 -4.9 4.3 5508.8 16.2 0.3 340.1
l1 0.719 0.870 0.865 20.3 -0.6 3.9 5362.3 16.2 0.2 331.4

MNIST l∞ 0.005 0.006 0.014 164.1 124.0 4.6 3964.1 16.7 0.3 237.2
8 layers Tanh l2 0.022 0.023 0.079 269.3 252.9 3.6 3787.4 16.8 0.2 224.9
5 filters l1 0.048 0.053 0.185 286.3 245.7 4.0 3737.7 16.9 0.2 220.8

14570 nodes Atan l∞ 0.007 - 0.076 83.4 - 3.8 - 16.3 0.2 -
l2 0.036 - 0.076 109.3 - 4.0 - 16.4 0.3 -
l1 0.080 - 0.191 137.9 - 4.2 - 16.5 0.3 -

Table 2: Experiment II: Averaged certified lower bound εcert and computation time by CROWN, FROWN and DeepCert

the greater improvement our tool makes, as shown by the
first two network architectures in the table. Another obser-
vation from the comparison is that DeepCert achieves a bet-
ter improvement for the l∞ norm. As for the time efficiency,
DeepCert is slightly faster than CNN-Cert, and meanwhile,
it costs almost the same time for the same network architec-
ture with different activation functions.

Experiment II. We compare DeepCertwith CROWN and
FROWN in this experiment. Because CROWN and FROWN
are designed for only DNNs, we transform CNNs with pure
convolutional layers into DNNs by converting the convolu-
tional layers into fully-connected layers. The converted 4-
layer network has 8680 hidden nodes, and the 8-layer one
has 14570 hidden nodes. In this experiment, we randomly
choose 10 images as one input set instead of 100 images.
There are two main reasons that we do not use 100 images.
One is that FROWN takes too much time for each input im-
age, e.g., 20 minutes. The other reason is that the average re-
sult of 100 images is similar to the one of 10 images, accord-
ing to the observation result from (Boopathy et al. 2019).

Table 2 shows the results of the three tools. DeepCert can
certify larger robustness bounds in all the six cases with up
to 286.3% improvement than CROWN. It takes more time in
most cases because CROWN simply takes the tangent line at
the midpoint of the interval as the lower or upper bounding
line. DeepCert achieves a better balance between the tight-
ness of certified bound and the efficiency than CROWN.

Compared with FROWN, DeepCert can compute larger
robustness bounds with up to 252.9% improvement in most
of the cases, and meanwhile it has an up to 1566.8× speedup.
However, in our experiment we found an exception where
FROWN computed lager robustness bounds than DeepCert
does for the 8-layer network with sigmoid activation func-
tion. The reason for the exception is that FROWN always
performs a gradient-based search for optimal upper and
lower bounds, which might be tighter than what DeepCert
does in some cases. Tighter linear approximations lead to
more precise certified bounds. However, the searching pro-
cedure is costly, leading to drastic increase of time consump-

tion. Note that no result is provided for the networks with
arctan because FROWN does not support arctan. The ex-
perimental results also reflect that the computation time of
DeepCert mainly depends on the size of networks, while
those of CROWN and FROWN depend on the types of acti-
vation functions and L-norms besides the size of networks.

In summary, the two experiments show that in general
DeepCert can compute larger lower robustness bounds with
significant improvement than the three state-of-the-art rele-
vant tools, and meanwhile it has a comparable performance
on efficiency. The improvement mainly arises from our fine-
grained approximation to activation functions, which is the
major difference of DeepCert from other three frameworks.

Concluding Remarks
In this paper we have proposed a fine-grained linear approx-
imation approach to general activation functions for com-
puting a larger robustness lower bound for convolutional
neural networks. The approach is applicable to approximate
sigmoid-like functions using tighter lower and upper lin-
ear bounds with a low computational complexity. We im-
plemented the approach atop the state-of-the-art robustness
lower bound certification tool CNN-Cert. The experiments
on various neural networks with different activation func-
tions have shown our approach’s generality and effectiveness
in tightening robustness certificates significantly at a lower
time cost than other relevant tools. We believe that the bal-
ance of the trade-off between the preciseness and efficiency
would make our approach applicable to real-world networks.

Like other existing approximation-based approaches, one
issue of our approach is the incompleteness. The lack of
completeness means that failing to compute a certified ro-
bustness bound does not imply the network is not robust
within the bound (Liu et al. 2019). Refinement (Elboher,
Gottschlich, and Katz 2020) is a useful technique to prove or
disprove the robustness within the bound. One of our future
work is to investigate a refinement approach for our approx-
imation approach for further tightening the lower robustness
bound without the loss of its scalability.

711680



Acknowledgments
This work is partially supported by National Key Research
and Development Program (2020AAA0107800), Huawei
Technologies Co., Ltd., Joint Funding and AI Project
(No. 20DZ1100300) of Shanghai Science and Technology
Committee, and NSFC general projects (No. 61872146,
61872144). Min Zhang is the corresponding author.

References
Balunovic, M.; Baader, M.; Singh, G.; Gehr, T.; and Vechev,
M. 2019. Certifying geometric robustness of neural net-
works. In NeurIPS’19, 15313–15323.

Boopathy, A.; Weng, T.-W.; Chen, P.-Y.; Liu, S.; and Daniel,
L. 2019. CNN-Cert: An efficient framework for certifying
robustness of convolutional neural networks. In Proc. of
AAAI’19, volume 33, 3240–3247.

Botoeva, E.; Kouvaros, P.; Kronqvist, J.; Lomuscio, A.; and
Misener, R. 2020. Efficient Verification of ReLU-Based
Neural Networks via Dependency Analysis. In AAAI’20,
3291–3299. AAAI Press.

Cousot, P. 1996. Abstract interpretation. ACM Computing
Surveys 28(2): 324–328.

Elboher, Y. Y.; Gottschlich, J.; and Katz, G. 2020. An
Abstraction-Based Framework for Neural Network Verifica-
tion. In CAV’20, 43–65.

Fawzi, A.; Moosavi-Dezfooli, S.-M.; Frossard, P.; et al.
2017. The robustness of deep networks: A geometrical per-
spective. IEEE Signal Processing Magazine 34(6): 50–62.

Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. T. 2018. AI2: Safety and
Robustness Certification of Neural Networks with Abstract
Interpretation. In S&P’18, 3–18. IEEE Computer Society.
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