
Fair Influence Maximization: A Welfare Optimization Approach

Aida Rahmattalabi,1 Shahin Jabbari,2 Himabindu Lakkaraju,2 Phebe Vayanos,1 Max Izenberg,3
Ryan Brown,3 Eric Rice,1 Milind Tambe2

1University of Southern California
2Harvard University

3 RAND Corporation
{rahmatta, phebe.vayanos, ericr}@usc.edu, {jabbari, milind tambe}@seas.harvard.edu, hlakkaraju@hbs.edu, {izenberg,

rbrown}@rand.org

Abstract

Several behavioral, social, and public health interventions,
such as suicide/HIV prevention or community preparedness
against natural disasters, leverage social network information
to maximize outreach. Algorithmic influence maximization
techniques have been proposed to aid with the choice of “peer
leaders” or “influencers” in such interventions. Yet, traditional
algorithms for influence maximization have not been designed
with these interventions in mind. As a result, they may dispro-
portionately exclude minority communities from the benefits
of the intervention. This has motivated research on fair influ-
ence maximization. Existing techniques come with two major
drawbacks. First, they require committing to a single fairness
measure. Second, these measures are typically imposed as
strict constraints leading to undesirable properties such as
wastage of resources. To address these shortcomings, we pro-
vide a principled characterization of the properties that a fair
influence maximization algorithm should satisfy. In particu-
lar, we propose a framework based on social welfare theory,
wherein the cardinal utilities derived by each community are
aggregated using the isoelastic social welfare functions. Under
this framework, the trade-off between fairness and efficiency
can be controlled by a single inequality aversion design param-
eter. We then show under what circumstances our proposed
principles can be satisfied by a welfare function. The resulting
optimization problem is monotone and submodular and can
be solved efficiently with optimality guarantees. Our frame-
work encompasses as special cases leximin and proportional
fairness. Extensive experiments on synthetic and real world
datasets including a case study on landslide risk management
demonstrate the efficacy of the proposed framework12

Introduction
The success of many behavioral, social, and public health
interventions relies heavily on effectively leveraging social
networks (Isaac et al. 2009; Valente et al. 2007; Tsang et al.
2019). For instance, health interventions such as suicide/HIV
prevention (Yonemoto et al. 2019) and community prepared-
ness against natural disasters involve finding a small set of
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well-connected individuals who can act as peer-leaders to
detect warning signals (suicide prevention) or disseminate
relevant information (HIV prevention or landslide risk man-
agement). The influence maximization framework has been
employed to find such individuals (Wilder et al. 2020). How-
ever, such interventions may lead to discriminatory solutions
as individuals from racial minorities or LGBTQ communities
may be disproportionately excluded from the benefits of the
intervention (Rahmattalabi et al. 2019; Tsang et al. 2019).

Recent work has incorporated fairness directly into influ-
ence maximization by proposing various notions of fairness
such as maximin fairness (Rahmattalabi et al. 2019) and
diversity constraints (Tsang et al. 2019). Maximin fairness
aims at improving the minimum amount of influence that any
community receives. On the other hand, diversity constraints,
inspired by the game theory literature, ensure that each com-
munity is at least as well-off had they received their share
of resources proportional to their size and allocated them
internally. Each of these notions offers a unique perspective
on fairness. However, they also come with drawbacks. For
example maximin fairness can result in significant degrada-
tion in total influence due to its stringent requirement to help
the worst-off group as much as possible, where in reality it
may be hard to spread the influence to some communities
due to their sparse connections. On the other hand, while the
diversity constraints aim at taking the community’s ability
in spreading influence into account, it does not explicitly ac-
count for reducing inequality (i.e., does not exhibit inequality
aversion). Consequently, there is no universal agreement on
what fairness means and in fact, it is widely known that fair-
ness is domain dependent (Narayanan 2018). For example,
excluding vulnerable communities from suicide prevention
might have higher negative consequences compared to inter-
ventions promoting a healthier lifestyle.

Building on cardinal social welfare theory from the eco-
nomics literature and principles of social welfare, we propose
a principled characterization of the properties of social in-
fluence maximization solutions. In particular, we propose a
framework for fair influence maximization based on social
welfare theory, wherein the cardinal utilities derived by each
community are aggregated using the isoelastic social welfare
functions (Bergson 1938). Isoelastic functions are in the gen-
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eral form of uα/α, α < 1, α 6= 0 and log u, α = 0 where
α is a constant and controls the aversion to inequality and
u is the utility value. They are used to measure the good-
ness or desirability of a utility distribution. However, due to
the structural dependencies induced by the underlying social
network, i.e., between-community and within-community
edges, social welfare principles cannot be directly applied to
our problem. Our contributions are as follows: (i) We extend
the cardinal social welfare principles including the transfer
principle to the influence maximization framework, which is
otherwise not applicable. We also propose a new principle
which we call utility gap reduction. This principle aims to
avoid situations where high aversion to inequality leads to
even more utility gap, caused by between-community influ-
ence spread; (ii) We generalize the theory regarding these
principles and show that for all problem instances, there
does not exist a welfare function that satisfies all principles.
Nevertheless, we show that if all communities are discon-
nected from one another (no between-community edges),
isoelastic welfare functions satisfy all principles. This result
highlights the importance of network structure, specifically
between-community edges; (iii) Under this framework, the
trade-off between fairness and efficiency can be controlled
by a single inequality aversion parameter α. This allows a
decision-maker to effectively trade-off quantities like utility
gap and total influence by varying this parameter in the wel-
fare function. We then incorporate these welfare functions as
objective into an optimization problem to rule out undesirable
solutions. We show that the resulting optimization problem is
monotone and submodular and, hence, can be solved with a
greedy algorithm with optimality guarantees; (iv) Finally, we
carry out detailed experimental analysis on synthetic and real
social networks to study the trade-off between total influence
spread and utility gap. In particular, we conduct a case study
on the social network-based landslide risk management in
Sitka, Alaska. We show that by choosing α appropriately we
can flexibly control utility gap (4%-26%) and the resulting
influence degradation (36% - 5%).
Related Work. Recent work has incorporated fairness di-
rectly into the influence maximization framework by relying
on either Rawlsian theory (Rawls 2009; Rahmattalabi et al.
2019), game theoretic principles (Tsang et al. 2019) or equal-
ity based notions (Stoica, Han, and Chaintreau 2020). Equal-
ity based approaches strive for equal outcome across different
communities. In general, strict equality is hard to achieve and
may lead to wastage of resources. This is amplified in influ-
ence maximization as different communities have different
capacities in being influenced (e.g., marginalized communi-
ties are hard to reach). We discuss the other two approaches
in more details in Sections –. Social welfare functions have
been used within the economic literature to study trade-offs
between equality and efficiency (Sen 1997) and have been
widely adopted in different decision making areas including
health (Abasolo and Tsuchiya 2004). Recently, Heidari et al.
(2018) proposed to study similar ideas for regression prob-
lems. The classical social welfare theory, however, does not
readily extend to our setting due to dependencies induced by
the between-community connections. Extending those princi-
ples is a contribution of our work. See the full version for a

thorough review of related work.

Problem Formulation
We use G = (V , E) to denote a graph (or network) in which
V is the set of N vertices and E is the set of edges. In the
influence maximization problem, a decision-maker chooses
a set of at most K vertices to influence (or activate). The se-
lected vertices then spread the influence in rounds according
to the Independent Cascade Model (Kempe, Kleinberg, and
Tardos 2003).3 Under this model, each newly activated vertex
spreads the influence to its neighbors independently and with
a fixed probability p ∈ [0, 1]. The process continues until no
new vertices are influenced. We useA to denote the initial set
of vertices, also referred to as influencer vertices. The goal
of the decision-maker is to select a set A to maximize the ex-
pected number of vertices that are influenced at the end of this
process. Each vertex of the graph belongs to one of the dis-
joint communities (empty intersection) c ∈ C := {1, . . . , C}
such that V1 ∪ · · · ∪ VC = V where Vc denotes the set of
vertices that belong to community c. This partitioning can
be induced by, e.g., the intersection of a set of (protected)
attributes such as race or gender for which fair treatment is
important. We use Nc to denote the size of community c,
i.e., Nc = |Vc|. Furthermore, communities may be discon-
nected, in which case ∀c, c′ ∈ C and ∀v ∈ Vc, v′ ∈ Vc′ , there
is no edge between v and v′ (i.e., (v, v′) /∈ E). We define
A? := {A ⊆ V | |A| ≤ K} as the set of budget-feasible in-
fluencers. Finally, for any choice of influencers A ∈ A?, we
let uc(A) denote the utility, i.e., the expected fraction of the
influenced vertices of community c, where the expectation is
taken over randomness in the spread of influence. The stan-
dard influence maximization problem solves the optimization
problem

maximize
A∈A?

∑
c∈C

Ncuc(A). (1)

When clear from the context, we will drop the dependency
of uc(A) on A to minimize notational overhead.

Existing Notions of Fairness
Problem (1) solely attempts to maximize the total influence
which is also known as the utilitarian approach. Existing fair
influence maximization problems are variants of Problem (1)
involving additional constraints. We detail these below. See
the full version for more discussion.
Maximin Fairness (MMF). Based on the Rawlsian the-
ory (Rawls 2009), MMF (Tsang et al. 2019) aims to maxi-
mize the utility of the worst-off community. Precisely, MMF
only allows A ∈ A? that satisfy the following constraint

min
c∈C

uc(A) ≥ γ, where A ∈ A?,

where the left term is the utility of the worst-off community
and γ is the highest value for which the constraint is feasible.
Diversity Constraints (DC). Inspired by the game theoretic
notion of core, DC requires that every community obtains a

3Our framework is also applicable to other forms of diffusion
such as Linear Threshold Model (Kempe, Kleinberg, and Tardos
2003)
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utility higher than when it receives resources proportional to
its size and allocates them internally (Tsang et al. 2019). This
is illustrated by the following constraint where Uc denotes
the maximum utility that community c can achieve with a
budget equal to bKNc/Nc.

uc(A) ≥ Uc, ∀c ∈ C where A ∈ A?. (2)

DC sets utility lower bounds for communities based on their
relative sizes and how well they can spread influence inter-
nally. As a result, it does not explicitly account for reducing
inequalities and may lead to high influence gap. We show
this both theoretically and empirically in Sections and .
Demographic Parity (DP). Formalizing the legal doctrine
of disparate impact (Zafar et al. 2017), DP requires the utility
of all communities to be roughly the same. For any δ ∈ [0, 1),
DP implies the constraints (Ali et al. 2019; Stoica, Han, and
Chaintreau 2020; Aghaei, Azizi, and Vayanos 2019)∣∣uc(A)− uc′(A)

∣∣ ≤ δ, ∀c, c′ ∈ C where A ∈ A?.
The degree of tolerated inequality is captured by δ and higher
δ values are associated with higher tolerance. We use exact
and approximate DP to distinguish between δ = 0 and δ > 0.

Fair Influence Maximization
Cardinal Welfare Theory Background
Following the cardinal welfare theory (Bergson 1938), our
aim is to design welfare functions to measure the goodness of
the choice of influencers. Cardinal welfare theory proposes
a set of principles and welfare functions that are expected
to satisfy these principles. Given two utility vectors, these
principles determine if they are indifferent or one of them is
preferred. For ease of exposition, let W denote this welfare
function defined over the utilities of all individuals in the
population (we will formalize W shortly). Then the existing
principles of social welfare theory can be summarized as
follows. Throughout this section, without loss of generality,
we assume all utility vectors belong to [0, 1]N .
(1) Monotonicity. If u ≺ u′, then W (u) < W (u′).4 In
other words, if u′ Pareto dominates u, thenW should strictly
prefer u′ to u. This principle also appears as levelling down
objection in political philosophy (Parfit 1997).
(2) Symmetry. W (u) = W (P (u)), where P (u) is any
element-wise permutation of u. According to this principle,
W does not depend on the naming or labels of the individuals,
but only on their utility levels.
(3) Independence of Unconcerned Individuals. Let (u|cb)
be a utility vector that is identical to u, except for the util-
ity of individual c which is replaced by a new value b. The
property requires that for all c, b, b′,u and u′, W (u|cb) <
W (u′|cb)⇔ W (u|cb′) < W (u′|cb′). Informally, this prin-
ciple states that W should be independent of individuals
whose utilities remain the same.
(4) Affine Invariance. For any a > 0 and b, W (u) <
W (u′) ⇔ W (au + b) < W (au′ + b) i.e., the relative or-
dering is invariant to a choice of numeraire. (?5) Transfer
Principle (Dalton 1920; Pigou 1912). Consider individu-
als i and j in utility vector u such that ui < uj . Let u′ be

4≺ means uc ≤ u′
c for all c ∈ C and uc < u′

c for some c ∈ C.

Figure 1: The effect of network structure and in particular
between-community edges on coupling of the utilities of
communities. The figure shows two sample networks con-
sisting of three communities, differentiated by shape: (a) is
the same as (b) except that between-community edges are
removed. Black fillings show the choice of influencers. We
further assume p is small enough such that influence spread
dissipates after one step. Transferring an influencer from cir-
cles to squares (top to bottom panel) affects the utility of
diamonds in (b) but not in (a).

another utility vector that is identical to u in all elements
except i and j where u′i = ui + δ and u′j = uj − δ for
some δ ∈ (0, (uj − ui)/2). Then, W (u) < W (u′). Infor-
mally, transferring utility from a high-utility to a low-utility
individual should increase social welfare.

It is well-known that any welfare function W that sat-
isfies the first four principles is additive and in the form of
Wα(u) = ΣNi=1u

α
i /α for α 6= 0 andWα(u) = ΣNi=1 log(ui)

for α = 0. Further, for α < 1 the last principle is also satis-
fied. In this case α can be interpreted as an inequality aversion
parameter, where smaller α values exhibit more aversion to-
wards inequalities. We empirically investigate the effect of α
in Section .

Group Fairness and New Principles
Applying the cardinal social welfare framework to influence
maximization problems comes with new challenges. We next
highlight these challenges and demonstrate our approach.

First, the original framework of cardinal welfare theory
defines the welfare function over individuals. This is equiva-
lent to seeking equality in the probability that each individual
will be influenced, similar to the work of Fish et al. (2019). It
is notoriously hard to achieve individual fairness in practice,
e.g., Dwork et al. (2012) explore this in the machine learn-
ing context. The problem is further exacerbated in influence
maximization because it is not always possible to spread the
influence to isolated or poorly connected individuals effec-
tively. Therefore, we focus on group fairness whereby the
utility of each individual is defined as the average utility of
the members of that community. Let uc denote the average
utility of community c. With this group-wise view, a welfare
function can be written in terms of the average utilities over
communities e.g., Wα(u) = ΣNi=1u

α
i /α = Σc∈CNcu

α
c /α.

Moreover, while principles 1-4 can be easily extended to
our influence maximization problem, this is not the case for
the transfer principle. More precisely, in the influence maxi-
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mization problem it might not be feasible to directly transfer
utilities from one community to another without affecting the
utilities of other communities. We highlight this effect with
an example, see Figure 1. In this figure, each community is
represented by a distinct shape. The two networks (a) and
(b) are identical except that between community edges are
removed in network (a) (i.e., disconnected communities). The
solid black vertices determine the choice of influencers. In
network (b), if we transfer an influencer vertex from circles
to squares according to Figure 1 (top to bottom panel), it
will indirectly affect diamonds as well. This effect is absent
in network (a) as there are no between-community edges to
allow the spread of influence across communities. In network
(a), the transfer principle prefers the resulting utility vector
after the transfer. However, this principle cannot be applied
to network (b) as the utilities of more than one community
is modified after the transfer. Additionally, even when direct
transfer is possible, it can be the case that there is no symme-
try in the amount of utility gained by low-utility community
and the amount of utility lost by high-utility community after
the transfer. To address both of these shortcomings we intro-
duce the influence transfer principle as a generalization of
the transfer principle for influence maximization problems.

Similar to the original transfer principle, we consider so-
lutions in which influencer vertices are transferred from one
community to another community. Without loss of generality,
we focus on the case where only one influencer vertex is
transferred between the two communities. We refer to such
solutions as neighboring solutions. Clearly, transfer of more
than one influencer vertex can be seen as a sequence of trans-
fers between neighboring solutions.
(5) Influence Transfer Principle. Let A and A′ ∈ A? be
two neighboring solutions with corresponding utility vectors
u = u(A) and u′ = u(A′). Suppose the elements of u and
u′ are sorted in ascending order. We also assume after the
transfer, the ordering of the utilities stays the same across u
and u′.

If Σκ∈C:κ≤cNκ(u′κ − uκ) ≥ 0 ∀c ∈ C and u′c > uc for
some c ∈ C, then W (u) < W (u′).

Informally, influence transfer principle states that in a de-
sirable transfer of utilities, the magnitude of the improvement
in lower-utility communities should be at least as high as
the magnitude of decay in higher-utility communities while
enforcing that at least one low-utility community receives
a higher utility after the transfer. The original transfer is a
special case of influence transfer principle when communities
are disconnected and utilities transferred remain the same.

Next, we study whether any of the welfare functions that
satisfy the first 4 principles satisfy the influence transfer
principle. In Proposition 1, we show any additive and strictly
concave function satisfies influence transfer principle. Since
functions that satisfy the first 4 principles are strictly concave
for α < 1, the influence transfer principle is automatically
satisfied in this regime. We defer all proofs to the full version.

Proposition 1. Any strictly concave and additive function
satisfies the influence transfer principle.

To measure inequality, notion of utility gap (or analogous
notions such as ratio of utilities) is commonly used (Fish

et al. 2019; Stoica, Han, and Chaintreau 2020). Utility gap
measures the difference between the utilities of a pair of
communities. In this work, we focus on the maximum utility
gap, i.e., the gap between communities with the highest and
lowest utilities (utility gap henceforth). For a utility vector
u, we define ∆(u) = maxc∈C uc − minc∈C uc to denote
the utility gap. Fair interventions are usually motivated by
the large utility gap before the intervention (Marmot et al.
2008). Fish et al. (2019) has shown that in social networks the
utility gap can further increase after an algorithmic influence
maximizing intervention. We extend this result to the entire
class of welfare functions that we study in this work and we
notice that the utility gap can increase even if we optimize
for these welfare functions. This is a surprising result since,
unlike the influence maximization objective, these welfare
functions are designed to incorporate fairness, yet we may
observe an increase in the utility gap. We now introduce
another principle which aims to address this issue. Again we
focus on neighboring solutions.
(6) Utility Gap Reduction. Let A and A′ ∈ A? be two
neighboring solutions with corresponding utility vectors u =
u(A) and u′ = u(A′). If Σc∈CNcuc ≤ Σc∈CNcu

′
c. and

∆(u) > ∆(u′) then W (u) < W (u′).
The utility gap reduction simply states that the welfare

function should prefer the utility vector whose total utility
is at least as high as the other vector and also has smaller
utility gap. We now show that, in general, it is not possible to
design a welfare function that obeys the utility gap reduction
principle along with the other principles.
Proposition 2. Let W be a welfare function that obeys prin-
ciples 1-5. Then there exists an instance of influence maxi-
mization where W does not satisfy the utility gap reduction.

Next, we show on a special class of networks, i.e., networks
with disconnected communities, the utility gap reduction
principle is satisfied in all influence maximization problems.
Proposition 3. Let W be a welfare function that obeys prin-
ciples 1-5. If the communities are disconnected, then W also
satisfies the utility gap reduction principle.

Propositions 2 and 3 and their proofs establish new chal-
lenges in fair influence maximization. These challenges arise
due to the coupling of the utilities as a result of the network
structure and more precisely the between-community edges.
The results in Propositions 2 and 3 leave open the following
question: “In what classes of networks, there exists a welfare
function that satisfies all the 6 principles over all instances of
influence maximization problems?” As an attempt to answer
this question, we empirically show that over various real and
synthetic networks including stochastic block models, there
exist welfare functions that obey all of our principles. We
conclude this section by the following three remarks.
Remark 1 (Application to Other Settings). Our welfare-
based framework can be theoretically applied to different
graph-based problems (e.g., facility location) but algorith-
mic solution is domain-dependent. The choice of influence
maximization is motivated by evidence about discrimination
studied in previous work (Rahmattalabi et al. 2019; Stoica,
Han, and Chaintreau 2020).
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Notion/Principle Monotonicity Symmetry Ind. of Unconcerned Affine Influence Transfer Gap Reduction
Exact DP 7 (Prop. 5) X 7 (Prop. 8) X 7 (Prop. 11) X (Prop. 15)

Approximate DP 7 (Prop. 6) X 7 (Prop. 8) 7 7 (Prop. 11) 7 (Prop. 15)
DC X (Cor. 1) 7 7 (Prop. 9) 7 7 (Prop. 12) 7 (Prop. 16)

MMF X (Cor. 1) X 7 (Prop. 10) X 7 (Prop. 13) 7 (Prop. 17)
Utilitarian X (Cor. 1) X X X 7 (Prop. 14) 7 (Prop. 18)

Welfare Theory X X X X X 7 (Prop. 2)

Table 1: Summary of the properties of different fairness notions through the lens of welfare principles for influence maximization.

Remark 2 (Relationship between Principles and Fairness).
Monotonicity ensures there is no wastage of utilities. Sym-
metry enforces the decision-maker to not discriminate based
on communities’ names. According to the Independence of
Unconcerned Individuals, between two solutions (choices of
influencers) only those individuals/communities whose utili-
ties change should impact the decision-maker’s preference.
Affine Invariance is a natural requirement that the prefer-
ences over different solutions should not change based on the
choice of numeraire. Finally, the Transfer Principle promotes
solutions that are more equitable.

Remark 3 (Selecting the Inequality Aversion Parameter in
Practice). In our approach, α is a user-selected parameter
that the user can vary to tune the trade-off between efficiency
and fairness. Leaving the single parameter α in the hands
of the user is a benefit of our approach since the user can
inspect the solution as α is varied to select their preferred
solution. Since a single parameter must be tuned, this can be
done without the need for a tailored algorithm. In particular,
we recommend that α be either selected by choosing among
a moderate number of values and picking the one with the
most desirable behavior for the user or by using the bisection
method. Typically, choosing α will reduce to letting the user
select how much utility gap they are willing to tolerate: they
will select the largest possible value of α for which the utility
gap is acceptable.

Group Fairness and Welfare Maximization
The welfare principles reflect the preferences of a fair
decision-maker between a pair of solutions. Thus a welfare
function that satisfies all the principles would always rank
the preferred (in terms of fairness and efficiency) solution
higher. As a result, we can maximize the welfare function to
get the most preferred solution.

We show that the two classes of welfare functions
Wα(u) = ΣNi=1u

α
i /α for α < 1, α 6= 0 and Wα(u) =

ΣNi=1 log(ui) for α = 0 satisfy 5 of our principles. Hence as
a natural notion of fairness we can define a fair solution to be
a choice of influencers with the highest welfare as defined in
the following optimization problem.

maximize
A∈A?

Wα(u(A)). (3)

Lemma 1. In the influence maximization problem, any wel-
fare function that satisfies principles 1-5 is monotone and
submodular.

It is well-known that to maximize any monotone submodu-
lar function, there exists a greedy algorithm with a (1− 1/e)
approximation factor (Nemhauser and Wolsey 1981) which
we can also use to solve the welfare maximization problem.

Each choice of the inequality aversion parameter α results
in a different welfare function and hence a fairness notion. A
decision-maker can directly use these welfare functions as
objective of an optimization problem and study the trade-off
between fairness and total utility by varying α, see Section 5.

Connection to Existing Notions of Fairness
Our framework allows for a spectrum of fairness notions as
a function of α. It encompasses as a special case leximin
fairness5, a sub-class of MMF, for α → −∞. Proportional
fairness (Bonald and Massoulié 2001), a notion for resource
allocation problems, is also closely connected to the welfare
function for α = 0. See the full version for more details.

It is natural to ask which of the fairness principles are
satisfied by the existing notions of fairness for influence max-
imization. As we discussed in Section , the existing notions
of fairness are imposed by adding constraints to the influence
maximization problem. However, our welfare framework di-
rectly incorporates fairness into the objective. In order to
facilitate the comparison, instead of the constrained influence
maximization problems we consider an equivalent reformula-
tion in which we bring the constraints into the objective via
the characteristic function of the feasible set. We then have a
single objective function which we can treat as the welfare
function corresponding to the fairness constrained problem.
More formally, given an influence maximization problem and
fairness constraints written as a feasible set F

max
A∈A?

∑
c∈C

Ncuc(A) s.t. u(A) ∈ F .

We consider the following equivalent optimization problem

max
A∈A?

∑
c∈C

Ncuc(A) + IF (u(A)) := max
A∈A?

WF (u(A)),

in which IF (u) is equal to 0 if u ∈ F and −∞ otherwise.
Using this new formulation, we can now examine each of
the existing notions of fairness though the lens of the welfare
principles. Given the new interpretation, to show that a fair-
ness notion does not satisfy a specific principle, it suffices

5Leximin is subclass of MMF. According to its definition, among
two utility vectors, leximin prefers the one where the worst utility is
higher. If the worst utilities are equal, leximin repeats this process
by comparing the second worst utilities and so on.
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to show there exist solutions A,A′ ∈ A? and corresponding
utility vectors u = u(A) and u′ = u(A′) such that the prin-
ciple prefers u over u′ but WF (u) < WF (u′). The results
are summarized in Table 1 where in addition to comparing
with the previous notions introduced in Section , we com-
pare with the utilitarian notion i.e., Problem (1). We provide
formal proofs for each entry of Table 1 in the full version.

We observe that none of the previously defined notions
of fairness for influence maximization satisfies all of our
principles and each existing notion violates at least 3 out of 6
principles. We point out that exact DP is the only notion that
satisfies the utility gap reduction. However, this comes at a
cost as enforcing exact DP may result in significant reduction
in total utility in the fair solution compared to the optimal
unconstrained solution (Corbett-Davies et al. 2017).

Computational Results
We evaluate our approach in terms of both the total utility
or spread of influence (to account for efficiency) and util-
ity gap (to account for fairness). We show by changing the
inequality aversion parameter, we can effectively trade-off
efficiency with fairness. As baselines, we compare with DC
and MMF. To the best our knowledge, there is no prior work
that handles DP constraints over the utilities. We follow the
approach of Tsang et al. (2019) for both problems and view
these problems as a multi-objective submodular optimiza-
tion with utility of each each community being a separate
objective. They propose an algorithm and implementation
with asymptotic (1− 1/e) approximation guarantee which
we also utilize here. We use Price of Fairness (PoF), defined
as the percentage loss in the total influence spread as a mea-
sure of efficiency. Precisely, PoF := 1− OPTfair/OPTIM in
which OPTfair and OPTIM are the the total influence spread,
with and without fairness. Hence PoF∈ [0, 1] and smaller
values are more desirable. The normalization in PoF allows
for a meaningful comparison between networks with differ-
ent sizes and budgets as well as between different notions
of fairness. In the PoF calculations, we utilize the generic
greedy algorithm (Kempe, Kleinberg, and Tardos 2003) to
compute OPTIM. To account for fairness, we compare the
solutions in terms of the utility gap. Analogous measures are
widely used in fairness literature (Hardt, Price, and Srebro
2016) and more recently in graph-based problems (Fish et al.
2019; Stoica, Han, and Chaintreau 2020). We also note that
our framework ranks solutions based on their welfare and
does not directly optimize utility gap, as such our evaluation
metric of fairness does not favor any particular approach.

We perform experiments on both synthetic and real net-
works. We study two applications: community preparedness
against landslide incidents and suicide prevention among
homeless youth. We discuss the latter in the full version. In
the synthetic experiments, we use the stochastic block model
(SBM) networks, a widely used model for networks with com-
munity structure (Fienberg and Wasserman 1981). In SBM
networks, vertices are partitioned into disjoint communities.
Within each community c, an edge between two vertices is
present independently with probability qc. Between any two
vertices in communities c and c′, an edge exists indepen-

dently with probability qcc′ and typically qc > qcc′ to capture
homophily (McPherson, Smith-Lovin, and Cook 2001). SBM
captures the community structure of social networks (Girvan
and Newman 2002). We report the average results over 20
random instances and set p = 0.25 in all experiments.
Landslide Risk Management in Sitka, Alaska. Sitka,
Alaska is subject to frequent landslide incidents. In order to
improve communities’ preparedness, an effective approach
is to instruct people on how to protect themselves before and
during landslide incidents. Sitka has a population of more
than 8000 and instructing everyone is not feasible. Our goal is
to select a limited set of individuals as peer-leaders to spread
information to the rest of the city. The Sitka population is di-
verse including different age groups, political views, seasonal
and stable residents where each person can belong to multiple
groups. These groups differ in their degree of connectedness.
This makes it harder for some groups to receive the intended
information and also impacts the cost of imposing fairness.

Since collecting the social network data for the entire city
is cumbersome, we assume a SBM network and use in-person
semi-structured interview data from 2018-2020 with mem-
bers of Sitka to estimate the SBM parameters. Using the
interview responses in conjunction with the voter lists, we
identified 5940 individuals belonging to 16 distinct commu-
nities based on the intersection of age groups, political views,
arrival time to Sitka (to distinguish between stable and tran-
sient individuals). The size of the communities range from
112 (stable, democrat and 65+ years of age) to 693 (repub-
lican, transient fishing community, age 30-65). See the full
version for details on the estimation of network parameters.

Figure 2 summarizes results across different budget values
K ranging from 2% to 10% of the network size N for our
framework (different α values) as well as the baselines. In
the left panel, we observe that as α decreases, our welfare-
based framework further reduces the utility gap, achieving
lower gap than DC and competitive gap as MMF. As we
noted in Section , our framework recovers leximin (which
has stronger guarantees than MMF) as α→ −∞, though we
show experimentally that this is achieved with moderate val-
ues of α. Overall, utility gap shows an increasing trend with
budget, however the sensitivity to budget decreases when
more strict fairness requirements are in place, e.g. in MMF
and α = −9.0. From the right panel, PoF varies significantly
across different approaches and budget values surpassing
40% for MMF. This is due to the stringent requirement of
MMF to raise the utility of the worst-off as much as possible.
Same holds true for lower values of α as they exhibit higher
aversion to inequality. The results also indicate that PoF de-
creases as K grows which captures the intuition that fairness
becomes less costly when resources are in greater supply.
Resource scarcity is true in many practical applications, in-
cluding the landslide risk management domain which makes
it crucial for decision-makers to be able to study different
fairness-efficiency trade-offs to come up with the most effec-
tive plan. Figure 3 depicts such trade-off curves where each
line corresponds to a different budget value across the range
of α. Previous work only allows a decision-maker to choose
among a very limited set of fairness notions regardless of the
application requirements. Here, we show that our framework

11635



0

10

20

30

−9 −7 −5 −2 0 0.5 DC MMF
Method

U
til

ity
 G

ap
 (%

)

Budget
2%
4%
6%
8%
10%

0

10

20

30

40

−9 −7 −5 −2 0 0.5 DC MMF
Method

Po
F 

(%
) Budget

2%
4%
6%
8%
10%

Figure 2: Left and right panels: utility gap and PoF for different K and α values for our framework and baselines.

allows one to choose α to meaningfully study the PoF-utility
gap trade-offs. For example, given a fixed budget and a toler-
ance on utility gap, one can choose an α with the lowest PoF.
We now investigate the effect of relative connectedness. We
study the effect of relative community size in the full version.
Relative Connectedness. We sample SBM networks con-
sisting of 3 communities each of size 100 where com-
munities differ in their degree of connectedness. We set
q1 = 0.06, q2 = 0.03, q3 = 0.0 to obtain three commu-
nities with high, mid and low relative connectedness. We
choose these values to reflect asymmetry in the structure
of different communities which mirrors real world scenar-
ios since not every community is equally connected. We set
between-community edge probabilities qcc′ to 0.005 for all c
and c′ and K = 0.1N . We gradually increase q3 from 0.0 to
0.06. Results are summarized in Figure 4, where each group
of bars correspond to a different approach. We observe as
q3 increases utility gap and PoF decrease until they reach a
minimum around at around q3 = 0.03. From this point, the
trend reverses. This U-shaped behavior is due to structural
changes in network. More precisely, for q3 < 0.03 we are in
the high-mid-low connectedness regime for the three groups,
where the third community receives the minimum utility. As
a result, as q3 increases it becomes more favorable to choose
more influencer vertices in this community which in turn
reduces the utility gap. For q3 > 0.03, the second community
will be become the new worst-off community due its lowest
connectedness. Hence, further increase in q3 causes more
separation in connectedness and we see previous behavior in
reverse. Thus, by further increasing q3, communities 1 and
3 receive more and more influencer vertices. This behavior

Figure 3: PoF vs. utility gap trade-off curves. Each line cor-
responds to a different budget K across different α values.

translates to PoF as the relative connectedness of communi-
ties impacts how hard it is to achieve a desired level of utility
gap. Finally, we see that the U-shaped behavior is skewed,
i.e., we observe higher gap and PoF in lower range of q3
which is due to higher gap in connectedness of communities.
We can also compare the effect of relative connectedness and
community size (see the full version.) We observe that con-
nectedness has a more significant impact on PoF (up to 25%)
compared to community size (less than 4%). In other words,
when communities are structurally different it is more costly
to impose fairness. This is an insightful result given that in
different applications we may encounter different popula-
tions with structurally different networks. Utility gap on the
other hand is affected by both size and connectedness. Finally
while our theory indicates that in the network setting, no wel-
fare function can satisfy all principles including utility gap
reduction over all instances of the influence maximization,
we observe that our class of welfare functions satisfies all of
the desiderata on the class of networks that we empirically
study. Our theoretical results showed this for a special case
of networks with disconnected communities. In particular,
we see higher PoF is accompanied by lower utility gap which
complies with utility gap reduction principle.
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Figure 4: Utility gap and PoF for various levels q3. All results
are compared across different values of α and the baselines.
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Broader Impact
As the empirical evidence highlighting ethical side effects
of algorithmic decision-making is growing (Angwin et al.
2016; Miller 2015), the nascent field of algorithmic fairness
has also witnessed a significant growth. It is well-established
by this point that there is no universally agreed-upon notion
of fairness, as fairness concerns vary from one domain to
another (Narayanan 2018; Berk et al. 2017). The need for
different fairness notions can also be explained by theoret-
ical studies that show that different fairness definitions are
often in conflict with each other (Kleinberg, Mullainathan,
and Raghavan 2017; Chouldechova 2017; Friedler, Scheideg-
ger, and Venkatasubramanian 2016). To this end, most of
the literature on algorithmic fairness proposes different fair-
ness notions motivated by different ethical concerns. A major
drawback of this approach is the difficulty of comparing these
methods against each other in a systematic manner to choose
an appropriate notion for the domain of interest. Instead of
following this trend, we propose a unifying framework con-
trolled by a single parameter that can be used by a decision-
maker to systematically compare different fairness measures
which typically result in different (and possibly also problem-
dependent) trade-offs. Our framework also accounts for the
social network structure while designing fairness notions –
a consideration that is mainly overlooked in the past. Given
these two contributions, it is perceivable that our approach
can be used in many of the public health interventions such
as suicide, HIV or Tuberculous prevention that rely on so-
cial networks. This way, the decisions-makers can compare a
menu of fairness-utility trade-offs proposed by our approach
and decide which one of these trade-offs are more desirable
without a need to understand the underlying mathematical
details that are used in deriving these trade-offs.

There are crucial considerations when deploying our sys-
tem in practice. First, cardinal welfare is one particular way
of formalizing fairness considerations. This by no means im-
plies that other approaches for fairness e.g. equality enforcing
interventions should be completely ignored. Second, we have
assumed that the decision-maker has the full knowledge of
the network as well as possibly protected attributes of the
individuals which can be used to define communities. Third,
while our experimental evaluation is based on utilizing a
greedy algorithm, it is conceivable that this greedy approx-
imation can create complications by imposing undesirable
biases that we have not accounted for. Intuitively (and as
we have seen in our experiments) the extreme of inequality
aversion (α→ −∞) can be used as a proxy for pure equality.
However, the last two concerns require more care and we
leave the study of such questions as future work.
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