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Abstract

For time series data, certain types of outliers are intrinsi-
cally more harmful for parameter estimation and future pre-
dictions than others, irrespective of their frequency. In this
paper, for the first time, we study the characteristics of such
outliers through the lens of the influence functional from ro-
bust statistics. In particular, we consider the input time se-
ries as a contaminated process, with the recurring outliers
generated from an unknown contaminating process. Then we
leverage the influence functional to understand the impact of
the contaminating process on parameter estimation. The in-
fluence functional results in a multi-dimensional vector that
measures the sensitivity of the predictive model to the con-
taminating process, which can be challenging to interpret es-
pecially for models with a large number of parameters. To
this end, we further propose a comprehensive single-valued
metric (the SIF) to measure outlier impacts on future predic-
tions. It provides a quantitative measure regarding the outlier
impacts, which can be used in a variety of scenarios, such
as the evaluation of outlier detection methods, the creation
of more harmful outliers, etc. The empirical results on multi-
ple real data sets demonstrate the effectivenss of the proposed
SIF metric.

Introduction
Outlier analysis has been studied for several decades for
the sake of data cleaning, fraud detection, gaining insights
into the hidden patterns, etc. Numerous models and methods
have been proposed to detect outliers either for static data
(Aggarwal and Yu 2001; Xiong, Chen, and Schneider 2011;
Liu, Huang, and Hu. 2017) or for dynamic data (González
and Dasgupta 2003; Rebbapragada et al. 2009; Habler and
Shabtai 2017). In the dynamic settings, outliers often exhibit
recurring patterns, which can be seen across multiple appli-
cation domains, such as manufacturing process trace data (Li
et al. 2014), medical records (Li et al. 2011; Hauskrecht et al.
2013), sensor data (Subramaniam et al. 2006; Shcherbakov
et al. 2016), time-evolving social network data (He, Liu, and
Lawrence 2008; Savage et al. 2014), etc. Therefore, it is rea-
sonable to assume that the outliers follow an unknown con-
taminating process, which contributes to the observed input
time series in a probabilistic way.
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On the other hand, as machine learning techniques be-
come an indispensable tool in many real applications, there
are growing interests to gain insights into the working mech-
anism of machine learning models. Despite the recent surge
of efforts devoted to providing explanations to black-box
machine learning models (including outlier detection meth-
ods) (Kauffmann, ller, and Montavon 2018; Koh and Liang
2017; Ribeiro, Singh, and Guestrin 2016; Micenková et al.
2013), the vast majority (if not all) of existing techniques
focus on static data with feature representations. However,
many high-impact application domains (e.g., national se-
curity, finance) exhibit the time-evolving nature. The occa-
sional outliers in the time series data can significantly affect
the performance of the generated models, rendering the pre-
dicted future values not trustworthy. Despite the plethora of
outlier detection techniques for time series data, interpreta-
tion the detected outliers (especially the recurrent ones) and
their underlying generation mechanism is far from solved.

To bridge this gap, in this paper, we tackle the challenge
of outlier interpretation in time series data via contamination
processes. We start from the influence functional for time
series data proposed in (Martin and Yohai 1986), which as-
sumes that the observed input time series is obtained from
separate processes for both the core input and the recurring
outliers, i.e., the core process and the contaminating pro-
cess. At each time stamp, with a certain (small) probabil-
ity, the observed value of the contaminated process comes
from the contaminating process, which corresponds to the
outliers. In our work, we focus on the generic patchy outliers
where the outlying patterns can be present over consecutive
time stamps, and aim to study the impact of the contaminat-
ing process on both parameter estimation and future value
prediction. In particular, we propose a single-valued metric
named SIF to characterize the impact of the contaminating
process on future predictions. Gaining insights on such out-
lier impact can shed light on not only the relative perfor-
mance of existing outlier detection techniques but also the
type of outliers that a predictive model is robust/sensitive to.

Related Work
Since the pioneering work in (Fox 1972), outlier detection
in time series has been well studied over the past decades.
Notable distance-based approaches include k nearest neigh-
bor (kNN) (Chandola, Banerjee, and Kumar 2008) and k-
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means (Rebbapragada et al. 2009). Exemplary density-based
methods include the kNN-CAD and angle-based outlier
detection methods (Kriegel, Schubert, and Zimek 2008).
Successful deep learning-based approaches include auto-
encoder (Han, Kamber, and Pei 2011), deep autoencoding
Gaussian mixture model (Zong et al. 2018), and LSTM
encoder-decoder (Habler and Shabtai 2017). Due to the lack
of labeled data, most outlier detection methods are unsuper-
vised in nature.

Recently, with the increasing complexity of outlier detec-
tion techniques, interpretation of outlier detection models
and results starts to gain attention from the research com-
munity. (Micenková et al. 2013) is based on the maximal
separability of outliers and inliers in subspace. (Schwenk
and Bach 2014; Kauffmann, Müller, and Montavon 2020)
applied the structured one-class Support Vector Machine
(SVM) and its neural network reformulation to explain
anomalies in terms of input features. In (Liu, Shin, and Hu
2018), the interpretability of an outlier is achieved through
outlierness score, attributes that contribute to the abnormal-
ity, and contextual description of its neighborhoods by dis-
tilling the results of a series of classification tasks. (Cortes
2020) described an outlier detection procedure by evaluating
supervised decision tree splits on variables. More generally,
to interpret black-box machine learning models, (Ribeiro,
Singh, and Guestrin 2016) and (Koh and Liang 2017) pro-
posed approaches to explain individual predictions. These
methods are perturbation-based that use data points (Koh
and Liang 2017) or features (Ribeiro, Singh, and Guestrin
2016) as a form of perturbation, and measure how the re-
sponse changes. (Ribeiro, Singh, and Guestrin 2016) used a
linear model to approximate model predictions in the local
vicinity of a data point and interpreted feature contributions
by examining the weights of the sparse linear model. (Koh
and Liang 2017) used influence function (Cook and Weis-
berg 1982) to interpret a training example via the change of
parameter estimation and classification loss.

However, existing interpretation techniques cannot be ap-
plied to time series data. The key reason lies in the temporal
dynamics associated with time series and the low frequency
of the recurring outliers. Moreover, although the influence
function for time series data originated in robust statistics in
the 80s (Martin and Yohai 1986), prior work focuses on ex-
ploring the outliers’ impact on model parameters. For mod-
ern black-box models, such as Recurrent Neural Networks
(RNN) (Pineda 1987), the dimensionality of the model pa-
rameters can be very high. For instance, a basic RNN has
n2 + kn + nm parameters, where n, k and m denote the
dimensionality of the hidden layer, output layer, and input
layer, respectively. Therefore, the interpretation in terms of
the parameters may not be consumable by humans.

To address these challenges, we propose a single-valued
metric, SIF, to characterize the impact of the recurring out-
liers on future predictions. Intuitively, the SIF is the par-
tial derivative of the estimated model parameters/predicted
values with respect to the degree of contamination. In
other words, they measure the sensitivity of the predictive
model/predictions to the contaminating process. Therefore,
the SIF can be used to understand the impact of outliers

regardless of the structure and degree of the contaminating
processes or the types of predictive models.

Proposed Approach
In this section, we introduce our proposed approach for in-
terpreting recurring outliers in time series data. We start
by introducing the influence functional from robust stat-
ics (Martin and Yohai 1986) as well as the contaminat-
ing process used to model the recurring outliers. Then we
present our proposed single-valued metric for characteriz-
ing the impact of the contaminating process on future pre-
dictions, and discuss its properties in various special cases.

Contaminating Processes
Let yγi denote the observation of the input time series at time
stamp i, where 0 ≤ γ ≤ 1 is a positive parameter controlling
the contribution of the contaminating process to the input
time series. Following (Martin and Yohai 1986), we assume
that yγi has the following definition.

yγi = (1− zγi )xi + zγi ωi (1)

where xi and ωi denote the observations at time stamp i from
the core process (not contaminated by outliers) and the con-
taminating process (the outliers); zγi denotes the observation
at time stamp i from a 0-1 process with parameter γ such that
P (zγi = 1) = γ + o(γ). Intuitively, zγi = 1 indicates that
the observed value of the input time series at time stamp i
is completely obtained from the contaminating process, and
0 indicates that the observed value is completely obtained
from the core process. Furthermore, following the pure re-
placement model in (Martin and Yohai 1986), we assume
that xi, wi, and zγi are obtained from mutually independent
processes, which are denoted µx, µw, and µγz respectively.
Without loss of generality, we assume that all these pro-
cesses are ergodic and stationary (Jürgen Franke 2015).

In general, the 0-1 process zγi captures the characteris-
tics of the observed recurring outliers in the input time se-
ries. An example of the 0-1 process corresponds to the so-
called patchy outliers (Martin and Yohai 1986), where zγi
with various values of time stamp i are highly correlated.
More specifically, let z̃qi denote i.i.d. binomial B(1, q) se-
quence, and zγi depends on z̃qi in the following way:

zγi =

{
1, if z̃qi−l = 1 for some l = 0, 1, . . . , k − 1

0, otherwise
(2)

where k is a positive integer for the patch size and 0 ≤ q ≤
1. Notice that when k = 1, zγi = z̃qi , and the patchy outliers
are reduced to independent outliers, i.e., zγi is independent
of zγj for i 6= j. Let γ = kq. Then it is easy to verify that
P (zγi = 1) = kq + o(q), which is consistent with the re-
quirement on the contaminating process from Eq. (1).

Influence Functional
Let θ ∈ Rp denote the vector of parameters involved in the
predictive model of the input time series data, where p is
the number of parameters. It can be estimated by solving the
following equation. ∫

Ψ̃(yγi ,θ)dµγy = 0 (3)
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where Ψ̃ denotes a function from R∞ ×Rp to Rp (e.g., first
order derivative of the log-likelihood function), yγi denotes
the input time series up to time stamp i, and µγy denotes the
process followed by yγi . For the above equation, let θ̂γ de-
note its unique root, i.e., the optimal estimate of the model
parameters.

Based on the above notation, the influence functional (IF)
for time series data is defined by (Martin and Yohai 1986).

IF(θ, {µγy}) = lim
γ→0

θ̂γ − θ̂0

γ
=

dθ̂γ

dγ

∣∣∣∣∣
γ=0

(4)

From the above definition, it can be seen that the influence
functional is a p-dimensional vector measuring the impact
of γ on the estimated parameters around γ = 0, i.e., no out-
liers observed in the input time series. In other words, the in-
fluence functional depends on the intrinsic properties of the
core process µx and the contaminating process µω , irrespec-
tive of the frequency of outliers observed in the input time
series. In the next section, we will empirically demonstrate
the influence functional associated with various types of the
contaminating process for a specific input process. In gen-
eral, the influence functional can be computed as follows.
Lemma 1 Under mild conditions, we have

IF(θ, {µγy}) = lim
γ→0

−Ey(C−1Ψ̃(yγi , θ̂
0))

γ
(5)

where nonsingular p × p matrix C = ∂ExΨ̃(xi,θ̂
0)

∂θ |θ=θ̂0 ,
Ey(·) and Ex(·) denote the expectation under the observed
process µγy and the core process µx respectively, and xi de-
notes the core time series up to time stamp i.

Proof Theorem 4.1 in (Martin and Yohai 1986) shows that
under mild conditions,

IF(θ, {µγy}) = lim
γ→0

E(ICH(yγ1 ))

γ

where ICH(yγ1 ) denotes the Hampel’s influence
curve (Hampel 1974) with respect to γ. This theorem,
together with Eq. (4.2) in (Martin and Yohai 1986) com-
pletes the proof.�

Notice that the subscript i in Eq. (5) on the right hand
side vanished because of stationarity of yγi . C ∈ Rp×p is
essentially the Hessian of the objective function for solv-
ing θ, e.g., the log-likelihood function. The inverse of C
can be computationally expensive due to the high dimen-
sionality of the parameter space, especially for deep neu-
ral networks. To address this problem, following (Koh and
Liang 2017), we adopt the implicit Hessian-Vector Products
(HVPs) with stochastic estimation (Agarwal, Bullins, and
Hazan 2017; Chen, Liu, and Zhang 2018; Li et al. 2018).
Following the general method of computing the influence
functional as shown in Lemma 1, the influence functional
can enjoy a closed-form solution for certain classes of the
underlying predictive model. Let f(yγi−1,θ) denote the un-
derlying model for predicting the observed value of input
time series yγi at time stamp i. The following lemma demon-
strates the influence functional for a simple autoregressive

model, i.e., an AR(1) model given by f(yγi , θ) = θyγi−1,
under patchy outliers with size k and γ = kq.
Lemma 2 For AR(1) model with a single parameter θ, the
influence functional of patchy outliers with size k can be
computed as follows.

IF(θ, {µγy}) =
1

kEx(x2)
(−2Ex(x)Eω(ω)− (k − 1)Eω(ω0ω1)

+ θ̂0Ex(x2) + θ̂0kEω(ω2))

where Eω(·) denotes the expectation under the contaminat-
ing process µω , and Eω(ω0ω1) is the lag 1 autocorrelation
of the outliers.

Proof of Lemma 2 is given in the appendix.
Notice that the analysis can be generalized to AR(n) mod-

els, i.e., f(yγi ,θ) =
∑n
j=1 θjy

γ
i−j where θj is the jth ele-

ment of θ, and is omitted for brevity here. From this lemma,
we have the following observations. First of all, when k = 1,
i.e., independent outliers, the influence functional is reduced
to

IF(θ, {µγy}) =
−2Ex(x)Eω(ω) + θ̂0Ex(x2) + θ̂0Eω(ω2)

Ex(x2)

On the other hand, when k goes to infinity (while γ = kp→
0), the influence functional is reduced to

IF(θ, {µγy})
k→∞−−−−→ −Eω(ω0ω1)

Ex(x2)
+
θ̂0Eω(ω2)

Ex(x2)
(6)

From the above equations, it can be seen that as k increases,
the impact of the first-order moment from the contaminating
process gradually decreases, and the impact of the second-
order moment remains in the influence functional.

Influence on Future Predictions
Notice that the dimensionality of the influence functional
increases with the number of parameters p in the model,
and can be difficult to comprehend for interpretation pur-
poses, especially for complex models with a large num-
ber of parameters. To address this problem, we propose a
single-valued metric based on the influence functional to
characterize the impact of the contaminating process on fu-
ture predictions. More specifically, let g(γ,θ) denote the ex-
pected predicted value of f(yγi−1,θ) with respect to µγy , i.e.,
g(γ,θ) := Ey(f(yγi−1,θ)). Next we propose the following
function for measuring the influence of the contaminating
process on future predictions.

SIF(θ, {µγy}) :=
d

dγ
g(γ, θ̂γ)|γ=0 (7)

Based on the above definition, we have

SIF(θ, {µγy}) =
∂g(γ, θ̂γ)

∂γ
+
∂g(γ,θ)′

∂θ
· dθ̂

γ

dγ

∣∣∣∣∣
θ=θ̂γ ,γ=0

=
∂g(0, θ̂0)

∂γ
+
∂g(0, θ̂0)′

∂θ
· IF(θ, {µ0

y}) (8)

where ∂
∂θ g(γ,θ) is a p-dimensional vector, and ∂

∂θ g(γ,θ)′

is its transpose.
In general, to compute the SIF, in addition to the in-

fluence functional, we also need to compute ∂
∂γ g(0, θ̂0)
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and ∂
∂θ g(0, θ̂0). Notice that ∂

∂θ g(0, θ̂0) can be re-written

as Ex(∂f(xi−1,θ̂
0)

∂θ ), where the partial derivation with re-
spect to θ is easy to implement in auto-grad systems such
as TensorFlow, Torch and Theano as illustrated in (Koh and
Liang 2017). On the other hand, ∂

∂γ g(0, θ̂0) can be calcu-
lated based on the following lemma.

Lemma 3 For patchy outliers with size k, we have

∂g(0, θ̂0)

∂γ
=

1

k
Ex,w

[
i−1∑
j=1

(
f(ỹ

(j)
i−1, θ̂

0)− f(xi−1, θ̂
0)
)]

(9)

where ỹ(j)
i−1 is a vector with elements defined as follows

ỹ
(j)
i−1,s =

{
ωs, if s = j + l for l = 0, · · · , k − 1

xs, otherwise

Proof For patchy outliers, the expectation over zγ can be
transferred to z̃p and then expanded for small p values

∂Ezγ
[
f
(
yγi−1, θ̂

0
)]

∂γ

∣∣∣∣∣∣
γ=0

=
1

k

∂

∂p

[
f(xi−1, θ)(1− p)i−1

+
∑i−1
m=1 f(ỹ

(m)
i−1 , θ̂

0)(1− p)i−2p+ o(p)

]
p=0

=
1

k

i−1∑
m=1

[
f(ỹ

(m)
i−1 , θ̂)− f(xi−1, θ)

]
.

Substituting the above equation back to the expectation over
x, ω yields Lemma 3. �

Note that if the model does not have a long term memory,
the summation terms withm� i in Eq. (9) become 0s, sug-
gesting the vanishing boundary effects. For AR(n) models,
the following lemma shows the closed-form solution for the
two partial derivatives in Eq. (8).

Lemma 4 For AR(n) models, we have

∂

∂γ
g(0, θ̂0) = (−Ex(x) + Eω(ω))

n∑
j=1

θj

∂

∂θ
g(0, θ̂0) = Ex([xi−1, . . . , xi−n]′) = Ex(x)1n

where 1n is a n× 1 column vector consisting of all 1s.

Proof For AR(n) models, the predictive model
f(yγi−1,θ) = θ · yγ(i−1):(i−n), where · denotes the in-
ner product between two vectors, and yγ(i−1):(i−n) denotes
the observed input time series between time stamps i − 1
and i − n. Therefore g(γ,θ) =

∑n
j=1 θjEy(yγi−j) =∑n

j=1 θj((1 − γ)Ex(x) + γEω(ω)). The lemma naturally
follows by taking the partially derivative of g(0, θ̂0) with
respect to γ and θ. �

Based on the above lemma, we can see that if Ex(x) =
Eω(ω), i.e., the core process and the contaminating process

have the same mean, then ∂
∂γ g(0, θ̂0) = 0, and the SIF is

reduced to

SIF(θ, {µγy}) = Ex(x)1′n · IF(θ, {µ0
y})

From the above equation, it can be seen that in this case, the
impact of the contaminating process on future predictions is
in proportion to the sum of all the elements in the influence
functional.

Outlier Interpretation with SIF
Comparison of Outlier Detection Methods A predictive
model could be sensitive to different kinds of outliers. The
proposed SIF measures the impact of the contaminating pro-
cess on future predictions with a specific predictive model,
regardless of the model type. Therefore, it can be used for
outlier interpretation and evaluation of existing outlier de-
tection methods. More specifically, given an outlier detec-
tion method and the observations that have been identified
as outliers by this method from the input time series yγi ,
we first estimate the contaminating process by estimating its
moments as required by the computation of the influence
functional for AR(n) models (Lemma 2), or by estimating
the parameters of the contaminating process (e.g., RNN and
Gaussian processes). Due to the low frequency of the out-
liers in general, there will be many missing values in ωi. For
the purpose of estimating the parameters of the contaminat-
ing process with patchy outliers enabled by zγi , we first di-
vide the entire time series into multiple sub-series such that
each sub-series will consist of one or a few sequences of
patchy outliers. Then we can use various filtering techniques
such as (Anava, Hazan, and Zeevi 2015; Wang et al. 2005)
to estimate the parameters of the contaminating process. The
value of γ can be roughly estimated by the percentage of the
outliers in the entire input time series. k the patch size can be
obtained by solving Eq. (10) in Lemma 5 using e.g., New-
ton’s method, where Eγz (L) can be estimated by the average
number of consecutive time stamps of patchy outliers. Note
that the root to Eq. (10) might not be unique due to its non-
linearity. A rule of thumb is that reasonable k values should
be less than but close to Eγz (L) when γ is small.

Putting everything together, we estimate both the influ-
ence functional and the SIF numerically by gradually re-
ducing γ to 0, or probabilistically removing some identified
outliers and replacing them by the predicted values from the
underlying model of the core process. Following the same
procedure, we obtain the SIF of various outlier detection
methods. Intuitively, larger SIF values indicate that the out-
liers have a higher impact on future predictions, and thus the
corresponding detection method is able to identify the more
prominent outliers.

Lemma 5 For generic patchy outliers, the expected number
of consecutive time stamps in a patch is given by

Eγz (L) = k +
kk+1 − (γ + 1)(k − γ)kk

γ(k − γ)k
. (10)

Proof Suppose that a patch of outliers start at a time stamp
i, i.e. zγi = 1 and if i > 0, then zγi−1 = 0. This suggests that
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z̃qi = 1 based on Eq. (2). Let A = l denote the number
of time stamps until the next z̃q = 1, i.e., z̃qi+j = 0 for
j = 1, · · · , l and z̃qi+l = 1. If l > k, then the patch length
equals k; otherwise, it can be computed by adding l to the
expected patch length starting from time stamp i+ l, which
is again Eγz (L) due to symmetry. Therefore, the expected
patch size can be analyzed as an iterative equation given by
Eγz (L) = (1 + Eγz (L))P (A = 1) + (2 + Eγz (L))P (A = 2)

+ · · ·+ (k + Eγz (L))P (A = k) + kP (A > k).

Since z̃qi = 0 follows i.i.d binomial B(1, q), A follows a
geometric distribution with parameter q. Solving Eγz (L)
leads to Eq. (10).�

Crafting Adversarial Contaminating Processes (ACP)
Recent work shows that the existence of adversarial attacks
may be an inherent weakness of machine learning mod-
els (Madry et al. 2017). The SIF can be applied to craft
adversarial contaminating processes (ACP) that can shed
light on model vulnerability as well as the type of outliers
that a predictive model is robust/sensitive to. Here ACP
means identifying the best contamination process that will
impact the parameter estimates/predictions to the largest de-
gree without raising suspicion, i.e., the core process and the
contaminating process have the same first two moments. To
craft ACP, it needs to find the best contaminating time series
structure (e.g. AR(n) or RNN) and then estimate the opti-
mal parameters for the data structure. In practice, these two
steps are entangled but we split them into two for ease of
illustration.

Experimental Results
In this section, we quantitatively evaluate the influence func-
tional (IF) and the SIF with respect to the impact of the
contaminating process on the parameter estimation and fu-
ture predictions. We also demonstrate the use of the SIF for
evaluating outlier detection methods and crafting adversarial
contaminating processes.

Analysis of Influence Functional and SIF
The IF/SIF is generally applicable to any contaminating pro-
cesses that are ergodic and stationary, as well as any kinds
of predictive models. For the sake of presentation clarity as
the dimensionality of the IF increases with the number of
parameters, we use an AR(1) model with a single parameter
θ as the core process in the following experiments. The IF
is approximated by the slope of θ̂γ with respect to γ. The
SIF is given by the slope of g(γ, θ̂γ) over a set of γ values
passing (0, g(0, θ̂0)), where g(γ, θ̂γ) is estimated by the av-
erage of the first out-of-sample prediction. The parameter γ
controls the contribution of the contaminating process to the
input time series. We set the coefficient of the core process
as 0.7 and γ ∈ [0, 0.01]. Notice that we observed similar
results with other coefficients and thus, we only present the
results with this specific value. The same applies to other
experiments in this work. One can verify all the experimen-
tal results using our code, to be shared upon paper accep-
tance. The setting of contaminating processes, patchy size

k and predictive models in below experiments are given in
Table 1. Following Eq. (1), we obtain the contaminated time
series which is used to train the predictive models and esti-
mate θ̂γ and g(γ, θ̂γ) over a set of γ values. We repeat the
simulation 50 times and 1000 times for analysis of the IF
and the SIF, respectively, and calculate the mean and vari-
ance of the parameter estimation. First, we evaluate the IF
with respect to k, the parch size of outliers. The results are
shown in Fig. 1(a) together with the theoretical IF values for
the given predictive model. We observe that: (1) θ̂γ linearly
depends on γ and matches its theoretical value in the studied
range; (2) as k increases, the rate of linear dependency (i.e.,
the IF) decreases as suggested by Eq. (6). Second, we com-
pare different contaminating processes, i.e., i.i.d. N(0, 1)
and AR(1) with coef. −0.5. Fig. 1(b) shows that the influ-
ence of the auto-correlated contaminating process is larger
than white noise for patchy outliers. These studies verify
the implication of Lemma 2. Third, we compare the SIF
for predictive models AR(1) and RNN (Goodfellow, Ben-
gio, and Courville 2016). As shown in Fig. 1(c), the SIF of
the RNN model is larger than that of the AR(1) model, indi-
cating that a simple AR(1) predictive model is more robust
than the RNN model.

Exp Contaminating Patch Predictive
process size, k model

1st i.i.d. N(0, 1) 1, 2, 3 AR(1)
2nd i.i.d. N(0, 1) 3 AR(1)

AR(1), coef. −0.5
3rd i.i.d. N(0, 1) 3 AR(1), RNN

Table 1: Experiment Setting for Analysis of IF and SIF

Evaluation of Outlier Detection Methods
In this section, we demonstrate the evaluation of outlier de-
tection methods for time series data using the SIF. In prac-
tice, this can facilitate the identification of the most influ-
ential outliers and the selection of robust machine learning
techniques for time series forecasting. In particular, our pro-
posed technique is not restricted to any type of outlier detec-
tion methods.

Data The evaluation is based on three data sets: synthetic,
semi-synthetic, and electrocardiography (ECG) data, where
true outliers are known. Notice that actual outlier labels are
not required by using the SIF to evaluate outlier detection
methods. However, such labels allow us to verify the effec-
tiveness of using the SIF to compare various outlier detec-
tion methods. The synthetic data is created using an AR(2)
model with coefficients (0.7,−0.3) as the core time series,
an AR(1) with a coefficient 0.5 as the contaminating pro-
cess, k = 5, and γ = 0.3. For the semi-synthetic data,
a clean time series, real 35, is randomly selected from the
Yahoo! Webscope∗ and contaminated in the same way as
the synthetic data. The original ECG data is obtained from

∗http://labs.yahoo.com/Academic Relations
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(a) IF for different patch sizes (b) IF for different contaminating processes (c) SIF for different predictive models

Figure 1: Analysis of IF and SIF for core process AR(1) with coef. 0.7, γ ∈ [0, 0.006]. Dotted line denotes the theory value.

(a) Synthetic: AR(2) (b) Semi-synthetic: AR(2) (c) ECG Data: AR(3)

(d) Synthetic: RNN (e) Semi-synthetic: RNN (f) ECG Data: RNN

Figure 2: Ranking of outlier detection methods: sorted based on |SIF|. The Known denotes the method using true outliers.

Physionet† under the name BIDMC Congestive Heart Fail-
ure Database (chfdb), record chf07. Following (Klaise et al.
2020), the data is processed as follows: 1) each heartbeat is
extracted and made equal length via interpolation; 2) normal
seasonal signal is removed from the obtained time series us-
ing the Holt-Winters’ additive method; 3) the residual time
series is labeled as normal/abnormal heartbeats based on that
provided in (Klaise et al. 2020).

Setup We apply all the methods in the wrapped Nu-
menta Anomaly Benchmark (NAB)‡ tool to identify out-
liers except those fail to return results for the given data
sets. These methods include 1) Random: randomly se-
lected outliers; 2) EXPoSe (Schneider, Ertel, and Ramos
2016): distance-based; 3) Windowed Gaussian: distribution-
based; 4) Bayesian online Changepoint (Adams and
MacKay 2007): distribution-based; 5) KNN CAD (Bur-
naev and Ishimtsev 2016): combination of density- and
distance-based; 6) Numenta: prediction-based; 7) Numenta
HTM (Lavin and Ahmad 2015): rule- and prediction-based.

†https://physionet.org/content/chfdb/1.0.0/
‡https://github.com/numenta/NAB

For fairness, the thresholds are chosen such that all the meth-
ods return the actual number of outliers.

We use three ranking metrics, i.e., the magnitude of SIF
for a specific predictive model (AR(2) or RNN), Precision
(Prec.) of identified outliers and the Similarity (Sim.) of
model parameters. The Sim. is calculated based on 1/(1+d)
where d denotes the Euclidean distance between the real and
the estimated parameters using cleaned data based on the
results from various outlier detection methods.

Ranking Result The ranking results are presented in
Fig. 2 as the normalized bar charts, where the Known de-
notes the method using true outliers and has value 1 or ap-
proximately 1. For the AR(·) predictive models, the relative
ranking of various outlier detection methods based on the
magnitude of the SIF matches perfectly to that of Prec. and
the θ̂ Sim. based on the synthetic data and is pretty consis-
tent for the semi-synthetic data and ECG data as well. For
the RNN predictive model, the ranking results based on the
SIF are also largely consistent with Prec. and the θ̂ Sim. for
all the data sets. To further quantify the ranking similarity of
different criteria, we report the Kendall’s Tau coefficient in
Table 2, where all the coefficients are positive. This confirms
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Data Model SIF &Prec. SIF &θ̂ Sim.
Synth AR(2) 0.50 1.00
Synth RNN 0.43 0.36

Semi-Synth AR(2) 0.43 0.71
Semi-Synth RNN 0.21 0.43

ECG AR(3) 0.43 0.14
ECG RNN 0.29 0.64

Table 2: Kendall’s Tau Coefficient Summary

ACP |SIF| RMSE
ARMA(2, 2) 0.4263 0.7628 ± 0.0098

Two-Layer LSTM 0.3203 0.7516 ± 0.0169
Two-Layer RNN 0.1184 0.7431 ± 0.0098

Table 3: Comparison of ACP

the ranking consistency between the SIF without outlier la-
bels and other metrics utilizing outlier labels.

Crafting Adversarial Contaminating Processes
In this section, we demonstrate using the SIF to craft ad-
versarial contaminating processes (ACP) with the most in-
fluence on future predictions and provide insights into the
type of outliers that a predictive model is robust/sensitive to.
Again we use the real 35 data as the core time series, split
it into train and test (60 : 40) sets sequentially, normalize
the train set to mean 0 and standard deviation 1, and train an
LSTM predictive model.

First, we illustrate that the SIF can be applied to select
the structure of contaminating time series that a predictive
model is most vulnerable to. We set k = 1 and generate con-
taminating processes using autoregressive moving-average
(ARMA) model, two layers RNN, and LSTM (Hochreiter
and Schmidhuber 1997), which are used to compute the cor-
responding SIF values. To be specific, we randomly select
the coefficients for the ARMA(2, 2) model under the con-
straint of the stationary triangle (Jürgen Franke 2015), and
choose the LSTM and RNN models with two layers and
256 hidden states. Notice that the optimal parameters of the
selected model are discussed in the next step. In practice,
these two steps are entangled but we split them into two
for ease of illustration. Given the trained LSTM predictive
model, the maximum absolute SIF value is obtained from
the ARMA(2, 2) model, as shown in Table 3. This implies
that in this specific setting and given data structures, the
LSTM predictive model is most sensitive to the ARMA type
of outliers. To validate this observation, we conduct further
experiments. We randomly contaminate the train set with
10% outliers using the same data structures. Given the con-
taminated train sets, we retrain the LSTM models and obtain
their root mean square error (RMSE) on the uncontaminated
test data. We fix the contaminating process parameters and
repeat the experiment 100 times, the mean and the standard
deviation of the RMSEs are reported in Table 3. We observe
that the SIF values increase with the RMSEs, and the maxi-
mum SIF and RMSE correspond to the same contaminating
process, ARMA.

Figure 3: The Best ARMA model achieves the largest SIF
value and RMSE on the uncontaminated test set.

Following the above experiments, we illustrate using the
SIF values to seek the optimal ARMA parameters that
can contaminate the core process with the most adver-
sarial influence on future predictions and raise no suspi-
cion. To this end, we determine the optimal ARMA co-
efficients by maximizing the SIF2 under the constraint
of the stationary triangle. We solve the constrained opti-
mization problem using SLSQP (Kraft 1988), a standard
package available in Python. To avoid suspicion, during
each optimization iteration, the generated contaminating
time series is scaled to have the same mean and standard
deviation as the core process. Finally, we obtain coeffi-
cients [(0.563, 0.437) , (5.55, 1.829)]. To validate this set of
ARMA coefficients is indeed lead to the most influential
ACP with respect to the LSTM predictive model, we ran-
domly select the coefficients as before and repeat 100 times.
For the 100 sets of contaminating process parameters, again
we obtain their corresponding RMSEs in the test set and re-
port the mean and standard deviation over a range of γ value
in Fig. 3, where the Best ARMA indicates the ARMA model
with the optimal coefficients. Fig. 3 shows that the RMSE
of the Best ARMA is consistently larger than that of the ran-
domly selected coefficients on average.

All the experiments in this work are done on a Macbook
Pro with Intel(R) Core(TM) i7 CPU and 16 GB memory.
The code is written under Python 3.6 with TensorFlow 1.12.

Conclusion
In this paper, we study recurring outliers in time series data
and aim to provide a systematic way of measuring the im-
pact of such outliers on time series analysis. To this end,
we use the contaminated process to model the input time
series. At each timestamp, the observation has a small prob-
ability of coming from the contaminating process, i.e., the
outliers. Then we introduce the influence functional from
robust statistics to quantify the impact of the contaminat-
ing process on the parameter estimation. For the sake of out-
lier interpretation and evaluation of existing outlier detection
methods, we further propose a single-valued metric named
the SIF to characterize the impact of the contaminating pro-
cess on future predictions, and analyze its properties from
various aspects. Notice that the proposed techniques can be
naturally extended to multivariate time series analysis. Ex-
perimental results demonstrate the proposed approach from
various aspects, especially for the use of evaluating existing
outlier detection methods and crafting ACP.
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Appendix
Proof of Lemma 2 To estimate the parameter θ in AR(1)
model, a commonly used objective function uses the least
squares error 1

m

∑m
i=1(yγi − θy

γ
i−1)2, where m denotes the

total number of time stamps. As a result,

Ψ̃(yγm, θ) =
∂

∂θ

1

m

m∑
i=1

(yγi − θy
γ
i−1)2

= − 2

m

m∑
i=1

(yγi − θy
γ
i−1)yγi−1

On the other hand, using Equation (4.2) in (Martin and Yohai
1986), we have

C =
∂ExΨ̃(xm, θ)

∂θ

∣∣∣∣
θ=θ̂0

=
2

m

m−1∑
i=0

Ex(x2i )

where xm denotes the core time series up to time stamp m.
On the other hand, plugging the above equation into

Lemma 1, we have

IF(θ, {µγy}) = lim
γ→0
− 1

γ

Ey(
∑m
i=1(yγi − θ̂

0yγi−1)yγi−1)∑m−1
i=0 Ex(x2i )

= lim
γ→0
− 1

γ

Ey(yγ1 y
γ
0 )− θ̂0Ey(yγ)2

Ex(x2)

Next, we analyze Ey(yγ1 y
γ
0 ), and Ey(yγ0 )2 respectively.

Since
yγi = (1− zγi )xi + zγi ωi

we have
Ey(yγ1 y

γ
0 ) = Ey(yγ1 y

γ
0 |z

γ
0 = 0, zγ1 = 0)P (zγ0 = 0, zγ1 = 0)

+ Ey(yγ1 y
γ
0 |z

γ
0 = 1, zγ1 = 0)P (zγ0 = 1, zγ1 = 0)

+ Ey(yγ1 y
γ
0 |z

γ
0 = 0, zγ1 = 1)P (zγ0 = 0, zγ1 = 1)

+ Ey(yγ1 y
γ
0 |z

γ
0 = 1, zγ1 = 1)P (zγ0 = 1, zγ1 = 1)

= Ex(x1x0)P (zγ0 = 0, zγ1 = 0)

+ Ex(x)Eω(ω)P (zγ0 = 1, zγ1 = 0)

+ Eω(ω)Ex(x)P (zγ0 = 0, zγ1 = 1)

+ Eω(ω1ω0)P (zγ0 = 1, zγ1 = 1)

For patchy outliers with size k, due to the relationship be-
tween zγi and the binomial B(1, q) sequence z̃qi , it is easy to
prove that

P (zγi = 1) = γ − k − 1

2k
γ2 + o(γ2)

and the joint probability

P (zγ1 = 1, zγ0 = 1) = P (∃l ∈ {1, . . . , k − 1}, s.t. z̃q1−l = 1)

+ P (z̃q1 = 1, z̃q1−k = 1, z̃q1−l = 0, l = 1, . . . , k − 1)

=
k − 1

k
γ − k − 3

2k
γ2 + o(γ2)

By similar way of analysis, we can show that

P (zγ1 = 1, zγ0 = 0) =
γ

k
− γ2

k
+ o(γ2)

P (zγ1 = 0, zγ0 = 1) =
γ

k
− γ2

k
+ o(γ2)

P (zγ1 = 0, zγ0 = 0) = 1− k + 1

k
γ +

k + 1

2k
γ2 + o(γ2)

On the other hand,

Ey(yγ)2 = Ex(x2)P (zγi = 0) + Eω(ω2)P (zγi = 1)

= Ex(x2)(1− γ +
k − 1

2k
γ2 + o(γ2))

+ Eω(ω2)(γ − k − 1

2k
γ2 + o(γ2))

Finally, based on the definition of θ̂0, we have∫
Ψ̃(xm, θ̂

0)dµx = 0 (11)

where

Ψ̃(xm, θ̂
0) = − 2

m

m∑
i=1

(xi − θ̂0xi−1)xi−1 (12)

Combined with the stationary property of the core process,
we have Ex(x1x0) = θ̂0Ex(x2).

Putting everything together, we complete the proof. �
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