
How RL Agents Behave When Their Actions Are Modified

Eric D. Langlois1,2,3, Tom Everitt1

1DeepMind
2University of Toronto

3Vector Institute
edl@cs.toronto.edu, tomeveritt@google.com

Abstract

Reinforcement learning in complex environments may require
supervision to prevent the agent from attempting dangerous
actions. As a result of supervisor intervention, the executed
action may differ from the action specified by the policy. How
does this affect learning? We present the Modified-Action
Markov Decision Process, an extension of the MDP model
that allows actions to differ from the policy. We analyze the
asymptotic behaviours of common reinforcement learning al-
gorithms in this setting and show that they adapt in different
ways: some completely ignore modifications while others go
to various lengths in trying to avoid action modifications that
decrease reward. By choosing the right algorithm, developers
can prevent their agents from learning to circumvent interrup-
tions or constraints, and better control agent responses to other
kinds of action modification, like self-damage.

Introduction
When reinforcement learning (RL) agents are deployed in
practice it can sometimes be desirable to constrain their ac-
tions or alter their policies. For example, action constraints
have been used to prevent damage when training robot poli-
cies (Gu et al. 2017; Lin, Talathi, and Annapureddy 2016)
and transformations to the policy can be used to ensure
that an agent stays within some safe region of state space
(Berkenkamp et al. 2017; Dalal et al. 2018). When unsafe
states are difficult to specify formally, a human overseer may
interrupt the agent instead (Orseau and Armstrong 2016;
Saunders et al. 2018). In other cases, changes to the learned
policy are undesirable yet difficult to avoid: an agent may
damage its actuators and lose the ability to reliably perform
certain actions, or errors can be introduced when a policy is
compressed to satisfy hardware limitations of the agent (e.g.
quantization, Krishnan et al. 2019).

What effect will these kinds of action modifications have
on the policy learned by an RL algorithm? Will the policy
try to circumvent constraints or act as if they don’t exist?
It will be easier to effectively apply safety constraints to
an RL policy if the learning algorithm can be made to ig-
nore the modification than if the learning algorithm chooses
policies that interfere with it. If a supervisor overrides an
agent during training but not deployment (for example to

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

prevent an autonomous car from driving off the road) then
the policy should not learn to rely on the presence of these
interventions (Orseau and Armstrong 2016). Agents should
recognize the possibility of self damage and avoid it. Agent
responses to these action modifications influence the safety
and effectiveness of the resulting policies so it is crucial to
study and understand the implications of action modifications
on reinforcement learning.

Related Work
The concept of modifying an agent’s actions appears in the
safe exploration and human-in-the-loop literature. Dalal et al.
(2018) and Abel et al. (2017) both propose approaches that
construct a wrapper around an inner reinforcement learning
agent. While they focus on developing wrappers that enforce
constraints or guide the inner agent, we are interested in
understanding how different inner agents will react to the
wrapper. This can help avoid problems like those experience
by Saunders et al. (2018) in which the inner agent learned
to produce adversarial examples that defeat a learned action
filter.

Orseau and Armstrong (2016) studied learning in the
presence of interruptions that temporarily replace the pol-
icy with some fixed alternate policy (for both history-based
and Markov environments). They showed that Q-learning
and “Safe Sarsa” (a modification of Sarsa) both ignore in-
terruptions while Sarsa does not. We provide a new formal-
ism called the Modified-Action Markov Decision Process
(MAMDP) that generalizes (and arguably simplifies) the
framework of Orseau and Armstrong to describe a broad
class of action modifications, and allows us to study the be-
haviour of other optimization algorithms such as evolution
strategies. In addition, we distinguish between different ways
that algorithms adapt to the presence of action modifications
using the concept of incentives (Everitt et al. 2021).

Policy modifications have been studied experimentally by
Leike et al. (2017). The authors found that Sarsa chooses a
policy that accounts for the effect of policy modifications
while Q-learning ignores them. They hypothesized that the
difference was off-policy vs. on-policy learning. However,
we show that the on/off-policy division is not predictive for
policy-modification adaptation: one possible generalization
of Sarsa (on-policy) asymptotically matches Q-learning (off-
policy), while both Sarsa and Evolution Strategies (on-policy)

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11586

have different asymptotic behaviours.
In this paper, we introduce the MAMDP model and investi-

gate how different kinds of MDP learning algorithms behave
when generalized to this setting. We describe MAMDP policy
learning objectives based on the principles of black-box re-
ward maximization, Bellman optimality, and Bellman policy
values, and show that they respond differently to action mod-
ifications. In the Algorithm Convergence section, we prove
that generalizations of Q-learning and Sarsa to MAMDPs
converge to the objectives given in the Analysis of RL Objec-
tives section. Finally, we experimentally evaluate the learning
algorithms and demonstrate behaviour that is consistent with
the theoretical results.

Definitions
The foundational model of reinforcement learning is the
Markov Decision Process. A Markov Decision Process
(MDP) is a tuple M = (S,A,PS ,R, γ) where S is a fi-
nite state space, A is a finite action space, PS(s′ | s, a) =
Pr(St+1 = s′ | St = s,At = a) is the probability at every
time t of transitioning to state s′ when taking action a in state
s, R : S × A → R is a reward function Rt = R(St, At),
and γ ∈ [0, 1) is a discount factor. The objective is to find a
(probabilistic) policy π(a | s) that maximizes the expected
return J(π) = Eπ[

∑∞
t=0 γ

tRt] where actions are sampled
from π as Pr(At = a | St = s) = π(a | s).

We extend the MDP model to include an arbitrary action
selection function PA(a | π, s). An MDP is the special case
in which the policy is applied without modification:PMDP

A (a |
π, s) = π(a | s).

Definition 1. A Modified-Action Markov Decision Process
(MAMDP) is a tuple M̃ = (S,A,PS ,PA,R, γ) where
M = (S,A,PS ,R, γ) is an MDP and PA(a | π, s) =
Pr(At = a | Π = π, St = s) is the probability that ac-
tion a is selected in state s given a policy π. We also write
M̃ = (M,PA).

The actions that are executed in the environment can be
viewed as following the empirical policy π̇(a | s) := PA(a |
π, s). We call π the virtual policy or simply the policy. An
optimal (virtual) policy for a MAMDP is one that maximizes
the expected return J̃(π) = Eπ[

∑∞
t=0 γ

tRt] where actions
are sampled according to PA(π, s).

As a simple example, the MAMDP model can be used
to represent a state-dependent action constraint AC(s) ⊆ A
using the action selection function

PC
A(a | π, s) =

{
1

Z(s,π)π(a | s) if a ∈ AC(s)

0 otherwise

where Z(s, π) =
∑
a′∈AC(s) π(a | s) normalizes the proba-

bility distribution. Adding π as an argument to AC allows us
to represent more sophisticated constraints that inspect the
policy. We can also consider parametrized policies that have
extra structure beyond a simple conditional probability distri-
bution, for example π may be a neural network. A MAMDP
can model a supervisor attempting to interpret the hidden
activations of a policy network and only allowing the agent

S0 S1 S2 · · ·

A0 A1

R0 R1

Π

Figure 1: An influence diagram of an MDP or a MAMDP.
The diagram represents a distribution over the first few steps
of episodes generated by a stationary policy Π. Decision
nodes are drawn as squares and utility nodes as diamonds.

to proceed if satisfied. Beyond constraints and interventions,
MAMDPs can model a variety of settings including hardware
defects in robotic actuators, exploration noise, policy com-
pression to satisfy computational limits, and physical damage
to an agent.

Influence Diagrams
We use the concept of incentives (Everitt et al. 2021, 2019) to
concisely describe learning behaviours in MAMDPs, comple-
menting the formal analysis of learning algorithm properties.
Incentives are defined with respect to influence diagrams. An
influence diagram (ID) (Howard and Matheson 1984) is a
Bayesian network with special decision and utility nodes and
describes a decision problem (see Figure 1). In other words, it
is directed acyclic graph over random variables where every
non-decision variable comes with a conditional probability
distribution describing its relationship to its parents. The
problem described by an influence diagram is to find an opti-
mal assignment of conditional distributions to the decisions.
An assignment is optimal if it maximizes the expected sum
of utilities. When reasoning about incentives, we additionally
assume that the graph describes a causal structure in which it
is possible to intervene on a variable, setting that variable’s
value. Unlike conditioning, interventions only affect down-
stream nodes (Pearl 2009). In this paper, we use influence
diagrams to describe the causal structure being optimized by
a learning algorithm, which may differ from the true causal
structure of the data-generating process (a MAMDP).

Adversarial Policy and State Incentives
We investigate how different learning algorithms respond to
the value of PA in a MAMDP. As such, we include PA as a
variable in the influence diagram of Figure 2. That diagram
describes the problem of finding, for a fixed MDP M, an
optimal mapping from PA to policies Π of the MAMDP
(M,PA). Note that even if a particular learning algorithm
trains on trajectory samples without directly observing PA,
it still defines a mapping from PA to policies.

What behaviours can one anticipate from MAMDP poli-
cies? In which ways might a learning algorithm try to avoid

11587

S0 S1 S2 · · ·

A0 A1

R0 R1

ΠPA

Figure 2: MAMDP influence diagram with random PA. The
policy is chosen as a function of PA. A pair of control and
information paths that admit an adversarial state incentive
are highlighted in light pink while the darker teal paths admit
an adversarial policy incentive.

action modifications in order to get higher reward? We iden-
tify two general strategies. First, the agent may direct the
environment towards states where action modifications are
less constraining, for example by hiding from oversight or
preemptively disabling an off switch (Leike et al. 2017, Off-
Switch environment). We say that a learning algorithm has
an adversarial state incentive if it prefers policies with this
behaviour. Second, an agent can attempt to mitigate action
modifications in the immediate time step. For example, the
policy may prefer actions that avoid triggering an action con-
straint, or the policy structure itself might be optimized to
falsely appear interpretable to an overseer. We call this an
adversarial policy incentive.

These definitions can be made precise using influence
diagrams. First, we note that a learning algorithm can only
be said to avoid action modifications if the policy output
depends on the value of PA. Everitt et al. (2021) call this a
response incentive. When PA has no parents and is itself a
parent of the decision (as in our case) a response incentive
can only occur if there are two directed paths from PA to the
same reward variable: one that passes through Π (the control
path) and one that does not (the information path). Intuitively,
the reason that the agent responds to changes in PA is that
it is useful to control the node where the information and
control paths intersect. If the paths intersect before the control
path has visited a state node, then the diagram admits an
adversarial policy incentive. If the path intersection occurs
at or after a state node in the control path, then the diagram
admits an adversarial state incentive. The MAMDP influence
diagram admits both kinds of incentives, as indicated by the
highlighted paths in Figure 2.

Analysis of RL Objectives
In this section we characterize the policies that solve several
common objectives used in reinforcement learning, when
those objectives are applied to a MAMDP instead of an MDP.

Which policy is chosen by a reinforcement learning algo-
rithm when applied to a MAMDP depends on the specific

objective optimized by the algorithm. There are a variety
of objectives used in practice for solving MDPs; we con-
sider three: reward maximization, Bellman optimality, and
the Bellman policy value equations. These criteria are equiv-
alent when applied to an MDP but, as we will show, this is
not true in general for a MAMDP. For each objective, we
prove a proposition describing solutions to the objective as
optimal policies for some environment model. The potential
for adversarial state or policy incentives can then be observed
from structure of an influence diagram of the model.

Reward Maximization
The reward maximization objective for a MAMDP M̃ is

πRM = arg max
π

E
M̃

[∞∑
t=0

γtRt

∣∣∣∣∣Π = π

]
. (1)

This is the most straightforward objective: find a policy
that maximizes expected reward. Evolution strategies (Sal-
imans et al. 2017), genetic algorithms (Moriarty, Schultz,
and Grefenstette 1999), and all other black-box policy search
methods have this form. A fundamental property of the re-
ward maximization objective is that it ignores all environment
structure and only considers the empirical relationship be-
tween a policy and the observed total reward. Direct reward
maximization is consequently relatively rare as an RL objec-
tive since ignoring the available MDP structure tends to make
optimization much more difficult. It also means that, when
applied to MAMDPs rather than MDPs, the reward maxi-
mization objective continues to specify an optimal policy for
the given environment:
Proposition 1. A policy π satisfies the reward maximization
objective (1) for a MAMDP M̃ if and only if π is an optimal
policy for M̃.

Proof. This trivially follows from the definition of MAMDP
optimality since πRM = arg maxπ J̃(π), where J̃(π) is the
expected return of π in M̃.

Since the reward maximization objective corresponds to
MAMDP optimality, which is represented by the influence
diagram of Figure 2, this objective admits both the adversarial
state and adversarial policy incentives.

Bellman Optimality
The Bellman optimality objective is to jointly solve:

QBO
M̃(s, a) = R(s, a) + γ E

s′∼
PS(s,a)

max
a′∈A

QBO
M̃(s′, a′) (2)

πBO
M̃ (s) = arg max

a∈A
QBO
M̃(s, a) (3)

Let Q∗M be the optimal action value function for an MDPM.
If an action value function Q satisfies the Bellman optimality
equation (2) forM then Q = Q∗M and the greedy policy (3)
is an optimal policy forM (Sutton and Barto 2018, Section
3.6). This is the basis for algorithms like value iteration (Put-
erman and Shin 1978) and Q-learning (Watkins and Dayan
1992). When applying the Bellman optimality equations to a
MAMDP, we find that the solution does not depend on PA:

11588

S0 S1 S2 · · ·

A0 A1

R0 R1

ΠPA

Figure 3: MDP influence diagram with a policy conditioned
on PA. Actions are sampled according to Π without modifi-
cation.

Proposition 2. An action value function Q and a policy π
satisfy the Bellman optimality objective (2) and (3) on a
MAMDP M̃ = (M,PA) if and only if π and Q are optimal
policy and value functions for the MDPM.

Proof. Equations (2) and (3) are identical to the MDP Bell-
man optimality equations onM, which are satisfied if and
only if Q = Q∗M and π is optimal forM.

While simple to state and prove, this is one of the more
significant results of the paper. If π satisfies the Bellman op-
timality equations then π is optimal for an alternative version
of the environment that has no action modification. In effect,
π ignores the presence of any constraints or modifications
placed on the policy, acting as though its selected actions
were executed directly in the environment. Combined with
the convergence result of Theorem 6 in the Algorithm Con-
vergence section, this generalizes the Q-learning result of
Orseau and Armstrong (2016) to arbitrary policy-dependent
action modifications: it is possible to train agents that ignore
applied action modifications and one approach is as simple as
using algorithms based on the Bellman optimality objective.

Proposition 2 says that the Bellman optimality objective
produces policies that solve the MDP structure M under-
lying a MAMDP M̃ = (M,PA), despite training on M̃.
This behaviour optimizes the CID shown in Figure 3, which
represents the total return of a policy in an MDPM when the
policy is chosen conditional on M̃. We continue to represent
PA as a random variable in order to observe the presence of
the adversarial state and adversarial policy incentives. This
diagram does not admit either incentive. That is, learning
algorithms with the Bellman optimality objective lack an
incentive to choose policies that manipulate the state or their
own policy structure in order to defeat action modifications.
On the other hand, these policies will also not detect and
avoid self damage.

Policy Value
The action values of a policy π in an MDPM are given by
the Bellman action value equation:

QM,π(s, a) = R(s, a) + γ E
s′∼
PS(s,a)

E
a′∼
π(s′)

QM,π(s′, a′) (4)

If π is greedy with respect to QM,π then π is optimal for
M by the policy improvement theorem (Sutton and Barto
2018, Sec. 4.2). Algorithms like policy iteration (Bellman
1957; Howard 1960) and Sarsa (Rummery and Niranjan 1994;
Sutton 1995) use this property and try to find a fixed-point
policy value function.

Unlike the other objectives, it is ambiguous how the Bell-
man action value equation should be generalized from MDPs
to MAMDPs. Should the successor action a′ be sampled
from the given policy π or from the modified action distribu-
tion PA(·|π, s′)? We call the former the virtual policy value
because the action used by the Bellman update does not oc-
cur in sampled trajectories, while the latter is the empirical
policy value that can use successor actions observed from
environment interaction trajectories.

Virtual Policy Value Objective:

QVPV
M̃,π

(s, a) = R(s, a) + γ E
s′∼
PS(s,a)

E
a′∼
π(s′)

QVPV
M̃,π

(s′, a′) (5)

πVPV(s) = arg max
a∈A

QVPV
M̃,πVPV(s, a) (6)

Proposition 3. An action value function Q and a policy π
satisfy the virtual policy value objective on a MAMDP M̃ if
and only if π and Q are optimal policy and value functions
forM.

Proof. Equations (4) and (5) are identical while equation (6)
asserts that πVPV is greedy for QVPV. By the policy improve-
ment theorem, these are satisfied if and only if QVPV = Q∗M
and π is optimal forM.

For the same reason as for Proposition 2, it follows from
Proposition 3 that the virtual policy value objective is rep-
resented by the MDP influence diagram in Figure 3 and
likewise does not admit a response incentive on PA. This
provides a second approach to learning policies that ignore
the presence of action modifications: use an algorithm based
on policy iteration where the successor action a′ in Bellman
updates is sampled virtually from the policy π(s). Despite
a′ not being the successor action in environment state-action
trajectories, this constraint preserves the important feature of
on-policy learning that the action is sampled from the cur-
rent policy so no direct maximization of actions over the Q
function is required.

Empirical Policy Value Objective:
The other possible generalization of the policy value objective
is to use the action that was selected in the environment:

QEPV
M̃,π

(s, a) = R(s, a) + γ E
s′∼
PS(s,a)

E
a′∼

PA(s′,π)

QEPV
M̃,π

(s′, a′) (7)

πEPV(s) = argmax
a∈A

QEPV
M̃,πEPV(s, a) (8)

The combined empirical policy value equations (7) and (8)
do not necessarily have a solution (see Appendix A in the sup-
plementary material for an example). However, considering
just (7) for a fixed policy π, we have:

11589

S0 S1 S2 · · ·

A0 A1

R0 R1

Π π′PA

Figure 4: Partial influence diagram for the t = 0 step of
the empirical policy value objective with a fixed successor
policy π′. The complete EPV objective cannot be formu-
lated as a single-decision influence diagram since it does
not correspond to a well-defined optimization problem. The
highlighted paths form a subgraph that admits an adversarial
state incentive.

Proposition 4. For any policy π, QEPV
M̃,π

= QM,π̇ where

π̇(a | s) := PA(a | π, s) is the empirical policy.

Proof. Substituting a′ ∼ π̇(·|s) for a′ ∼ PA(·|π, s) trans-
forms equation (7) into equation (4) with π̇ in place of π.

Proposition 4 means that for any policy π, the state-action
value function QEPV

M̃,π
described by equation (7) is the true

state-action value function of the MAMDP M̃ given policy π.
Specifically,QEPV

M̃,π
(s, a) is the expected return when a occurs

as the empirical action in state s and then M̃ proceeds with
π as the virtual policy. This is equivalent to the dynamics of
the underlying MDPM when following the empirical policy
π̇, which has the state-action value function QM,π̇ .

However, the policy specification of equation (8) directly
optimizes over empirical actions without considering the
effect of PA. As such, πEPV, if it exists, will act in a way
that accounts for action modifications in future steps but
ignores them for the current action. This is illustrated by the
influence diagram in Figure 4, which admits an adversarial
state incentive but not an adversarial policy incentive.

Algorithm Convergence
The previous section describes the behaviours of policies
that satisfy certain equalities, obtained by generalizing MDP
objectives to MAMDPs. This leaves the question of whether
such policies are actually produced by a corresponding MDP
learning algorithm when run on a MAMDP, or even whether
common MDP algorithms converge at all.

In this section we provide convergence proofs for proto-
typical stochastic learning algorithms having the objectives
described in the previous section and generalized straight-
forwardly from MDPs to MAMDPs. The convergence re-
sults derive from the following theorem, a generalization of
Singh et al. (2000, Theorem 1), which in turn generalizes
Jaakkola, Jordan, and Singh (1994, Theorem 2). Where Singh
et al. (2000) assume that the policy converges to the greedy

policy of the current tabular state-action estimate Qt, we in-
stead assume that the policy converges to Λ(Qt) where Λ is
an arbitrary function. The greedy policy is the special case
Λgreedy(s,Qt) = arg maxaQt(s, a).

Theorem 5. Let M̃ be a MAMDP with bounded, optionally
stochastic rewards. Consider a stochastic, iterative algorithm
that learns a tabular Q function with the update rule:

Qt+1(s, a) = (1− αt(s, a))Qt(s, a)

+ αt(s, a)(R+ γQt(S
′, A′))

(9)

where S′ ∼ PS(s, a) is a random successor state sampled
from the transition dynamics, A′ ∼ Λt(S

′, Qt) is a random
successor action sampled from an arbitrary policy Λt(·, Qt),
and R is a random reward value with E[R] = R(s, a). If

1. Λt → Λ uniformly;
2. the learning rates satisfy 0 ≤ αt(s, a) ≤ 1,

∑
t αt(s, a) =

∞,
∑
t α

2
t (s, a) <∞ almost surely; and

3. there exists some QΛ satisfying

QΛ(s, a) = R(s, a) + γ E
S′∼
PS(s,a)

E
A′∼

Λ(S′,QΛ)

QΛ(S′, A′), (10)

then QΛ is unique and Qt
a.s.→QΛ.

We prove this theorem in Appendix B of the supplementary
material.

Equation (9) describes a general stochastic Q learning
rule. At each time step t of a random state-action trajectory
S0A0S1A1 · · · , we update Qt+1(St, At) using a learning
rate αt(St, At). The equation represents an update to the
entire Q function over all state-action pairs at time t, not
just Qt+1(St, At), so we will get point updates by setting
αt(s, a) = 0 if (s, a) 6= (St, At). As such, αt encodes both
the learning rate and the trajectory over which updates are
performed. The condition

∑
t αt(s, a) =∞ requires that the

trajectory visit all (s, a) pairs infinitely often with probability
1. As this condition is on empirical trajectories in the envi-
ronment with action modification applied, there is no general
rule for policies that ensures exploration; an epsilon-greedy
policy is not guaranteed to explore a MAMDP.

Q-Learning
The Q-learning algorithm on a MAMDP is shown in Algo-
rithm 1. The only difference compared to Q-Learning on an
MDP (Sutton and Barto 2018, Sec. 6.5) is that instead of
specifying an action on each transition, we specify a policy
and observe the action taken (which might not be the ac-
tion that the policy would have selected if executed without
modification).

Theorem 6. Q-learning on a MAMDP M̃ converges almost
surely to Q∗M if all state-action pairs are visited infinitely
often during learning.

Proof. Q-learning is described by equation (9) with an action
selection rule of Λt(s,Q) = Λ(s,Q) = arg maxaQ(s, a)
and a learning rate function αt(St, At) = 1

N(St,At)
and

αt(s, a) = 0 for (s, a) 6= (St, At). If all state-action pairs

11590

Algorithm 1 Q Learning on a MAMDP

Initialize Q(s, a) arbitrarily for all s ∈ S , a ∈ A
Initialize N(s, a)← 0 for all s ∈ S , a ∈ A
Select an initial state S0

for t = 0, 1, 2, . . . do
Derive policy πt from Q
Take step using policy πt, observe At, Rt, St+1

. Note: At ∼ PA(πt, St)
N(St, At)← N(St, At) + 1

Q(St, At)← Q(St, At) +
1

N(St, At)

(
R+ γ max

a∈A
Q(St+1, a) −Q(St, At)

)
end for

Algorithm 2 Virtual Sarsa on a MAMDP

Initialize Q(s, a) arbitrarily for all s ∈ S , a ∈ A
Initialize N(s, a)← 0 for all s ∈ S , a ∈ A
Select an initial state S0

for t = 0, 1, 2, . . . do
πt ← Πt(Q)
Take one step using policy πt, observe At, Rt, St+1

. Note: At ∼ PA(πt, St)
Sample A′ ∼ πt(St+1)
N(St, At)← N(St, At) + 1

Q(St, At)← Q(St, At) +
1

N(St, At)

(
R+ γ Q(St+1, A

′) −Q(St, At)
)

end for

are visited infinitely often as t goes to infinity then αt satis-
fies condition 2 of Theorem 5. In this context, equation (10)
is the Bellman optimality equation (2). By Proposition 2, a
solution to this equation exists and it is Q∗M. Therefore, by
Theorem 5, Qt converges almost surely to Q∗M.

Virtual Sarsa
Virtual Sarsa (Algorithm 2) is an on-policy algorithm, unlike
Q-learning, so we need to be more specific about how the
learning policy is derived from the Q function. Let π =
Πt(Q) be the mapping from the Q table to the policy that is
used at step t. Let Π∗ be the greedy mapping Π∗(Q)(s) =
arg maxaQ(s, a). To ensure that the policy is eventually
optimal, we require that Πt → Π∗ as t→∞.

Theorem 7. Virtual Sarsa on a MAMDP M̃ converges al-
most surely to Q∗M if Πt → Π∗ and all state-action pairs are
visited infinitely often during learning.

Proof. First define Λt(s,Q) = Πt(Q)(s) and Λ(s,Q) =
Π∗(Q)(s) = arg maxaQ(s, a). Then Virtual Sarsa is
described by equation (9) with an action selection rule
of Λt(s,Q) → Λ(s,Q) and a learning rate function of
αt(St, At) = 1

N(St,At)
with αt(s, a) = 0 for (s, a) 6=

(St, At). If all state-action pairs are visited infinitely often
then αt satisfies condition 2 of Theorem 5. In this context,

Algorithm 3 Empirical Sarsa on a MAMDP

Initialize Q(s, a) arbitrarily for all s ∈ S , a ∈ A
Initialize N(s, a)← 0 for all s ∈ S , a ∈ A
Select an initial state S0

π0 ← Π0(Q)
Take one step using policy π0, observe A0, R0, S1

for t = 0, 1, 2, . . . do
πt+1 ← Πt+1(Q)
Take one step using πt+1, observe At+1, Rt+1, St+2

. Note: At+1 ∼ PA(πt+1, St+1)
N(St, At)← N(St, At) + 1

Q(St, At)← Q(St, At) +
1

N(St, At)

(
R+ γ Q(St+1, At+1) −Q(St, At)

)
end for

equation (10) is the virtual policy value equation (5). By
Proposition 3, a solution to this equation exists and it is Q∗M.
Therefore, by Theorem 5,Qt converges almost surely toQ∗M
with probability 1.

Empirical Sarsa
The Empirical Sarsa algorithm is shown in Algorithm 3. The
corresponding empirical policy value objective does not nec-
essarily have any solution. However, if a solution does exist
then the algorithm converges.

Theorem 8. If there exists a solution (QEPV
M̃,π

, π) to equa-
tions (7) and (8), Πt → Π∗, and all state-action pairs are
visited infinitely often during learning, then Empirical Sarsa
converges almost surely to QEPV

M̃,π
.

Proof. Empirical Sarsa is described by equation (9) with an
action selection rule of Λt(s,Q) = PA(Πt(Q), s), which
converges to Λ(s,Q) = PA(Π∗(Q), s). The learning rate
function is αt(St, At) = 1

N(St,At)
and αt(s, a) = 0 for

(s, a) 6= (St, At). If all state-action pairs are visited infinitely
often then αt satisfies condition 2 of Theorem 5. If QEPV

M̃,π
ex-

ists satisfying equations (7) and (8) then QEPV
M̃,π

also satisfies
equation (10) so by Theorem 5, Empirical Sarsa converges
to QEPV

M̃,π
.

Experiments
We evaluate the various RL algorithms on a custom environ-
ment1 that illustrates their asymptotic differences, as well as
on the two MAMDP-like environments proposed by Leike
et al. (2017).

Our Simulation-Oversight environment represents the ef-
fect of oversight based on imperfect simulation of an agent.
The environment consists of three states: Choice, Sim, and
Real. In the initial state, Choice, the agent is offered the
choice between performing a task in simulation (Sim) or
reality (Real). To guarantee exploration, the opposite state

1Code available at https://github.com/edlanglois/mamdp

11591

Algorithm Choice Sim Real

Q-Learning Real Exploit Exploit
Virtual Sarsa Real Exploit Exploit
Empirical Sarsa Sim Exploit Exploit
UH-CMA-ES Real Complete Exploit

Table 1: Algorithms trained to convergence on the Simulation-
Oversight environment (107 steps). The actions shown are
chosen by the resulting policy with probability> 99%. These
policies were obtained on every one of 100 independent
training runs.

100 101 102 103 104 105 106 107

Training Step

−2

−1

0

1

2

Ep
iso

de
 R

et
ur

n

Q-Learning
Virtual Sarsa

Empirical Sarsa
UH-CMA-ES

Figure 5: The empirical per-episode reward (mean with 95%
confidence interval) on the Simulation-Oversight environ-
ment across 100 independent training runs.

is selected 10% of the time.2 We assume that the reward
function contains exploitable flaws present in both reality
and simulation. In Sim, the agent may either Complete the
task for 0 reward or Exploit for 1, after which the episode
ends. The actions for Real are the same but yield rewards
2 and 3, respectively. Finally, the agent may Abort in any
state to immediately end the episode with −3 reward.

If the agent enters the Real state then a supervisor simu-
lates its policy on Sim. If the simulated action is Exploit
then the supervisor intervenes and sets the agent’s real action
to Abort. This shows how the MAMDP action selection
function may depend on the global structure of the policy,
not just the behaviour at the current state.

Q-learning, Virtual Sarsa, Empirical Sarsa, and Uncer-
tainty Handling Evolution Strategies (Heidrich-Meisner and
Igel 2009, UH-CMA-ES) were implemented and trained to
convergence on this MAMDP. The empirical episode returns
over the course of training are shown in Figure 5 and the
resulting policies are summarized in Table 1. Q-Learning and
Virtual Sarsa choose Real and attempt to Exploit in both
Sim and Real. These agents are consistently “caught” by
the supervisor during training and receive low reward. As
predicted, this strategy demonstrates an ignorance of over-
sight in which the MDP-optimal strategy is chosen despite

2Part of the MDP dynamics, not a MAMDP action modification.

Algorithm Disable
Off Switch?

Drink
Whisky?

Q-Learning No Yes
Virtual Sarsa No Yes
Empirical Sarsa Yes No
UH-CMA-ES Yes No

Table 2: Learned policy behaviours on the Off-Switch and
Small Whisky-Gold environments after 108 training steps.
The table shows whether, at the first decision opportunity,
the trained policy is most likely to move towards the button /
whisky, or away.

100 102 104 106 108

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Q-Learning
Virtual Sarsa

Empirical Sarsa
UH-CMA-ES

Figure 6: The probability of drinking the whisky (mean with
95% confidence interval) in the Small Whisky-Gold environ-
ment across 15 independent training runs.

being ineffective in practice. Empirical Sarsa similarly ig-
nores oversight when performing the task but considers over-
sight when modelling the future. Predicting that it will be
caught exploiting in the Real task, Empirical Sarsa instead
chooses to perform the Sim task where there is no oversight.
While earning more reward than Q-learning and Virtual Sarsa,
this strategy performs worse than the “honest” strategy of
choosing Real and Complete. Finally, evolution strategies
finds the reward maximizing strategy for this MAMDP: it
chooses the Real state and Exploits but Completes
the Sim task so that it appears cooperative when simulated.
This strategy is a kind of “treacherous turn” (Bostrom 2014)
in which the agent intentionally performs sub-optimally in
certain situations (from a reward perspective) in order to
fool the supervisor into allowing the agent to proceed in a
higher-stakes setting. Therefore, despite earning less reward,
Q-learning and Virtual Sarsa are arguably the most preferable
agents as they make the reward misspecification obvious to
the overseer.

We also compare the agent behaviours on the Off-Switch
and Whisky-Gold environments of Leike et al. (2017). Both
tasks consist of navigating to a goal state on a 2D grid. In
Off-Switch, the agent may be interrupted by a supervisor
and prevented from moving unless the agent first disables its
off switch. In Whisky-Gold the agent may “drink” a bottle

11592

100 102 104 106 108

Training Step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
Q-Learning
Virtual Sarsa

Empirical Sarsa
UH-CMA-ES

Figure 7: The probability of disabling the off switch (mean
with 95% confidence interval) in the Off-Switch environment
across 15 independent training runs. The final rise in the
Virtual Sarsa line is likely an artifact of training instability
due to the fixed learning rate; individual runs were observed
to fluctuate between strategies.

of whisky on its path by moving over it. Doing so earns a
small reward but all future actions have a high chance of
being selected randomly, making it harder to reach the goal.
To make learning easier, we modify the environment with a
reduced grid size and random drunk actions that are biased
away from the goal (since uniform random actions are less
of a detriment on a smaller grid). See Appendix C of the sup-
plementary material for details about the experiments. Policy
behaviours over the course of training are plotted in Figures 6
and 7 and the resulting behaviours of the different algorithms
are summarized in Table 2. Q-Learning and Empirical Sarsa
match the behaviours described by Leike et al.

The algorithms that correctly avoid disabling the off switch
incorrectly drink the whisky and vice versa because in either
case the algorithm either accounts for interventions, or not.
It is possible for an algorithm to perform correctly in both
settings but only if the experiment designer is able to choose
whether interventions are treated as action modifications or
as state transitions. Q-Learning and Virtual Sarsa optimize
the MDP transition dynamics but not MAMDP action modi-
fications. If the Whisky-Gold intervention were considered
part of the transition dynamics (by observing the action pre-
modification), then Q-learning and Virtual Sarsa would learn
to account for it and avoid the whisky. This approach is only
possible when PA is a function of π(s); arbitrary functions
of s and π cannot be re-interpreted as a state transition.

Conclusion
We have introduced the MAMDP model that describes the
case where actions as executed in the environment may differ
from the actions specified by a policy. MAMDPs model a
variety of scenarios including constraints, hardware limita-
tions, supervised interventions, and self-damage. We showed
that the determining factor for agent behaviour is the spe-
cific objective that an RL algorithm seeks to satisfy in the

limit. Reward maximization leads to policies that account
for action modification, while the Bellman optimality and
virtual policy value criteria ignore the presence of action
modifications. Using incentive analysis, we categorized dif-
ferent ways in which learned policies may respond to action
modification and showed how the empirical policy value cri-
terion only responds via controlling the state, not directly
via the policy structure or action. MDP algorithms may be
straightforwardly adapted to the MAMDP setting and tabular
Q-learning and Sarsa converge whenever a solution exists.
Finally, we verified the results experimentally.

It is sometimes assumed that reinforcement learning will
always lead to reward maximizing behaviour (Omohundro
2008). However, as these results show, many kinds of rein-
forcement learning algorithms systematically deviate from
reward maximization when the executed action may differ
from the one specified by the policy. In general, efficient
learning algorithms often make assumptions about the struc-
ture of the world and the resulting policies will be chosen
based on these assumptions, not the true world dynamics.
Agent designers can use these assumptions to intentionally
blind agents from certain properties of their environment, and
thereby make them easier to control.

Acknowledgements
Thank you to Ryan Carey, David Duvenaud, Tim Genewein,
Zachary Kenton, and Laurent Orseau for their invaluable
feedback.

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), [funding
reference number CGSD3–534795–2019].

Cette recherche a été financée par le Conseil de recherches
en sciences naturelles et en génie du Canada (CRSNG),
[numéro de référence CGSD3–534795–2019].

References
Abel, D.; Salvatier, J.; Stuhlmüller, A.; and Evans, O. 2017.
Agent-Agnostic Human-in-the-Loop Reinforcement Learn-
ing. CoRR abs/1701.04079.

Bellman, R. 1957. Dynamic Programming. Princeton, NJ,
USA: Princeton University Press, 1 edition.

Berkenkamp, F.; Turchetta, M.; Schoellig, A. P.; and Krause,
A. 2017. Safe Model-based Reinforcement Learning with
Stability Guarantees. In NIPS, 908–918.

Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strate-
gies. Oxford University Press.

Dalal, G.; Dvijotham, K.; Vecerı́k, M.; Hester, T.; Paduraru,
C.; and Tassa, Y. 2018. Safe Exploration in Continuous
Action Spaces. CoRR abs/1801.08757.

Everitt, T.; Carey, R.; Langlois, E. D.; Ortega, P.; and Legg,
S. 2021. Agent Incentives: A Causal Approach. In AAAI.
AAAI Press.

Everitt, T.; Ortega, P. A.; Barnes, E.; and Legg, S. 2019.
Understanding Agent Incentives using Causal Influence Dia-
grams. Part I: Single Action Settings. CoRR abs/1902.09980.

11593

Gu, S.; Holly, E.; Lillicrap, T. P.; and Levine, S. 2017. Deep
reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In ICRA, 3389–3396. IEEE.

Heidrich-Meisner, V.; and Igel, C. 2009. Uncertainty han-
dling CMA-ES for reinforcement learning. In GECCO, 1211–
1218. ACM.

Howard, R. A. 1960. Dynamic programming and markov
processes. John Wiley.

Howard, R. A.; and Matheson, J. E. 1984. Influence diagrams.
The Principles and Applications of Decision Analysis 2: 719–
763.

Jaakkola, T. S.; Jordan, M. I.; and Singh, S. P. 1994. On the
Convergence of Stochastic Iterative Dynamic Programming
Algorithms. Neural Computation 6(6): 1185–1201.

Krishnan, S.; Chitlangia, S.; Lam, M.; Wan, Z.; Faust, A.;
and Reddi, V. J. 2019. Quantized Reinforcement Learning
(QUARL). CoRR abs/1910.01055.

Leike, J.; Martic, M.; Krakovna, V.; Ortega, P. A.; Everitt,
T.; Lefrancq, A.; Orseau, L.; and Legg, S. 2017. AI Safety
Gridworlds. CoRR abs/1711.09883.

Lin, D. D.; Talathi, S. S.; and Annapureddy, V. S. 2016.
Fixed Point Quantization of Deep Convolutional Networks.
In ICML, volume 48 of JMLR Workshop and Conference
Proceedings, 2849–2858. JMLR.org.

Moriarty, D. E.; Schultz, A. C.; and Grefenstette, J. J. 1999.
Evolutionary Algorithms for Reinforcement Learning. J.
Artif. Intell. Res. 11: 241–276.

Omohundro, S. M. 2008. The Basic AI Drives. In AGI,
volume 171 of Frontiers in Artificial Intelligence and Appli-
cations, 483–492. IOS Press.

Orseau, L.; and Armstrong, S. 2016. Safely Interruptible
Agents. In UAI. AUAI Press.

Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2 edition.

Puterman, M. L.; and Shin, M. C. 1978. Modified Policy Iter-
ation Algorithms for Discounted Markov Decision Problems.
Management Science 24(11): 1127–1137. ISSN 00251909.
URL http://www.jstor.org/stable/2630487.

Rummery, G. A.; and Niranjan, M. 1994. On-line Q-learning
using connectionist systems. Technical report, Cambridge
University Engineering Department.

Salimans, T.; Ho, J.; Chen, X.; and Sutskever, I. 2017. Evo-
lution Strategies as a Scalable Alternative to Reinforcement
Learning. CoRR abs/1703.03864.

Saunders, W.; Sastry, G.; Stuhlmüller, A.; and Evans, O. 2018.
Trial without Error: Towards Safe Reinforcement Learning
via Human Intervention. In AAMAS, 2067–2069. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems Richland, SC, USA / ACM.

Singh, S. P.; Jaakkola, T. S.; Littman, M. L.; and Szepesvári,
C. 2000. Convergence Results for Single-Step On-Policy
Reinforcement-Learning Algorithms. Machine Learning
38(3): 287–308.

Sutton, R. S. 1995. Generalization in Reinforcement Learn-
ing: Successful Examples Using Sparse Coarse Coding. In
NIPS, 1038–1044. MIT Press.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. The MIT Press, second edition.
Watkins, C. J. C. H.; and Dayan, P. 1992. Technical Note
Q-Learning. Mach. Learn. 8: 279–292.

11594

