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Abstract

When deploying machine learning models in the real-world,
system designers may wish that models exhibit certain shape
behavior, i.e., model outputs follow a particular shape with
respect to input features. Trends such as monotonicity, con-
vexity, diminishing or accelerating returns are some of the de-
sired shapes. Presence of these shapes makes the model more
interpretable for the system designers, and adequately fair for
the customers. We notice that many such common shapes
are related to derivatives, and propose a new approach, Pen-
Der (Penalizing Derivatives), which incorporates these shape
constraints by penalizing the derivatives. We further present
an Augmented Lagrangian Method (ALM) to solve this con-
strained optimization problem. Experiments on three real-
world datasets illustrate that even though both PenDer and
state-of-the-art Lattice models achieve similar conformance
to shape, PenDer captures better sensitivity of prediction with
respect to intended features. We also demonstrate that PenDer
achieves better test performance than Lattice while enforcing
more desirable shape behavior.

Introduction
Questions around trust and interpretability in machine learn-
ing models are becoming increasingly relevant (Lipton
2016; Ribeiro, Singh, and Guestrin 2016; Doshi-Velez and
Kim 2017) as these tools are being widely used for high-
stakes decisions. Specifically, neural networks have shown
tremendous success across critical domains such as health-
care (Shahid, Rappon, and Berta 2019), finance (Guresen,
Kayakutlu, and Daim 2011; Nelson, Pereira, and de Oliveira
2017), pricing (Chiarazzo et al. 2014; Shukla et al. 2019),
and law systems (Aikenhead 1996). Due to the significant
societal implications involved, conformance to prior domain
knowledge (Feelders 2000) and ethical notions, compatibil-
ity with business regulations, and model interpretability are
actively desired by system designers. Meanwhile, users de-
sire that the system is fair to their interests.

Even though real-world data has highly interactive fea-
tures (Hall and Xue 2014), it is natural to possess a priori
intuition about shape trends between a subset of input fea-
tures and the output. Shape constraints are a classic way to
characterize a function by whether its shape obeys certain

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

properties (Groeneboom and Jongbloed 2014). In particular,
1-D shapes (Johnson and Jiang 2018) including monotonic-
ity, convexity or concavity, diminishing or accelerating re-
turns are fairly common in practice.

Shape behavior matching common beliefs improves
users’ trust and confidence in the AI-driven system and
increases interpretability. For example, an ML model for
screening loan applicants is expected to favor people with
higher credit score, all other features remaining same: lead-
ing to accountability on the part of financial institutions
while being fair to applicants. From a system designer’s per-
spective, shape constraints lead to effective regularization
and enhanced generalization to test data (Dugas et al. 2000).
They make the model resilient to noisy data by virtue of con-
trol over model behavior (Gupta et al. 2018).

To facilitate the discussion, we call an input feature k an
intended feature if the system designer requires the output
to follow a specified shape with respect to this feature. Like
Gupta et al. (2018), our notion of shape constraints is ceteris
paribus, i.e. the shape holds for changes in a single feature k
given other features remain constant. While constraints can
be defined on pairs of features that complement each other
(Cotter et al. 2019) giving rise to 2-D shape information, we
focus on 1-D shape constraints in this work (Fig. 1).

In this work, we show how 1-D shape constraints can
be incorporated via a simple regularization term without
significantly compromising the predictive power of neural
networks. More specifically, we propose a new approach
that consists of two steps: first, we introduce a new formu-
lation that includes constraints on the derivatives (of dif-
ferent orders) of the objective function; second, we solve
this constrained problem by Augmented Lagrangian method
(ALM). We call it PenDer (Penalizing Derivatives), since
the resulting algorithm essentially penalizes the derivatives.
We present experimental results on two open-source datasets
and a real-world airline dataset, illustrating the effectiveness
of PenDer in the following aspects:

• First, we show PenDer learns neural networks that achieve
test performance close to standard neural nets while ex-
hibiting desired shape behavior. In particular, our test per-
formance is better than the state-of-the-art Lattice models
(Gupta et al. 2018; Fard et al. 2016).

• Second, we demonstrate that Lattice models can be insen-
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Figure 1: Illustration of some 1-D shape trends, where x-axis corresponds to the intended feature and y-axis is the corresponding
change in output. We note that these common shapes are related to derivatives and devise a general framework in this work
which incorporates such shape trends. Let f be the learned function, and we express these shapes in terms of derivatives of f .
(a) Monotone (f ′ > 0), (b) Accelerating Returns (f ′ > 0, f ′′ > 0), (c) Diminishing Returns (f ′ > 0, f ′′ < 0), (d) Convex
(f ′′ > 0), (e) and (f) correspond to higher-order shapes (f ′′ > 0, f ′′′ > 0; and f ′′′ > 0 respectively)

sitive to intended features, which is undesirable since that
would not match the practical beliefs in many situations.
In contrast, our method, PenDer, learns models that are
sensitive to the intended features.

Motivating Example: Law School Admissions
Imagine that a law school admissions panel implements a
neural network to predict the applicants’ chances of accep-
tance. Assume the model has achieved good prediction accu-
racy. An ethics committee may want to examine if discrimi-
natory behavior may still occur - one natural way is to check
whether the system’s behavior is consistent with common
expectations. For instance, higher LSAT score should lead to
higher chances of acceptance, and the committee may won-
der whether the model exhibits such monotone behavior.

How to examine the existence of monotone behavior? In
reality, any two applicants can differ in many features, and
thus directly comparing their LSAT scores with admission
outcomes (accepted or not) is not reasonable. A standard
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Figure 2: Comparison of predicted chances for hypothetical
applicants from the Law School dataset. Suppose we gen-
erate 20 applicant profiles, differing only in LSAT scores.
x-axis indicates the LSAT scores, and y-axis the predicted
chances of acceptance. Green (round) and blue (dotted)
curves represent the output of the neural network and Lat-
tice respectively. The red (squared) curve indicates a more
desirable monotone shape with a reasonable “slope”.

way of resolving this issue is to compare two hypothetical
applicants, say, Adam and John, with John’s LSAT score be-
ing higher than Adam’s, and all other features such as un-
dergraduate GPA remaining the same. We expect that John
should have a higher chance of acceptance than Adam. For a
systematic examination, for each existing applicant, we can
generate a number of hypothetical applicants varying in the
intended feature (here, LSAT score). The ML model gener-
ates predictions for these applicants, and we expect accep-
tance probabilities to increase with increase in LSAT scores.

We use an open-source dataset with law school numbers
(Rankin 2020) to train a 4-layer neural network model and
a Lattice model (Fard et al. 2016), see Fig. 2. The neural
network learns an undesirable non-monotone trend between
LSAT score and acceptance, which could be a concern for
the designer. Lattice indeed learns a monotone trend; how-
ever, it learns a flat curve, indicating that the admission de-
cision is insensitive to the LSAT score. This is contrary to
expectations that LSAT score is an important factor for ad-
mission decisions (Brunet Marks and Moss 2016).

A more desirable shape for the committee is, for instance,
the red (squared) curve indicated in Fig. 2. The unexpected
behavior of Lattice in this example is one of the major moti-
vations to explore alternative approaches. We provide formal
metrics to distinguish the red (squared) curve from the two
other curves in the section “Problem and Definitions”.

Real-World Shape Constraints
We now discuss a few more real-world examples of shape
behavior. Shape constraints play a critical role in fostering
interpretability, fairness, and trust across these systems.

School Admissions In addition to the motivating exam-
ple discussed above where students with higher standardized
scores should have better chances, scholarship decisions is
another similar setting. Machine learning model trained for
determining percentage of tuition waiver should favor stu-
dents from low-income families: acknowledging favor the
less fortunate ethical pattern (Wang and Gupta 2020).

Finance The strong effect of credit scoring on profitabil-
ity for financing companies is well-studied (Einav, Jenkins,
and Levin 2013). For maximizing profits and trustworthi-
ness of decisions, a loan approval model shall be monotone
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with credit score (when other factors are similar). Similarly,
for credit card issuance, it would not be acceptable that a
high-income applicant is rejected, whereas a low-income
applicant with otherwise similar characteristics is accepted.
Shape behavior is also prevalent across bond rating (Daniels
and Kamp 1999) and option pricing (Gamarnik 1998).

Medical Diagnosis & Triage Medical studies have shown
that cardiovascular disease risk increases with increase in
cigarette consumption (Royston 2000) or dietary cholesterol
(Zhong et al. 2019). Another study showed that higher levels
of certain bio-markers are associated with increased prostate
cancer chances (Ghosh 2007). This kind of prior knowledge
can inform shape choices for ML-driven healthcare applica-
tions that greatly improve the interpretability of diagnosis.

Pricing Monotone behavior is also common in hedonic
price models, where the price of a good depends on bundle
of characteristics (Harrison and Rubinfeld 1978). Besides,
the pricing models shall consider more complicated shape
constraints. For instance, utility theory suggests that the pur-
chase probability follows diminishing marginal returns – a
price increase from $20 to $30 for a pair of jeans can reduce
customer interest more compared to an increase from $80 to
$90 (Mankiw 2011). Diminishing returns shape corresponds
to concavity as well, so the pricing models shall consider it.

Related Work
Shape constraints are commonly enforced in neural network
models by modifying either (i) the model architecture, or (ii)
the objective loss function. Most past work has focused on
monotonicity, with recent interest in shapes such as dimin-
ishing and accelerating returns (Gupta et al. 2018).

Architectural changes for monotonicity include connect-
ing hidden layer nodes differently, imposing constraints on
weights, or defining a different structure altogether (Archer
and Wang 1993; Sill 1998; Kay and Ungar 2000; Lang 2005;
Dugas et al. 2009; Daniels and Velikova 2010; Fard et al.
2016). In a recent work, You et al. (2017) proposed deep
Lattice networks using a combination of linear calibrators
and lattice layers for learning guaranteed monotone func-
tions. Gupta et al. (2018) extended the Lattice models (Fard
et al. 2016; You et al. 2017) to incorporate convex/concave
shape constraints, outperforming previous methods.

The second class of methods modify the loss function.
Although they are not expected to fully guarantee shape,
they exploit the trade-off between empirical risk and shape
error. Daniels and Kamp (1999) added a bias term as a
penalty for negative weights, but their loss is effective only
when the data is largely monotone. Sill and Abu-Mostafa
(1997) regularized the objective function by penalizing the
squared deviations from monotonicity for virtual pairs of in-
put samples. Our work differs from MonoHints (Sill and
Abu-Mostafa 1997) in a few aspects. First, they only con-
sider monotonicity constraints, whereas our approach eas-
ily applies to any shape behavior related to derivatives (we
explicitly consider first and second order derivatives in this
work). Second, they penalize the finite differences, while we
penalize the derivatives directly. As they introduce extra vir-
tual data points for computing the finite differences, their

method may require extra memory and FLOPs; in addition,
the extra cost is even higher if they want to extend the finite
difference method to higher-order derivatives. Third, they
solve an unconstrained formulation directly while we opti-
mize the constrained formulation via ALM, which is a more
popular strategy in nonlinear programming.

Lattice Models Lattice models are the current state-of-
the-art approach for enforcing shape constraints in neural
networks (Gupta et al. 2018), with a publicly available Ten-
sorFlow package (You et al. 2019). However, Lattice has a
few limitations. First, it may suffer from combinatorial ex-
plosion. Gupta et al. (2016) establish that the number of pa-
rameters in Lattice look-up table scale as KD, when there
areK keypoints along each intended feature andD intended
features in total. As a result, it is challenging to apply Lattice
with 10 intended features: with 20 keypoints, Lattice needs
to process 2010 ≈ 1013 (10 trillion) data points. This issue
restricts the applicability of Lattice to large-scale problems.
Second, from Fig. 2, we see that Lattice models lead to in-
sensitive model behavior (flattened trends) with the intended
feature, which can be a concern for system designers. We
observe this behavior consistently with different datasets, as
shown in the section “Experiments” and Appendix D.

Due to the limitations of existing models, including Lat-
tice, we believe it is interesting to introduce new alternatives
to handle shape constraints. In this work, we use Lattice as
a major baseline as it achieves the SoTA performance on
the general shape-constraining-task – other approaches ei-
ther handle only monotonicity constraints or are inferior to
Lattice (Gupta et al. 2018).

Problem and Definitions
Consider the general setting of a supervised learning prob-
lem with an underlying data distribution P (x, y), where
x ∈ Rd, y ∈ R, and P (x, y) is a certain distribution on
Rd × R. For simplicity, we consider scalar y, although our
method can be extended to vectors. Consider a training set of
n samples {(xi, yi)}; i = 1, . . . , n (and, test set with nt sam-
ples). We want to find a function f(x) in a class of possible
functions H (e.g. a set of neural networks fθ parameterized
by θ) such that the prediction f(xi) ∼ yi, ∀i ∈ [1, n].

Besides accuracy, we want f to satisfy one or more shape
constraints. We say f is increasing over the k-th feature
(or, x[k]) if for any u, v ∈ Rd satisfying u[k] ≥ v[k] and
u[j] = v[j], ∀ j ∈ [d] \ k, we have f(u) ≥ f(v). Simi-
larly, we say f is decreasing over x[k] if ≥ is changed to
≤. We say f is convex over x[k] if given u, v that satisfy
previous conditions, we have f ′(u) ≥ f ′(v). And, we say
f is concave over x[k] if we have f ′(u) ≤ f ′(v). We re-
fer to such properties as “shape-constrained” behavior. We
say f is shape-constrained over the feature set S ⊆ [d] if
f is shape-constrained over every feature in S. Our goal is
to learn the function f : shape-constrained over user-defined
features S, where S corresponds to the prior domain knowl-
edge enforced by the system designer.

For comparing different approaches, we utilize evalua-
tion metrics that measure model’s predictive performance,
model’s ability to conform to shape on test data, and sensi-
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tivity of the enforced shape. While the first two metrics are
well-known, we now introduce our sensitivity metric.

Sensitivity: Lipschitz Metric
Fig. 2 shows that Lattice (Gupta et al. 2018) leads to a flat-
tened shape, which though monotone, is not desirable, while
the hypothetical red (squared) curve is more desirable. To
distinguish the two curves, we use sensitivity as a metric.
We define Lipschitz metric (Lk) for the k-th feature as the
average gradient of the predictions across the inflated test
dataset, X . This “inflated version” is obtained by perturbing
the intended feature k to equally-spaced values in a certain
range [τmin, τmax] (fixed keypoints) for every test sample,
while keeping all other features constant‡. A natural choice
for τmin, τmax is the minimal and maximal value of the in-
tended feature in the entire dataset.

Lk =
1

nt

nt∑
i=1

∥∥∥∥( ∂f

∂xi[k]

)∥∥∥∥
2

, where: (1)

{xi[k] ∈ [τmin, τmax]}
Zero sensitivity (Lk = 0) is particularly undesirable since

it indicates a flat trend line.
One may wonder whether we can treat the sensitivity as

a shape constraint, similar to monotonicity and convexity.
However, for different data points, the desired sensitivity
metric may be different, and it is not easy to set sensitiv-
ity lower bounds for all data points. Therefore, it is hard to
enforce sensitivity a priori. We treat it as a posteriori metric:
compute Lk for every feature in S after the model is trained.

PenDer: Penalizing Derivatives
We now propose our approach, PenDer, that penalizes the
derivatives of the objective function to enforce shape con-
straints. Many shape behaviors can be modeled by simple
conditions on the derivatives, e.g., “a function is increasing
monotone” means the first order derivative is non-negative,
and convexity/concavity are determined by the sign of the
second order derivative. Therefore, constraining the first or
second order derivatives is sufficient for conformance to
common 1-D shapes such as monotonicity and convexity.
In PenDer, we add constraints to the standard loss function
to form a constrained optimization problem, and then solve
the constrained problem using the Augmented Lagrangian
method (ALM) (Hestenes 1969). The idea of incorporating
a priori knowledge with point-wise derivatives in the formu-
lation is inspired from finite element analysis (Strang 1972;
Wilmott et al. 1995) and the function classes presented by
Dugas et al. (2009). We explain the details of PenDer below.

Suppose S ⊆ [d] is the set of intended features. Let θ
denote the collection of all parameters in the neural network
fθ(·), and F (θ) be the standard empirical risk on the training
data set, dtrain = {xi, yi}ni=1. To embed prior shape knowl-
edge, we add constraints on the derivative of the function f

‡This is similar to “one-pixel-perturbation” in adversarial ro-
bustness, with the key difference that adversarial robustness often
means the output is invariant after a small pixel perturbation, while
here we hope the output exhibits shape properties.

at every xi in dtrain, with respect to every feature in S. More
specifically, we add the following constraints

cri [k] :
∂rfθ(xi)

∂xri [k]
≥ 0 ; ∀i ∈ [1, n], ∀k ∈ S (2)

to embed general shape behavior, where cri [k] denotes the
non-negativity constraint on the r-th order partial derivative
of f with respect to k-th feature at i-th training sample. We
focus on 1st and 2nd order derivatives as the common shapes
seem to only require 1st and 2nd order derivatives, but we
note that our formulation allows for higher order constraints.

Setting r = 1 in the equation above, we obtain increas-
ing monotone constraints for the k-th feature. For decreasing
monotone, ≥ can be changed to ≤. Similarly, we can real-
ize convexity and concavity constraints by setting r = 2
in the formulation above. Note that our constraints don’t
assume any dependency between shapes across various in-
tended features i.e., the output could exhibit increasing be-
havior with respect to one feature and concavity with respect
to another. Such flexibility is not easy to achieve for model-
architecture-change-type methods. Let C denote the set of
constraints. The form of C depends on the requirements; for
instance, if we only consider increasing monotone then C
consists of constraints from Eq. 2 for r = 1.

The constrained problem for shape-constrained f can be
written as: min

θ
F (θ) subject to C. When using ALM

to solve the constrained optimization problem, these con-
straints are moved to the objective function in the form of
regularizers, to obtain the augmented Lagrangian function
as follows:

Lµ(θ;λ) = F (θ) +
∑
k∈S

µk
n

n∑
i=1

max(0,−cri [k])2

+
∑
k∈S

1

n

n∑
i=1

λi,k ·max(0,−cri [k])

(3)

where, µk (> 0) refers to the penalty coefficient corre-
sponding to the quadratic penalty term for the k-th feature,
and λi,k is the Lagrange multiplier (at cri [k]). Note that the
max operator with negative cri [k] corresponds to the con-
straint violation at xi[k].

The ALM works as follows§: the neural network pa-
rameters θ are updated by performing gradient descent on
Lµ(θ;λ), and (µk, λi,k) are updated via gradient ascent on
Lµ(θ;λ) ; ∀ k ∈ S, i ∈ [1, n]. We present the pseudo-
code for PenDer in Algorithm 1. We present a proof of con-
vergence for inexact ALM methods in constrained convex
cases, borrowed from Xu (2019), in Appendix A.

Experiments
In this section, we present empirical results for the proposed
PenDer approach, in comparison to (i) deep neural network

§Rigorously speaking, this is an inexact version of ALM (Sahin
et al. 2019) because we do not update the primal variable via exact
minimization of the augmented Lagrangian function.
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Algorithm 1 PenDer: Penalizing Derivatives

1: Initialize:
θ(0) ← Initial NN parameters
µ
(0)
k ← Penalty coefficients
λ
(0)
i,k ← Langrange multipliers
T ←Maximum iterations
ρ← Update multiplier for µ

2: for t = 0, . . . , T − 1 do
3: θ(t+1) ← updated parameters after minLµ(θ(t);λ)
4: if stopping criteria met then
5: stop with approximate solution θ(t+1)

6: for k ∈ S do
7: for i = 1, . . . , n do
8: λ

(t+1)
i,k ← λ

(t)
i,k + µ

(t)
k ·max(0,−(cri )

(t)[k])

9: µ
(t+1)
k ← ρ · µ(t)

k

10: return θ(t+1)

(DNN) and (ii) Lattice model (Gupta et al. 2018; Fard et al.
2016) with shape constraints. In addition to quantitative
comparison, we perform post-hoc analysis of the methods
to gauge which one yields trends acceptable in society.

Evaluation Metrics
To compare the methods, we use three metrics: (i) test accu-
racy (classification) or mean absolute error (MAE, regres-
sion) for predictive performance, (ii) the monotonicity or
convexity score for shape conformance, and (iii) the Lips-
chitz metric (Eq. 1) for sensitivity of the enforced shape.

While accuracy and MAE are reported on the test dataset,
the other two shape-specific metrics are computed using
model predictions on an “inflated” version (X) of the test
dataset. For simplicity, we discretize the intended feature
k into fixed keypoints ([τmin, τmax]) and perturb the test
dataset in this feature while keeping all other features con-
stant. Note that the ground-truth output labels are not needed
for computing shape metrics. We now define metrics for
measuring the shape conformance.

Monotonicity and Convexity Score (Mk, Ck) These
metrics quantify whether the learned function f conforms
to the shape enforced by the system designer. We leverage
the finite difference method for approximating the deriva-
tive on X as we believe that finite differences are more in-
tuitive for the end user. For instance, when predicting the
impact of LSAT score on acceptance rate, the admissions
committee can be given insights such as “5 more points lead
to 2% higher chance of admission around a score of 170”. Of
course, the derivative serves a similar purpose, but because
such insights are commonly discussed in the language of fi-
nite difference, we report that. Let ∆+ denote the forward
difference operator (Wilmott et al. 1995), and then ∆r

+ indi-
cates the r-th order forward difference. For r-th order shape
conformance, we define:

γrk =
1

nt

nt∑
i=1

δi , where: (4)

δi =


1 if ∆r

+f(xj ; θ) ≥ 0 ∀ j 3 {xj [k] ∈ K,
xj [p] = xi[p] ∀ p 6= k}

0 otherwise.
Here, the latent variable δ is an indicator that measures

the degree of conformance for the kth feature across the
dataset. Ceteris paribus, x[k] takes values in K i.e. between
[τmin(x[k]), τmax(x[k])] which are the minimal and maxi-
mal values of x[k] present in the entire dataset.

Similar to the previous section, we set r = 1 in Eq. 4
to define the Monotonicity Score (Mk). Setting r = 2 de-
scribes the Convexity Score (Ck) which measures confor-
mance to convex/concave behavior. A score of 1 corresponds
to a fully conforming function; higher the score, better the
shape conformance. Note that γrk and δi are defined with in-
creasing and convex shape in mind. For decreasing or con-
cave behavior, we change ≥ to ≤ in the definition of δi.

Datasets
We utilize three datasets in this work, two open-source: Law
School Admissions (Rankin 2020) and Used Cars (Leka
2019), and a real-world proprietary airline ancillary dataset.
Our major motivation for these datasets is that they have
intended features whose shape is not learned by the un-
constrained DNN. This was investigated using conformance
metrics (Mk and Ck) on the predictions from DNN (detailed
analysis in Appendix B). In addition to the three datasets in
this main text, we present empirical comparison of methods
on two other open-source datasets: Wine Ratings used by
Gupta et al. (2018), and Sberbank Russian Housing dataset
(Sberbank 2017), in the Appendix E.

• Law School Admissions (Rankin 2020): A classification
task to predict whether or not the applicant would get ac-
cepted to a particular law school. Features include LSAT
score, GPA, race, gender, school type, and in-state status,
among others. Acceptance probability is believed to be
somewhat increasing over LSAT score.

• Used Cars (Leka 2019): Retrieved from eBay-Germany,
this dataset contains data of used cars for resale. The re-
gression task is to predict the price using the vehicle type,
age of the car, horsepower, and mileage reading. We ex-
pect diminishing marginal returns in car price with in-
creasing mileage. For example, a significant drop in price
is expected initially between a 1K-mile-old car and a 10K-
mile-old car, but the price gap between a 80K-mile-old car
and a 90K-mile old car is relatively small. Thus, we want
the function to be decreasing and convex.

• Airline Ancillary: Ancillary pricing is a sub-field within
airline pricing (Shukla et al. 2019). We obtain a propri-
etary real-world dataset for ancillary pricing from a large
airline, and want to predict the purchase probability of an
ancillary (classification). The designers of the pricing rec-
ommender system want the probability of purchase to fol-
low a diminishing returns (decreasing and convex) shape
with ancillary price, as per utility theory.

We use 20% of the entire dataset for test analysis, and
perform a random 80-20 split on the remaining data to create
training and validation datasets. We use the validation data
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to tune hyperparameters, and report evaluation metrics on
the test set.

Model Specifics and Hyperparameters
We train a 4-layer neural network (two hidden layers) for
all our experiments (except Lattice). We tune hyperparame-
ters such as optimizer, learning rate, and activation function
on the DNN, and keep them same for PenDer to facilitate
a fair comparison. Adam (Kingma and Ba 2015) outper-
forms SGD on all the datasets. We employ early stopping
(no model improvement for 40 epochs) as our stopping cri-
terion, and decay the learning rate by a factor of 10 when
validation error reaches a plateau. Because piece-wise lin-
ear activation functions cannot be used for penalizing high-
order derivatives, we use sigmoid activation for our datasets.
While ReLU could be an option when penalizing only the
1st order derivatives, we find from our experiments that sig-
moid works better in those cases as well. The models are
trained on cross-entropy loss for classification, and mean
squared loss for regression. For more details, refer to Ap-
pendix C. Note some method-specific parameters:

• PenDer: λi,k are initialized at 0 and we initially choose
a small value for µk = 0.1. ρ determines the increase in
µ and we tune it from {2, 5, 10}. While λi,k are updated
in each iteration, µk are updated only when the quadratic
penalty loss component doesn’t improve on the valida-
tion set. For datasets where the unconstrained DNN in-
dicates low shape conformance, higher ρ was found to be
effective as it penalizes the loss component for shape con-
straints aggressively as training progresses.

We consistently observe that PenDer converges in at most
twice the number of iterations as the unconstrained DNN,
implying that the addition of shape constraints does not af-
fect the convergence speed too much. In practice, we find
that training Lattice models to convergence takes at least
twice as much as time as PenDer, and we expect this gap
will quickly increase as the number of intended features in-
crease (though we do not perform such experiments here).

Implementation and Reproducibility. We implement
PenDer (Algorithm 1)† in TensorFlow (TF). Lattice is al-
ready provisioned in TF by You et al. (2019). We train our
models on a 2.7 GHz Dual-Core processor. We replicate
the experiments on each method and dataset using differ-
ent seed values, and report the mean and deviation among
performance and shape-specific metrics over 10 runs. Each
run uses a different subset of the data and initializes NN pa-
rameters differently. Our implementation focuses on repro-
ducibility, and we share the code to replicate model training.

Law School Admissions
For this classification task, we have 128K training, 32K vali-
dation, and 40K test examples (Rankin 2020). We predict the
probability of application acceptance to law schools while
enforcing increasing monotone shape on LSAT score. Table

†Code and Appendix available within the GitHub repository at
https://github.com/deepair-io/PenDer.

1 presents the performance of the three methods with respect
to our metrics. First, we observe from the DNN monotonic-
ity scores Mk that the dataset is not inherently monotone
in the intended feature as the score is low. Both Lattice and
PenDer learn fully monotone functions (Mk = 1) with a mi-
nor drop of 0.5% in test accuracy, thereby appropriately cap-
turing merit-based ethics.

Model Test Acc. (%) Mk (LSAT) Lk (LSAT)

DNN 75.24± 0.13 0.44± 0.07 0.14± 0.01
Lattice 74.87± 0.11 1 0
PenDer 74.87± 0.13 1 0.07

Table 1: Performance of methods: increasing constraint with
LSAT score.

Though Lattice and PenDer look similar for the first two
metrics, the Lipschitz metric marks the distinction in cap-
tured sensitivity. As Lattice structurally enforces the mono-
tone behavior, it diminishes feature importance for LSAT
score to zero aiming to increase test performance. The
trained Lattice model is insensitive to the LSAT score (Lk =
0) across the entire test dataset. Such behavior is unaccept-
able for the designer as LSAT score is an important param-
eter for applicant selection (Brunet Marks and Moss 2016)
and a good model should exhibit sensitivity.

As an illustration, consider a sample (student profile) from
the test dataset (Fig. 3). Varying the LSAT score from the
minimum to maximum value ([τmin = 120, τmax = 180])
while keeping everything else fixed, we obtain the pre-
dicted probability trend from different models for the stu-
dent - which should be increasing as expected. Plot shows
that PenDer effectively makes the trend strictly increasing,
whereas Lattice fits a flat line insensitive to LSAT score.

From Table 1, note that Lattice still generates a model
with reasonably good test accuracy, indicating that we have
tuned Lattice reasonably well. We include more plots with
respect to other features in Appendix D to demonstrate that
Lattice learns a good fit overall. However, it still leads to
insensitive trends with respect to the intended LSAT score.
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Figure 3: Comparison of models for a sample student ap-
plication. PenDer results in a desirable increasing trend as
compared to Lattice and DNN.
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Used Cars - Ebay
For the used cars data from eBay (Leka 2019), we have 78K
training, 19.5K validation, and 24.4K test samples. Dimin-
ishing returns (decreasing and convex) shape in price is en-
forced with respect to mileage. Our results in Table 2 use
mean absolute error (MAE) to compare price prediction er-
ror in regression. Again, observe from DNN shape metrics
(Mk and Ck) that the dataset does not inherently adhere to
the expected shape for mileage. However, Lattice and Pen-
Der guarantee the shape behavior, but PenDer does so with
a $100 lower error which is a significant difference.

Model Test MAE ($) Mk Ck
DNN 1, 941± 17 0.29± 0.04 0.005± 0.005

Lattice 2, 080± 30 1 1
PenDer 1, 982± 24 1 1

Table 2: Performance of methods: diminishing returns con-
straint with mileage reading.

In terms of sensitivity, Lattice again suffers from insen-
sitivity to the mileage while predicting the price (Lk = 0
in Table 3). PenDer captures similar sensitivity as DNN,
strengthening the claim that PenDer generates desirable
models for the system designer. Across the three metrics,
PenDer stands out as it balances the predictive performance
and shape behavior well.

Model Lk (Used Cars) Lk (Ancillary)

DNN 0.012± 0.001 0.061± 0.009
Lattice 0 0
PenDer 0.012 0.010± 0.003

Table 3: Lipschitz metric for Used Cars and Airline datasets.

Airline Ancillary
For the real-world ancillary dataset, we aim to predict the
probability of ancillary purchase using 57.7K train, 14.4K
validation, and 18.2K test samples. To stay accountable to
customer expectations, conform to business regulations, and
incorporate the price elasticity of demand, the airline wants
to impose diminishing returns in the predicted willingness to
pay with respect to offered price. From Table 4, we see that
DNN does not learn this desired shape which can reduce
trust in the airline’s pricing. While both Lattice and PenDer
conform to the enforced shape, Lattice has a 2% drop in test

Model Test Acc. (%) Mk Ck
DNN 66.55± 0.15 0.51± 0.13 0.16± 0.04

Lattice 64.28± 0.28 1 1
PenDer 66.39± 0.33 1 0.98± 0.02

Table 4: Performance of methods: diminishing returns con-
straint with ancillary price.
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Figure 4: Comparison of models for an arbitrary customer
in the Airline ancillary dataset. PenDer learns the enforced
diminishing returns shape well, unlike Lattice.

accuracy, significant enough to reduce revenues compared to
the DNN. PenDer achieves test accuracy similar to the DNN
while maintaining the shape, which demonstrates the ability
of regularization-driven PenDer to balance both the objec-
tives in the search space. Considering a customer from the
test set in Fig. 4, we hypothetically vary the price from $0
to $40 to understand model sensitivity. From the Lk value in
Table 3 and Fig. 4, we find that Lattice is nearly insensitive
towards price. This is undesirable as the customer’s willing-
ness to purchase should definitely change with increase in
price. On the other hand, PenDer overcomes this limitation
of Lattice by being reasonably sensitive to ancillary price.

Conclusion
In this work, we presented PenDer, a new approach for a
priori incorporating common shapes desired by the system
designer into neural networks – with the objective of in-
creasing interpretability, fairness and trust. Along with ac-
curacy, “conformance to shape” and “sensitivity of shape”
are two important properties that are desired during a poste-
riori analysis of such systems. We show that state-of-the-art
Lattice models do not satisfy all these requirements together.

PenDer penalizes derivatives of the objective function to
enforce a desired shape. We devise a general framework
that handles derivative-based constraints, and solves the con-
strained problem using an Augmented Lagrangian Method.
We focus on common shapes such as monotonicity and con-
vexity, defined using the 1st and 2nd order derivatives, in our
experiments. To measure model sensitivity, we introduce a
Lipschitz metric. We compare the performance of PenDer,
state-of-the-art Lattice and deep neural network along three
metrics: test set predictions, conformance to shape, and as-
sociated sensitivity. Our experiments on real-world datasets
illustrate the advantage of PenDer to balance all objectives,
and that Lattice often leads to insensitive shape behavior.

Our work demonstrates that while most neural network
systems are black-boxes, they need not remain so. We can
design efficient approaches to help neural networks conform
to user- or designer- desired behavior, balance multiple met-
rics well, and increase trust and accountability.
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Ethical Impact
Shape constraints serve the purpose of enforcing prior do-
main knowledge in systems for conformance to social ethics
and meeting users’ expectations. Reliable shape behavior
makes models more interpretable and trustworthy, and less
discriminatory, by introducing transparency. Shape behavior
is desired in several real-world settings, from school admis-
sions to pricing, as discussed in the main text.

Our approach for formulating and solving for shape con-
straints, PenDer, is regularization-driven which makes it
simple to understand and easy to implement into existing
systems. We leverage a variety of evaluation metrics, partic-
ularly sensitivity, to ensure that system is analyzed appro-
priately after the model is trained. In addition, incorporating
shape behavior makes the model resilient to adversarial be-
havior as test-time attacks have lower chances of success on
a model which preserves the order, by design.

Although our method has been designed for fair use, we
acknowledge that malicious system designers can poten-
tially use shape constraints with an intent to retain bias or
unfairness in their system. Such misuse can often only be
detected through an a posteriori analysis of the system deci-
sions via a thorough audit-type investigation.
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