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Abstract

We show that Neural ODEs, an emerging class of time-
continuous neural networks, can be verified by solving a
set of global-optimization problems. For this purpose, we
introduce Stochastic Lagrangian Reachability (SLR), an
abstraction-based technique for constructing a tight Reach-
tube (an over-approximation of the set of reachable states
over a given time-horizon), and provide stochastic guarantees
in the form of confidence intervals for the Reachtube bounds.
SLR inherently avoids the infamous wrapping effect (accu-
mulation of over-approximation errors) by performing local
optimization steps to expand safe regions instead of repeat-
edly forward-propagating them as is done by deterministic
reachability methods. To enable fast local optimizations, we
introduce a novel forward-mode adjoint sensitivity method
to compute gradients without the need for backpropagation.
Finally, we establish asymptotic and non-asymptotic conver-
gence rates for SLR.

Introduction

Neural ordinary differential equations (Neural ODEs) (Chen
et al. 2018), which are analogous to a continuous-depth ver-
sion of deep residual networks (He et al. 2016), exhibit
considerable computational efficiency on time-series mod-
eling tasks. Although Neural ODEs do not necessarily im-
prove the performance of contemporary deep models, they
enable the rich theory and tools from the field of differen-
tial equations to be applied to deep models. Examples in-
clude a better characterization of Neural ODEs (Rubanova,
Chen, and Duvenaud 2019; Dupont, Doucet, and Teh 2019;
Durkan et al. 2019; Jia and Benson 2019), and a better un-
derstanding of their robustness (Yan et al. 2020), stability
(Yang et al. 2020), and controllability (Quaglino et al. 2019;
Holl, Koltun, and Thuerey 2020; Kidger et al. 2020).

As the use of Neural ODEs on real-world applications in-
creases (Finlay et al. 2020; Lechner et al. 2020; Erichson
et al. 2020; Lechner and Hasani 2020; Hasani et al. 2020b),
so does the importance of ensuring their safety through the
use of verification techniques. In this paper, we establish a
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Figure 1: The conservative reachset 53; at time ¢; computed
using Lagrangian reachability and global optimization, for a
Neural ODE starting from the ball By at time .

theoretical foundation for the verification of Neural ODE
networks.

In particular, we introduce Stochastic Lagrangian Reach-
ability (SLR), a new analysis technique with provable con-
vergence and conservativeness guarantees for Neural ODEs
Opx = f, with field f(x,x(0),t,0), hidden states x(¢), and
parameters 6. (SLR works in fact for any nonlinear system
defined by a set of nonlinear differential equations.)

At the core of SLR is the translation of the reachability
problem to a global optimization problem, at every time step
t. The latter is solved globally, by uniformly sampling states
z from an initial ball By, and locally, by computing a local
minimum via gradient descent from x. SLR avoids gradient
descent if = is within a spherical-cap around a previously
sampled state or its corresponding local minimum.

The radius of the cap is derived from the interval compu-
tation of the local Lipschitz constant of the objective func-
tion within the cap. The minimum computed by SLR at time
t stochastically defines an as-tight-as-possible ellipsoid cov-
ering all states reached at ¢ by the solution starting in By,
with tolerance  and confidence 1 — -, for given values of p
and ~. See Figure 1.

Since SLR employs interval arithmetic only locally to
compute the spherical-caps (also called safety or tabu re-
gions), it avoids the infamous wrapping effect (Lohner 1992)
of deterministic reachability methods (see Table 1), which



prevents them from being deployed in practice. Conse-
quently, our approach scales up to large-scale, real-life Neu-
ral ODEs. To the best of our knowledge, none of the avail-
able tools has been successfully applied to Neural ODEs.

We also introduce a novel forward formulation of the ad-
joint sensitivity method (Pontryagin 2018) to compute the
loss gradients in the optimization flow. This enables us to
improve the time complexity of the optimization process
compared to similar methods (Chen et al. 2018; Zhuang
et al. 2020).

Summary of results. In this work, we present a thor-
ough theoretical approach to the problem of providing safety
guarantees for the class of time-continuous neural networks
formulated as Neural ODEs. As the main result, we de-
velop SLR, a differentiable stochastic Lagrangian reacha-
bility framework, formulated as a global optimization prob-
lem. In particular, we prove that SLR converges (Theo-
rem 2) to tight ellipsoidal safe regions (Theorem 1), within
O(—In (60 /Tbouna)?™) number of iterations (Theorem 3).
This implies that for a given confidence level +, our algo-
rithm terminates according to the proposed rate, which leads
to the important conclusion that the problem of constructing
an ellipsoid abstraction of the true reachsets with probabilis-
tic guarantees for Neural ODEs is decidable (the computed
abstraction is conservative with confidence ). We summa-
rize our key contributions as follows:

* We introduce a theoretical framework for the verification
of Neural ODEs by restating the reachability problem as
a set of global-optimization problems.

We solve each optimization problem globally, via uniform
sampling, and locally, through gradient descent (GD),
thereby avoiding costly Hessian computations in the pro-
cess.

GD is avoided in spherical-caps around the start/end states
of previous searches. The cap radius is derived from its
local Lipschitz constant, computed via interval arithmetic.

We design a forward-mode GD algorithm based on the
adjoint sensitivity method for (Neural) ODEs.

We prove convergence properties of SLR, its safety guar-
antees, and discuss its time and space complexity.

Related Work

Global optimization. The literature on global optimization
for continuous problems is vast and includes many different
approaches depending on the smoothness assumptions made
about the objective function. Evolutionary strategies like
those based on the covariance matrix (Hansen and Oster-
meier 2001; Igel, Hansen, and Roth 2007) work for general
continuous objectives. Deterministic interval-based branch-
and-bound methods (Neumaier 2004; Hansen 1980) work
for differentiable objectives, and Lipschitz global optimiza-
tion (Piyavskii 1972; Shubert 1972; Malherbe and Vayatis
2017) for objectives satisfying the Lipschitz condition. Our
work is closest to the BRST algorithm (Boender et al. 1982;
Rinnooy Kan and Timmer 1987a,b) which for smooth ob-
jectives uses Hessians to compute the basins of attraction
for local minima as ellipsoidal bounds. Such basins define
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tabu regions. The final estimate for the global minimum and
reasonable confidence bounds are provided.

Stochastic reachability. Existing work is mainly concerned
with the verification of safety guarantees for stochastic hy-
brid systems with continuous dynamics (ODEs) in each
mode. Stochasticity is introduced in several ways: uncer-
tainty in the model parameters (Wang et al. 2015; Frinzle,
Teige, and Eggers 2010; Shmarov and Zuliani 2015b), un-
certainty in the discrete jumps between modes (Frinzle et al.
2011), and uncertainty in the initial state (Huang et al. 2017).
The work of (Enszer and Stadtherr 2011) focuses on the
probabilistic verification of continuous-time ODEs with un-
certainty in parameters and initial states.

Reachability for continuous dynamical systems. Most
of the relevant techniques are deterministic and based on in-
terval arithmetic. We provide a qualitative summary of ex-
isting reachability methods for continuous-time systems in
Table 1.

Setup
In this section, we introduce our notation, preliminary con-
cepts, and definitions required to construct our theoretical
setup for the verification of Neural ODEs.
Neural ODE. The derivative of the hidden states z is
computed by a neural network f parameterized by 6 as fol-
lows (Chen et al. 2018):

atx:f(xvx(o)at79)7$0 EBO (1)

We require that the Neural ODE is Lipschitz-continuous and
forward-complete. The solution to this initial-value problem
can be computed by numerical ODE solvers, from any ini-
tial system state 2:(0) = z¢. Consequently, the numerical so-
Iution can be trained by reverse-mode automatic differentia-
tion (Rumelhart, Hinton, and Williams 1986), either through
the solver, by a vanilla backpropagation algorithm (Hasani
et al. 2020a), or by treating the solver as a blackbox and us-
ing the adjoint sensitivity method (Pontryagin 2018).

Geometrical deformation in time by a flow y. To de-
scribe the optimization problem, we use Eulerian and La-
grangian coordinates from classical continuum mechan-
ics. We regard the set of initial states, which is the ball
By = B(xg,dp), as a body that is being deformed in time
by a flow . Given a point x € By in Eulerian coordinates
(the undeformed configuration), there is at every time ¢; > ¢
the representation z(¢;) = Xié (x) of that point in Lagrangian
coordinates (the configuration deformed by x).

The deformation of By in time is related to the Neural
ODE, where Y is defined as the solution flow of Eq. (1).

Reachset. A reachset is the set of all states reached at a
target time ¢, given the initial states and a flow. More for-
mally:

Definition 1. Given a set of initial states By at time tg, the
target time t; > to, and the flow x of the Neural ODE (1),
we call B;j(By) CR™ a conservative reachset enclosure if
Xié (x) € B;(Bo), for all x € By, i.e., the reachset bounds all
state-trajectories of the Neural ODE.

Whenever the initial set 3y is known from the context, we
simply refer to the reachset as the Reachset at time t;, or B;.



Technique | Determ. | Parallelizable (single step) | Basis | wrapping effect
LRT (Cyranka et al. 2017) yes no Infinitesimal strain theory yes
CAPD (Kapela et al. 2020) yes no Lohner algorithm yes
Flow-star (Chen et al. 2013) yes no Taylor models yes
d-reachability (Gao et al. 2013) yes no approximate satisfiability yes
C2E2 (Duggirala et al. 2015) yes no discrepancy function yes
LDFM (Fan et al. 2017) yes yes simulation, matrix measures no
TIRA (Meyer et al. 2019) yes yes second-order sensitivity no
Isabelle/HOL (Immler 2015) yes no proof-assistant yes
Breach (Donzé et al. 2007) yes yes simulation, sensitivity no
PIRK (Devonport et al. 2020) yes yes simulation, contraction bounds no
HR (Li et al. 2020) yes no hybridization yes
ProbReach (Shmarov et al. 2015a) no no d-reachability, probability interval yes
VSPODE (Enszer et al. 2011) no no p-boxes yes
GP (Bortolussi et al. 2014) no no Gaussian process no
SLR Ours no yes stochastic Lagrangian reachability no

Table 1: A Perspective on Related Work. Deterministic (Determ.) refers to approaches that provide an overapproximation of the
reach-set without any uncertainties. A “No” in the deterministic column indicates a stochastic approach that yields a reach-set

with a corresponding confidence interval.

Reachtube. A reachtube is a series of reachsets within a
determined time-horizon. Formally:

Definition 2. Given a set of initial states By at time
to, and a time horizon T, we use B(By,T) to denote
a sequence of time-stamped reachsets By, ..., By with
to<t1<...<tp=T.

Whenever the initial set, time horizon, and flow are
known from the context, we use the term reachtube over-
approximation or B, for that sequence of reachsets.
Definition 3 (Ellipsoid). Given A;, M; € R™"™ M; > 0
with ATA; = Mj and |z|x, = /2T Mjx, we call
B, (20, 6) a ball in metric M (or an ellipsoid) with center
xg and radius ¢ if ||z — wo||pr; < 0 forall x € By, (w0, 6).

Reachability as an optimization problem. Given a time
horizon T, an initial ball By = Bj(xg, o) with center z¢ and
radius g, and Euclidean metric My = I, our goal is to find a
tight reachtube 3, bounding all state-trajectories of the Neu-
ral ODE (1).

We capture the reachsets of B by ellipsoids
B; = By, (X?o (xo),d;) with center Xig(xo), radius 9,
and metric M;. At every time t;, we use as the center
Xié (z0), the numerical integration of ¢, and as the metric
M;, the optimal metric in XE(J) (z0) minimizing the volume
of the ellipsoid, as proposed in (Gruenbacher et al. 2020).

Thus, our goal is to find at every time step ¢;, a radius
0; which (stochastically) guarantees that B; is a conserva-
tive reachset. L.e., at each t;, we want to find the maximal
distance of all Xiﬁ, (x) to center Xié (xo) in metric M; for
x € By, and define ¢; as this distance. Thus the optimization
problem can be defined as follows:

t. t: . t;
8 = mage i3 (@) — i3 (o), = maxdist (x5 (0))
2

where we use dist( Xié (2)) to describe the distance in Eq. (2)
when metric M; and starting point xy are known.
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As we require Lipschitz-continuity and forward-
completeness, the map = Xfé (z) is a homeomorphism
and commutes with closure and interior operators. In
particular, the image of the boundary of the set By is equal
to the boundary of the image Xﬁg (Bo). Thus, Eq. (2) has its
optimum on the surface of the initial ball B5 = surface(By),
and we will only consider points on the surface. In order
to be able to optimize this problem, we describe the points
on the surface with (n-dimensional) polar coordinates such
that every point = € B is represented by a tuple (dg, ),
with angles ¢ = (¢1,...,pn—1) and center x,, having a
conversion function z((dg, ¢), zg) from polar to Cartesian
coordinates, defined as follows:

z((d0, ¢), o) =
xo,1 + do cos(¢p1)
: 3)

Zo,n—1 + do ?iﬂ(@l) e "Sin(@nfz) .COS(<Pn71)
Zo,n + 00 sin(p1) - ... - sin(pn_2) sin(pn_1)

Whenever the center xy and the radius dg of the initial ball
By are known from the context, we will use the following
notation: z(¢p) for the conversion from polar to Cartesian co-
ordinates and o (z) for Cartesian to polar. Using polar coor-
dinates, we restate the optimization problem (2) as follows:

t; tj
53 = mas i) e,
tj _ tj
= mox [ ete) - X,
=—L(p)
= min L(p) =m* *
i, L) =m”, ¥

We call L the loss function in polar coordinates at time ¢;
that we would like to minimize. Note that L also depends on
the initial radius dg and initial center xg; as these are fixed
inputs, we do not consider them in the notation.



Algorithm 1 Finding the local minimum

Algorithm 2 Computation of V, L

Require: target time ¢;, termination tolerance € > 0, learn-
ing rate v > 0, initial guess ¢ € R™~!, loss function L,
gradient of loss VL
1 L(p), lprey ¢ 00
while | — Lrep|/|lpres| > € do
compute VL
P @p—aV,L
lpTev 1
I+ L(p)
end while
return o,

A A o e

Main Results

In this section, we present our verification framework
for Neural ODEs, which we call Stochastic Lagrangian
Reachability (SLR). As the main results of this paper, we
show that the algorithm guarantees safety and converges to
the tightest ellipsoid, almost surely, in the limit of the num-
ber of samples. We then compute the convergence rate and
discuss space and time complexities.

Gradient Computation

Our algorithm uses gradient descent locally when solving
the global optimization problem of Eq. (4). Gradient descent
is started from uniformly sampled points, which are not con-
tained in already constructed safety regions.

Uniform sampling is used to repeatedly select an initial
point from the surface of the ball y. Gradient descent is
used from this point to find a local minimum. SLR is in-
spired by the gradient-only tabu-search (GOTS) proposed
in (Stepanenko 2009). Instead of tabu regions, we use safety
radii (i) to construct an area around already visited points
, where we know for sure what the minimum value inside
that region is. In the following, we describe the computa-
tional steps of the loss’s gradient for the main SLR algorithm
in greater detail.

Given the target time t;, termination tolerance € >0,
learning rate > 0, initial guess ¢ € R™"~!, and loss func-
tion L, we seek to compute the gradient of loss V, L. We
introduce a new framework to compute the loss’s gradient
which is needed in Line 3 of Algorithm 1 to find the local
minimum. Using the chain rule, we can express the gradient
VL as follows:

OL()  _ _ Ddistoxs; ox()

Op 7= dp

_ odist QoY 9x()  (5)
8y y:xié(m(«p)) oz z=x(p) Ef—/

(a) (e)

Part (a) - loss gradient wrt y: The differentiation of the
loss function defined in Eq. (2) can be expressed as

0, dist(y) = A;(y — Xié (z0)) dist(y) " *4;,  (6)
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Require: target time t;, initial value ¢ € R™~1, Neural
ODE f, gradients 0, dist and 0,
b+ z(p), F« 1
2: (b, F] <= solve_ivp([f (b, t), (0p.f) (D) - F], [0, ], [b, F1])
3: VoL  —0,dist(y) - F - Opx
4: return V,L {Required in line 3 of algorithm 1}

with A; from Def. 3 and M; as the metric in Xié (z0)
minimizing the volume of the ellipsoid (Gruenbacher et al.
2020).

Part (b) - polar gradient: x(y) describes the transfor-
mation from polar coordinates to Cartesian coordinates, as
given in Eq. (3). The differentiation with respect to ¢ is
straightforward to obtain using the product rule and the
derivatives of sin and cos:

an(go) =

—dp sin(y1)

do (cos(g1) cos(p2) — sin(i1) sin(g2)) )

Part (c) - gradient of the flow: The partial derivative
Ox Xfé (z) in @ of the Neural ODE solution flow x with re-
spect to the initial condition is called the gradient of the flow
or deformation gradient in (Slaughter 2002; Abeyaratne
1998), and the sensitivity matrix in (Donzé 2010; Donzé and
Maler 2007). Let I be the identity matrix in R™*". As we
now show, the sensitivity matrix 9, Xii, (z) is a solution of
the variational equations associated with (1):

31)(:2 (‘r> = F(tjvx)
atF<taz) = (arf)()do (I))F(tvx)a F(thI) =1

Proof sketch: By interchanging the differentiation order,
we obtain 9y (0, X}, (¢)) = 02(9: X}, (x)). Since xf,(x) is a
solution of Eq. (1), 9,(9¢x}, () = 92 (f(x{,(x))). By the
chain rule, we get 9; (9, X}, () = (02 f) (X}, (%)) 0x X}, ().

Forward-mode use of adjoint sensitivity method. The
integral of Eq. (8) has the same form of the auxiliary ODE
used for reverse-mode automatic differentiation of Neural
ODEs, when optimized by the adjoint sensitivity method
(Chen et al. 2018) with one exception. In contrast to (Chen
et al. 2018), which requires one to run the adjoint equa-
tion backward and have access to the termination time of
the flow, our approach enjoys a simultaneous forward-mode
use of the adjoint equation. This is due to the way we deter-
mine the loss function in the ODE space. In retrospect, this
enables us to obtain the gradients of the loss at the current
state-computation step. This property enables us to improve
the optimization runtime by 50%, compared to the optimiza-
tion scheme used in (Chen et al. 2018): we save half of the
time because we do not have to go backward to compute the
loss.

More precisely, solving Eq. (8) until target time ¢; re-
quires knowledge of x} (x) for all ¢ € [to,;]. This ensures
that we already know the value of xj (zo) when needed

®)



to compute the right side of Eq. (8) during integration of
F(t,z). Algorithm 2 demonstrates the computation of the
gradient V, L of the loss function.

Safety-Region Computation

With our global search strategy, we are covering the feasible
region B()g with already visited points V. Consequently, we
have access to the global minimum in all of those regions:

m = min L(p) ©)

peV
with m > m*, where m™ is the global minimum of Eq. (4).
We now identify safety regions for a Neural ODE flow and
describe how this is incorporated in the SLR algorithm.

Definition 4 (Safety Region). Let ¢; €V C R"™! be an
already-visited point. A safety-radius r,, =7(p;) defines a
safe spherical-cap B(;,7y,)° = B(z(p;i),1y,) N BE, be-
cause L(v) > yu - m for all 1 s.t. () € B(pi,7)°.

Our objective is to use the local Lipschitz constants to
define a radius 7, around an already visited point ¢ s.t. we
can guarantee that B(p, r,)* is a safety region.

Definition 5 (Lipschitz). The local Lipschitz constant (LLC)
of a function L in a region A is defined as a Ay > 0 with

[1L(z) = L{y)| < Aallz =yl Yo,y € A.

In the following theorem, we use the LLC to define the
radius 7, of the safety (or tabu) region B(ip, r,,)° around an
already-visited point ¢ € V.

Theorem 1 (Radius of Safety Region). At target time t;, let
m be the current global minimum, as in Eq. (9). Let ¢ € V
be an already-visited point with value L(p) (> m), and let
1, and B(p,r,)® be defined as follows with 1 > 1:

re = A5 (L(p) — p-m) (10)
with As, = maxy(y)es, Hamxté (x(V)l - If By is cho-
sen s.t. ¥, O B(yp, rw)s, then it holds that:

L) > p-m Va(y) € Blp,r,)° (1)

The full proof is provided in the Appendix. Proof sketch:
The Lipschitz constant defines a relation between the values
in the domain and the ones in the range of the function.

Theorem 1 says that areas around already-visited sam-
ples are safe. The size of the safety areas increases if we
have a better current global minimum. Therefore, the theo-
rem demonstrates that we can improve the convergence rate
if we optimize the loss, by possibly finding a better current
global minimum. This justifies the use of gradient descent
together with a more global search strategy.

Algorithm 3 computes the radius in Eq. (10) as a fix-
point of the choice of X,. For an over-approximation of the
LLC in Line 2, we use the triangle inequality and the mean
value inequality with a change in metric (Cyranka et al.
2017, Lemma 2). We then solve Eq. 8 using interval arith-
metic to obtain an interval gradient matrix [;] 3 ,x/’ (z)
Vx € X,, and take the maximum singular value of r]-'t],
as proposed in (Gruenbacher et al. 2019). Depending on the
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Algorithm 3 Computing the Radius of the Safety Region

Require: target time ?;, visited point ¢, termination toler-
ance € > 0, initial ball By with radius dg, minimum of
visited points m, loss function L, tolerance p > 1, re-
gion X, in which to compute the LLC A.

1: th — B(),S — (50

2: A < computeLipschitz(X,)
3 1/A - (L(p) — - )

4: while |r — s|/r > eor s < rdo
5. sets<+r+4|s—r|/2

6: Y, < B(p,s)°

7: X ¢ computeLipschitz(X,)
8 r«1/A-(L(p)—pu-m)

9: end while
10: return r

Neural ODE, it is presumably faster to pick s=dg, and to
always use the LLC Ap, of the entire initial ball. As a re-
sult of the way we select r, in Theorem 1, we are able
to increase the radii 7, as soon as a new region with a
smaller local minimum than the previous ones is discovered.
Thus: M < Mprey = L(p) —p - M > L(p) — pMpres =
Ty 2 Toprev-

Stochastic Lagrangian Reachability

By using local gradient computation, global uniform sam-
pling, and safety regions as in Algorithm 3, we present our
SLR verification technique, as outlined in Algorithm 4.
Given a Neural ODE as in Eq. (1) and a set of initial states
By, we start by specifying a confidence level v € (0,1) and
a tolerance p, > 1 for the entire Reachtube. The algorithm
returns radii 4, j € {1, ..., k}, and the stochastic guarantee

stating that B;(= By, (Xi-é, d;)) overestimates by p the true
conservative Reachsets with a probability higher than 1 — .
This holds also for the whole Reachtube, as it is defined by
a series of Reachsets (Def. 2).

As we reinitialize the variables at the beginning of every
new timestep ¢, and apply gradient descent to the loss func-
tion of the initial polar coordinates ¢ at time ¢y, we do not
accumulate errors from one timestep to the next one. This
is a prominent advantage compared to methods using inter-
val arithmetic, and thus accumulating the wrapping effect,
e.g. (Zgliczynski 2002; Cyranka et al. 2018; Fan et al. 2017).
Another advantage is that we can compute the for-loop in
line 1 of Algorithm 4 (thus the Reachsets of the Reachtube)
in parallel.

At every timestep ¢;, we sample random points and con-
struct safety regions around them until we reach the desired
probability 1 — v of being inside the tolerance region de-
fined by p. After sampling a new point, we check if this
point is already in the covered area. If not, then we apply
gradient descent to find a local minimum and compare this
local minimum to the smallest value m. Otherwise, if the
sampled point is already in the covered area and thus in at
least one safety region, we already know the lower bounds
for that region and do not look for the local minimum again.



Algorithm 4 Stochastic Lagrangian Reachability

Require: time horizon T, sequence of timesteps ¢; (tg <
ty < ... <t =T),tolerance p > 1, confidence level
v € (0, 1), loss function L, gradient of loss V, L

Lfor(j=1;<k;j=j+1)do
2: V,U <+ {} (list of visited and random points)
3: S+ {} (total covered area)
4 p+0,m<+0
5. whilep <1—~do
6: sample o € R"~!
7: VYV« VU{p}
8: U+ UU{p}
9: if z(p) ¢ S then
10: (Pmin < local minimum starting at ¢ using gra-
dient descent with V, L
11: V +— VU {pmin}
12: m < L(©min)
13: else
14: m <+ L(p)
15: end if
16: if m < m then
17: m<—m
18: set S« {}
19: for all p; € V do
20: compute new radius » = r(p;) such that
L(y) > p-m, Y z(y) € Blpi,r)®
21 set S < SU B(p;,7)°
22: end for
23: else
24: compute radius » = 7(p) only for current
@ such that L(y) > p-m, V¢:a(y) €
B(p,r)*
25: set S < SU B(¢,T)
26: end if
27: D« Pr(p-m <m*) with g - m < minges L(p)

28:  end while

29: 63' — —m

30: end for

31: return (41,...,0%)

This approach is similar to using baisins of attraction, but is
more scalable because we do not require Hessian computa-
tion. In line 20, we recompute the radii of the safety regions
when we find a new smallest value m. By computing the cur-
rent probability p of having reached the desired confidence
level, we check whether we have to resample more points
or whether we are able to finish that timestep and save the
radius d; of the stochastic Reachset at time ¢;.

Stochastic Guarantees of Reachsets

In this section, we derive the stochastic convergence guar-
antees and convergence bounds for finding the global mini-
mum of Eq. (4) using SLR at every timestep ¢;.

Let m = ming,ey L(p) be defined as in Eq. (9), and let
m* = min,egn-1 L(p) be the global minimum and ¢* an
argument s.t. L(¢*) = m*. We start by defining the proba-

Initial states By

>
XX

Figure 2: Illustration of a safety region B(y,7,)°, which is
a spherical cap C(r,,). In this figure, the area of cap C(r,) (in
light blue) is greater than the volume of an n— 1-dimensional
ball (in dark blue) with radius p(r,), which is used in the
convergence rate.

bility of B(p, r,)® covering x(¢*):

Pr(B(p,14)° 3 ("))

= Pr([lz(¢”) = z(p)ll2) < 7)

= Pr(z(p) € C(ry,)) = Pr(C(ry)) (12)
with 7, as defined in Eq. (10) and C(r,) = B(p*,r,)°
being the spherical-cap in Fig. 2. By using the area of the
spherical cap C(r,) and the area of the initial ball’s surface

S, the probability defined by Eq. (12) can be described as
follows:

Pr(C(ry)) = W

The area of C(r,) can be computed using the formulas
in (Shenggiao 2011). Next we derive some probabilities:

Pr(B(goj,r%)S Z ") =1-Pr(C(ry,))
Pr(Vp € U: B(o,r,)° # %) = [ (1 = Pr(C(ry)))

peu

Pr(3p € U: Blp,r,)° 2 ¢*) =1~ H (1 =Pr(C(ry)))
peU

13)

(14)

Using Theorem 1, if ¢* € B(ip,r,)° for some ¢ € U, then
w-m < L(p*) = m* holds, and thus:

Pr(p-m <m*) >

Pr(3p € U: By, r,)° 3 ¢*)
Theorem 2 (Convergence Guarantees). Given v € (0,1),
w > 1, local Lipschitz constant )\35 and N = |U|, where
U is the set of uniform-randomly generated points during
global search process. Let in = min ey L(p) as defined in
Eq. (9), m* = ming,egn-1 L(p) the global minimum, and
©* an argument s.t. L(p*) = m*. Then:

5)

lim Pr(p-my <m*)=1 (16)
N—oo

and thus

Vy € (0,1),dN € Ns.t. Pr(p-my <m*)>1—1
(17)



The full proof is provided in the Appendix. Proof sketch:
By creating a lower bound ryoynq for all 7, s.t. Pr(C(r,) >
Pr(C(rbound)), we underestimate Eq. (14) by 1 — (1 —
Pr(C(Thouna)))™ . Using this bound and Eq. (15), we show
that the convergence guarantee holds.

Theorem 2 shows that in the limit of the number of sam-
ples, the reachset constructed by Algorithm 4 converges with
probability 1 to the smallest ellipsoid that encloses the true
reachable set. Note that the algorithm cannot converge to
the true reachable set because we approximate the reachset
by ellipsoids, while the true reachset might be of arbitrary
geometrical shape. Nonetheless, we proved that it provides
the smallest possible ellipsoid that contains a true reachset.

Moreover, although Theorem 2 shows that we achieve the
tightest elliptical reachsets, it does not determine whether
the algorithm can terminate or not, as the theorem is proven
in the case of infinite samples. We now prove that SLR in-
deed converges at a reasonable rate.

Convergence Rate for SLR

Theorem 3 computes a convergence rate for Algorithm 4.
Theorem 3 (Convergence Rate). Given vy € (0,1), u > 1,
local Lipschitz constant )\Bg, and dimension n, let 1 be the

first random sample point. We can guarantee that Pr(p-m <
m*) > 1 — v if we perform at most Ny, iterations of the
SLR Algorithm 4, with

Nmam =

1 I'(n/2) P(Tbound) et
1 In{1-
n’v/n< 2 /7 ((n+1)/2) < 5
(18)
and asymptotically it holds that
2n
Nmax—o<ln'7( ) > ) (19)
Tbound

with Tbound = Ag(%(l - M)L(Cﬂl) and p(rbound) = Tbhound *
sin(7/2 — arcsin(r/2do)).

The full proof is provided in the Appendix. Proof sketch:
As the radius 7, of the spherical cap is very small, we under-
estimate the area of the cap by removing the curvature and
using the volume of an n — 1 dimensional ball with radius
P(Tbound) as shown in Fig. 2.

Thus, after finishing our global search strategy for
timestep ¢;, we have the stochastic guarantee that the func-
tional values of every ¢ € R~ are greater or equal to j¢- 7.
This implies that we should initiate the search with a rela-
tively large i = p1, obtaining for every  a relatively large
value of r, ,, and therefore obtain a faster coverage of the
search space. Subsequently, we can investigate whether the
reachset B; with radius §; = —u; - m intersects with a re-
gion of bad (unsafe) states. If this is not the case, we can
proceed to the next timestep ¢;, 1. Otherwise, we reduce
to po < p1, which reduces the safety regions B(p, rg,)s and
thus the already-covered-set S. This means that we continue
with our search strategy until the desired probability 1 — ~
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is reached again for a smaller radius §; = —p2 - m. Accord-
ingly, we can find a first radius for B; faster and refine it as
long as B; intersects with the region of bad states.

Theorem 3 guarantees convergence of the algorithm. It
shows that for a given confidence level -, our algorithm ter-
minates after at most N,,,, steps. Essentially, the theorem
leads us to the significant result that the problem of con-
structing an ellipsoid abstraction of the true reachset with
probabilistic guarantees for a Neural ODE is able to termi-
nate.

Additionally, the theorem assumes that we know the lo-
cal Lipschitz constant, which is a reasonable assumption for
proving convergence. In practice, one can safely replace the
true Lipschitz constant by an upper-bound.

Computational Complexity

The complexity of Algorithm 1 depends on the geometry of
the loss surface. In particular, Algorithm 1 may terminate
after one iteration in case of a flat surface, whereas an expo-
nential number may be needed for ill-posed problems, as is
common practice when deriving convergence rates for gra-
dient descent (Nagy and Palmer 2003; Drori 2017)

The runtime of Algorithm 2 is determined by the com-
plexity of the ODE solver for simulating the given differen-
tial equation. For example, given the number of integration
steps (implicit interpretation of the number of layers in a
deep model) L, and the time horizon of the simulation T,
Algorithm 2 runs in time O(L x T') and constant memory
cost O(1) for each layer of a neural network f.

The complexity of Algorithm 3 depends on the local Lip-
schitz constant and the smoothness of the flow. Computing
the true Lipschitz constant of a neural network is known to
be NP-complete (Virmaux and Scaman 2018). However, Al-
gorithm 3 operates correctly when we replace the true Lip-
schitz constant by an easier-to-compute upper bound, ob-
tained for instance by means of interval arithmetic.

Algorithm 4 implements the main routine of our frame-
work. Its complexity for a given confidence score y equals
the convergence rate N,,,,, proven in Theorem 3, Eq. (19)
for every Reachset. In particular, the runtime of Algorithm 4
depends exponentially on the dimension of the given Neural
ODE and logarithmically on the confidence score.

Conclusions and Future Work

In this paper, we considered the verification problem for
Neural ODEs. We introduced the SLR verification scheme,
which is based on solving a global optimization problem. We
designed a forward formulation of the adjoint method for the
gradient descent algorithm. We also established strong con-
vergence guarantees for SLR, showing that it can establish
tight ellipsoidal bounds for the Neural ODE under consider-
ation, at an arbitrary time horizon.

An important future direction will be to improve the cur-
rent convergence rate, which is exponential in the dimen-
sionality of the Neural ODE network. Existing statistical
verification methods are mostly concerned with the verifi-
cation of (hybrid) dynamical systems having various uncer-
tainties in model parameters, discrete jumps between modes,



and/or initial states. We emphasize that reachability compu-
tation for Neural ODEs developed at scale will require ded-
icated methods tailored for that specific purpose.
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Appendix

Theorem 1 (Radius of Safety Region). At target time t;, let
m be the current global minimum m = mingcy L(p). Let
@ € V be an already visited point with value L(p) (> m)
and let v, and B(p,1,)° be defined as follows with y > 1:

re = A5t (L(p) = p-m) (20)

with Xy, = max,(y)ex, Halxi; (@ (V) |lago, ;- If By is cho-
sens.t. ¥, 2 B(yp,1,)%, then it holds that
L) > p-m Va(y) € B(pry)* @1

Proof. Given 7, and /\2¢ as defined in the above theorem.
Using the mean value inequality for vector valued functions,
the triangle inequality, and considering the change of met-
ric (Cyranka et al. 2017, Lemma 2) it holds that:

|L(p1) — L(p2)| =

<]

tj t +s t.
X @) =i @) | =i @) =X ao)||

xe (1)) = X (x(W))HM

J
< As, [lz(e1) — 2(p2)ll;
V$(<p1),$(§02) c th D) B(pr’rsa)s
Thus As, is a local Lipschitz constant in the safety re-
gion B(p,7,)°. By definition |lz(v)—z(p)|| <7, for
z(1), € B(p,7,)°. Hence:

[L(¥) = L()|

< An, [lz(¥) — (e

<A, = L) —p-m Va() € Blp,ry)°
To prove that Eq. (21) holds, we distinguish between two
cases for ¢: (1) L(v)) > L(p) and (2) L(¢)) < L(y). Case (1)
is straightforward: L(v)) > L(p) > u- L(p) > u-m. In
case (2), we use Eq. (22) and thus:

L) = L(¥) = |L(¥) = L(p)| < L(¢) = p-m

proving that Eq. (21) holds no matter if L(v)) > L(y) or if
L(¥) < L(¢p), for all x(¢) € B(,14)°. O

(22)

J
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Theorem 2 (Convergence Guarantees). Given v € (0,1),
i > 1, local Lipschitz constant )‘B(? and N = |U|, where
U is the set of uniform-randomly generated points during
global search process. Let m = ming,cy L(p) be the current
minimum, m* = ming,cgn-1 L(¢) the global minimum, and
©* an argument s.t. L(p*) = m*. It holds that

lim Pr(p-my <m*)=1 (23)
N—o0
and thus
Yy € (0,1)AN € N, s.t. Pr(p-my <m*) >1—1
(24)

Proof. With C(r,) = B(¢*,7,)° being the spherical-cap

as illustrated in Fig. 2, we derive some probabilities:
Pr(B(gjire,)® 2 ¢") =1 - Pr(C(ry,))

Pr(Vo € U: B(p,r,)° #¢*) = [ (1 - Pr(C(r,)))

peU

Pr(3p € U: B(p,ry)° 3 ¢*) =1 [ (1 = Pr(C(ry)))
o< (25)

Using Theorem 1, if ¢* € B(p,r,)° for some ¢ € U, then
w-m < L(p*) = m* holds, thus:

Pr(p-m <m*) >
Pr(3p € U: By, r,)° 2 ¢*)

Thus, it holds that Pr(p - m < m*) >
[Toeu (1 = Pr(C(ry))), with 1y, as defined in Eq. (20).

(26)

1

o 2 Ag (min L(p) — p-1m) 27)
= Agg (1= mm (28)
> Ags (1= ) L(91) = Toouna Vo €U, (29)
with ¢, being the first random sampled point. Hence:
Pr(p-m<m*) >1- H (1 = Pr(C(rpouna)))  (30)
veu
>1— (1= Pr(Clroowma))” (3D

As Pr(C(rbouna)) € (0, 1), it follows that Eq. (23) holds and
thus we are able to guarantee the convergence of our global
search strategy. O

Theorem 3 (Convergence Rate). Given v € (0,1), p > 1,
local Lipschitz constant Ags and dimension n, let py be the

first random sample point. We can guarantee that Pr(p-m <
m*) > 1 — v if we perform at most Ny, iterations of the

SLR Algorithm 4, with

Nma:c =

1 I(n/2) < >>>
(32)

~2/rD((n+1)/2)

p(rbound
do

lny/ln <1



and asymptotically it holds that

2n
Nmam:(9<—ln’y( ) ),

With Thound = /\g; (1—p)L(p1) (as defined in Eq. (29)) and
0
2(Tbound) = Thound - sin(mw/2 — arcsin(r/2dp)).

Proof. 1f the right-hand side of Eq. (31) equals 1 — ~, it
would hold that Pr(u-m < m*) > 1—-. Thus reformulating
that equation, we get an upper bound V:

do

(33)

Tbound

1— (1 =Pr(Clrpouna)))¥ =1—7 = (34
(1 = Pr(C(rpouna)))™ =~ & (35
In(v) N 36)

In(1 = Pr(C(rpound)))

To get a lower bound of Pr(C(rpound)) We underestimate
the area of the cap by removing the curvature and us-
ing the volume of an n — 1 dimensional ball with radius
P(Tbound): Using the results of (Shenggiao 2011) it holds
that Area(C(Tpound)) = Volp—1(p(Tpound)), thus:

Vol,,_1 (p(rbound» _
Area(By)

no1l(n/2) 1
27n/2 58_1

PI"(C (rbound) ) Z
(37)

(n=1)/2

mﬂ(rbound)

with I" being the gamma function. Combining Eq. (37) with
Eq. (36) we prove equation (32). Using the information that
In(1 — z) —x and using the results of (Zhigljavsky
and Zilinskas 2008)[Section 2.2], the asymptotical value of
Nz equals to Eq. (33) O

~
~
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