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Abstract

The Right to be Forgotten is part of the recently enacted
General Data Protection Regulation (GDPR) law that affects
any data holder that has data on European Union residents.
It gives EU residents the ability to request deletion of their
personal data, including training records used to train ma-
chine learning models. Unfortunately, Deep Neural Network
models are vulnerable to information leaking attacks such as
model inversion attacks which extract class information from
a trained model and membership inference attacks which de-
termine the presence of an example in a model’s training data.
If a malicious party can mount an attack and learn private
information that was meant to be removed, then it implies
that the model owner has not properly protected their user’s
rights and their models may not be compliant with the GDPR
law. In this paper, we present two efficient methods that ad-
dress this question of how a model owner or data holder may
delete personal data from models in such a way that they may
not be vulnerable to model inversion and membership infer-
ence attacks while maintaining model efficacy. We start by
presenting a real-world threat model that shows that simply
removing training data is insufficient to protect users. We fol-
low that up with two data removal methods, namely Unlearn-
ing and Amnesiac Unlearning, that enable model owners to
protect themselves against such attacks while being compli-
ant with regulations. We provide extensive empirical analy-
sis that show that these methods are indeed efficient, safe to
apply, effectively remove learned information about sensitive
data from trained models while maintaining model efficacy.

Introduction
In 2016 the European Union (EU) established the General
Data Protect Regulation (GDPR) which is intended to pro-
vide individuals in EU nations control over their personal
data. This includes regulations for businesses that handle
personal data, requiring them to provide safeguards to pro-
tect data and use the highest possible privacy settings by
default (Commission 2018). In particular, article 17 of the
GDPR gives individuals the right to be forgotten and states
that ... (businesses) have the obligation to erase personal data
without undue delay (Commission 2018). Individuals who
invoke this right must have their personal data removed from
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data records that companies, governments, or other entities
hold.

In light of the GDPR law, the existence of attacks on neu-
ral networks that leak information about the data they were
trained on, such as the Model Inversion Attack (Fredrik-
son, Jha, and Ristenpart 2015) and the Membership Infer-
ence Attack (Shokri et al. 2017), present a problem for com-
panies or researchers that use personal data to train neural
network models. If an individual’s data has been used to
train a model and that individual subsequently invokes the
right to be forgotten, simply deleting the training data is
insufficient to protect the individual’s privacy. The reason
is that neural networks, whose training set contains a spe-
cific datum, are vulnerable to leakage of that datum via the
above-mentioned attacks. Although this problem is recent,
legal scholars have underlined that the potential cost due to
GDPR can be significant and potentially crippling to busi-
nesses and entities (Humerick 2017; Villaronga, Kieseberg,
and Li 2018). If a malicious entity or attacker can attack a
trained model and learn private information about an indi-
vidual who has invoked the right to be forgotten, the model
owner can be held liable since he or she has not taken the
appropriate steps to protect the individual.

In this paper, we address the question of efficiently re-
moving learned data from a trained neural network without
harming the performance of the network. We call our ap-
proach amnesiac unlearning and provide extensive empiri-
cal analysis to highlight its strengths as well as understand
its weaknesses. The obvious solution to this problem is to
entirely discard the trained model and train a new one from
scratch. Unfortunately, training machine learning models is
known to be an expensive and time-consuming proposition.
Model owners are likely to be disinclined to continually train
new models to be compliant with regulations every time an
individual invokes their right to be forgotten. Hence, it is in
their best interest to have efficient deletion methods to re-
move learned data that ensure compliance with regulations
and retain the fidelity of their model. Humerick (Humerick
2017) highlights the importance of having a method that ef-
fectively removes learned data, as well as the potential eco-
nomic harm that could be caused by requiring model owners
to continually replace trained models.
Problem Statement: In short, our work focuses on the fol-
lowing problem: how can learned data be safely and ef-
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ficiently removed from a trained neural network without
harming the performance of the network and that is not vul-
nerable to state-of-the-art data leakage attacks?

Contributions
In this paper, we make the following contributions:

• We address the problem of how to make neural networks
compliant with the right to be forgotten policy of the
GDPR law via effective ways of removing learned data.
In this context, we introduce two methods for efficient re-
moval of learned data, namely Unlearning and Amnesiac
Unlearning. Unlearning is a training-time method that
uses relatively little time to remove learned data from a
network. By contrast, amnesiac unlearning is a single-step
method that is effective for laser-focused removal of small
segments of data. We compare these methods against the
naive method of retraining a model without the sensitive
data. We show that these methods are not only very ef-
ficient, but effective in removing traces of the data that
could be leaked through state-of-the-art attacks, and fur-
ther do not harm the performance of the neural network
in any other way.

• We provide a detailed empirical evaluation of the effi-
cacy of our methods along several vectors, including pro-
tection against data leaks, efficiency, and model perfor-
mance. Specifically, we evaluate protection of the pro-
posed methods using state-of-the-art privacy leaking at-
tacks, such as model inversion and membership inference,
and show that amnesiac unlearning is the most effective
when compared to other methods. As part of this evalu-
ation, we present a modified version of the Model Inver-
sion Attack (Fredrikson, Jha, and Ristenpart 2015) that
is effective even against complex convolutional networks,
a class of network previously considered impervious to
such attacks (Hitaj, Ateniese, and Perez-Cruz 2017). Fur-
ther, we show that both unlearning and amnesiac unlearn-
ing are very efficient to apply and cost very little to model
owners. Finally, we evaluate the performance of neural
network models after the application of these deletion
methods, and show that these methods have virtually no
impact on model performance on data that is unrelated to
the deleted data.

Related Work
Machine learning models have been shown to leak informa-
tion about the data they’ve been trained on (Homer et al.
2008; Shokri et al. 2017; Fredrikson et al. 2014; Fredrik-
son, Jha, and Ristenpart 2015; Hitaj, Ateniese, and Perez-
Cruz 2017). Specifically, two main kinds of information
leaking attacks have been studied: membership inference at-
tacks that leak information about the presence of specific
records in the training data (Yeom et al. 2018) and model in-
version attacks that leak class information (Fredrikson, Jha,
and Ristenpart 2015; Hitaj, Ateniese, and Perez-Cruz 2017).
Membership inference attacks determine whether a partic-
ular record was present in the training data for a model.
This attack was first presented in 2008 (Homer et al. 2008)
and was formalized in 2015 (Dwork et al. 2015). Since

then, considerable work has been done on membership in-
ference attacks and defense mechanisms against such mem-
bership inferences (Nasr, Shokri, and Houmansadr 2018;
Shokri et al. 2017; Yeom et al. 2018). Property inference
attacks are a subset of membership inference attacks that
determine a general property of the training data, such as
the ratio of training examples in each class (Ganju et al.
2018). Model inversion attacks, introduced by Fredrikson et
al. in 2014 (Fredrikson et al. 2014) and expanded to vision
tasks in 2015 (Fredrikson, Jha, and Ristenpart 2015), have
been shown to recreate instances of records from trained ML
models. Given white-box access to a trained model, exam-
ples of target classes or points near a regression value can
be recreated. In this paper, we utilize both state-of-the-art
membership inference attacks and model inversion attacks
to evaluate how likely a model is to leak private data.

There is an abundance of literature on differential pri-
vacy which provides an upper bound on the amount of
information that can be leaked from each individual data
record (Dwork, Roth et al. 2014; Dwork et al. 2006; Chaud-
huri, Monteleoni, and Sarwate 2011; Bassily, Smith, and
Thakurta 2014). Cummings and Desai address the need for
training machine learning models in a differentially private
manner to comply with GDPR (Cummings and Desai 2018).
However, differential privacy methods do not allow learned
data to be forgotten. Any of the methods presented in this
paper can be combined with differential privacy methods if
this type of privacy guarantee is needed.

Other recent research has touched on the issue of remov-
ing learned properties or data from machine learning mod-
els. Ginart et al. (Ginart et al. 2019) devised a notion they
term removal efficiency and give two algorithms for effi-
ciently removing specific data points from k-means cluster-
ing models. Guo et al. (Guo et al. 2019) defined an approach
they term certified removal that was evaluated for linear clas-
sification models. In this system, a model is trained on a
dataset including sensitive data, and then the sensitive data
is removed in some way from the model. A different model
is trained on the same dataset without the sensitive data, and
removal algorithms are evaluated based on the difference be-
tween the models. However, these approaches are unlikely
to work in the case of DNNs, which are more opaque and
difficult to analyze. The work presented in Ginart et al. (Gi-
nart et al. 2019) and Guo et al. (Guo et al. 2019) are both
focused on such different machine learning methods that it
is impossible to make a direct comparison with our work.

Recently, Bourtoule et al. (Bourtoule et al. 2019) intro-
duced a method for dealing with individual data removal
requests. They proposed SISA training, a method consist-
ing of an aggregate model made of multiple models trained
on disjoint partitions of the data. Because of this segmenta-
tion, when requests for removal are made the model owner
can retrain only the effected sub-models instead of having to
retrain everything. By contrast, our methods focus on deep
learning models that have already been trained and are in-
dependent of neural network architecture. Further, we have
no requirement to have the model be an aggregate of weak
learners.
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Proposed Methods
In this section, we explain our proposed methods for remov-
ing learned data from a neural network model.

Naive Retraining
As a baseline, we consider the naive method of simply re-
moving the sensitive data from the dataset and retraining
the model anew without the sensitive data. The principle
of catastrophic interference (Sharkey and Sharkey 1995)
tells us that when presented with new data, there is some
probability of an artificial neural network losing previously
learned information. Over time a network originally trained
on a dataset D and then trained on the same dataset with-
out some subset of that data D \ S has a high probability of
losing information about S. Although this has a high proba-
bility of causing the neural network to forget the desired in-
formation, it gives no information or assurances about how
long it could take. However, it provides a useful baseline be-
cause simply removing the data and retraining the network
is a simple solution and, if useful, provides model owners
with an easy method to cause networks to forget sensitive
data. Unfortunately, our evaluation shows that naive retrain-
ing takes far too long to be considered as a practical solution
and even a large amount of naive retraining does not prevent
data leaks.

Unlearning
The goal of unlearning is to muddy the model’s understand-
ing of the sensitive data to the point that it is unable to retain
any meaningful information about that data. To achieve this,
we relabel the sensitive data with randomly selected incor-
rect labels and then retrain the network for some iterations
on the modified dataset. Unlearning for an entire class is
achieved by replacing the label for each example in that class
with a randomly selected incorrect label, whereas unlearning
for a select set of examples is achieved by removing those
examples and inserting a small number of copies of each of
them with randomly selected incorrect labels. This relabel-
ing is computationally inexpensive and our evaluation shows
that this method is effective with only a very small number
of training iterations on the modified dataset.

One possible risk of unlearning is that the data holder
must maintain a copy of the sensitive data during the un-
learning process, which may potentially have legal signifi-
cance. Fortunately, the right to be forgotten gives data hold-
ers up to a month to remove the data (Information Commis-
sioner’s Office 2018), which makes this method easily fall
within permissible bounds.

Amnesiac Unlearning
Amnesiac unlearning involves selectively undoing the learn-
ing steps that involved the sensitive data. During training,
the model owner keeps a list of which examples appeared
in which batches as well as the parameter updates from each
batch. When a data removal request comes, the model owner
undoes the parameter updates from only the batches contain-
ing sensitive data. As long as the number of batches effected
is small, the effect of undoing those sections of learning is

also small. One significant advantage of this method is that
it can very effectively remove the learning from a single ex-
ample with minimal impact on the rest of the learned model,
which is something other techniques have struggled with.
Further, this method is very time efficient, and our evalua-
tion shows that as long as the amount of data to remove is
small the efficacy of the model remains unharmed.

To better understand amnesiac unlearning, we start by re-
visiting model training with a fresh perspective. We can view
model training as a series of parameter updates to the initial
model parameters (that, in the case of neural networks, are
randomly initialized). We begin from initial model param-
eters θinitial. Model M is then trained for E epochs each
consisting of B batches, and the parameters are updated af-
ter each batch by an amount ∆θe,b . The learned model pa-
rameters can then be expressed as:

θM = θinitial +
E∑
e=1

B∑
b=1

∆θe,b

During training, we keep a list SB of which batches con-
tained the sensitive data. This can be in the form of an in-
dex of batches for each example in the training data, an
index of batches for each class, or any other form desired.
We also must maintain the model parameter updates from
each batch that contained sensitive data. A comprehensive
approach would be to keep a record of each batch update.
However, if the data holder is only concerned about possible
potential removal of a subset of data, they need only keep
the parameter updates from batches containing that data.

Once training is completed, we can produce a protected
model M ′ using amnesiac unlearning as follows: we simply
remove the parameter updates from each batch sb ∈ SB (the
list of sensitive data batches) from the learned parameters
θM .

θM ′ = θinitial+
E∑
e=1

B∑
b=1

∆θe,b−
SB∑
sb=1

∆θsb = θM−
SB∑
sb=1

∆θsb

We note that the parameter update at each step ∆θe,b de-
pends on the current parameters when that learning step is
taken. Due to this, a model trained on three batches b0, b1,
and b2 that then has the parameter updates from b1 undone
will not in fact be the same as a model (with the same ini-
tial parameters) trained directly on b0 and b2, because the
parameter updates from learning on b2 will be different.

When the number of batches in SB is low, the difference
is between θM and θM ′ is comparatively low, and the con-
comitant impact on the efficacy of the model is also low. In
this way, this method provides a way of laser-focused re-
moval of sensitive data, i.e., the learned data from a single
record can be removed from the model with minimal effect
on the rest of the model. This method is particularly well-
suited for situations where the privacy of an individual with
a single record in the dataset needs to be protected. When
the number of batches in SB is higher, the model needs a
small amount of fine-tuning after the amnesiac unlearning
step to regain performance.

One potential downside to this method is the large storage
space required to keep a set of parameter update values from
each batch. While this cost can be quite large, especially for
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state-of-the-art large models, the low cost of mass storage
means this cost is usually less than the cost of retraining
a full model from scratch. Model owners concerned about
this storage cost may be better off using a method such as
unlearning that doesn’t require this storage overhead.

Threat Model
We use two state-of-the-art attack methods to evaluate how
much data can be leaked, namely, model inversion and mem-
bership inference attacks. The adversary attempts to gain in-
formation about either the class (through model inversion
attacks) or about the presence of a specific record or set
of records in the training data (through membership infer-
ence attacks). Leaking class information could provide an
attacker with generalized information they should not have.
For example, if the adversary learns that the class of indi-
viduals that are at risk for cancer is strongly generalized to
be older men, it could potentially violate privacy guidelines
that protect the older men represented in the data set. Leak-
ing membership information could also pose a significant
privacy threat. For example, if an adversary learns that an
individual was represented in a dataset used to train a model
to determine bankruptcy risk, they could determine the indi-
vidual’s private bankruptcy history.

We consider the scenario where the adversary has white-
box access to the currently published version of the model,
but does not have access to any previously published ver-
sions. In the case of the model inversion attack the adversary
does not have information about what each class represents,
and we consider an attack successful if the adversary is able
to glean information about what the class represents through
model inversion. In the case of the membership inference
attack the adversary has access to data from a similar dis-
tribution to the one used to train the target model. The data
used to train the target model and the data available to the
adversary can contain duplicate records, but does not have
to.

Empirical Evaluation
We conduct extensive experiments to evaluate the efficacy of
our unlearning methods in comparison to the naive retrain-
ing method. First, we conduct an evaluation of the model
accuracy during our methods, looking at both the model ac-
curacy of the target data (that we remove) as well as the
accuracy on the non-target data (we sometimes refer to this
as model performance). Second, we perform model inver-
sion attacks against the models at different stages of the data
removal process to show how data can be retained and sub-
sequently leaked for a considerable time period after model
accuracy starts to degrade and to evaluate the efficacy of the
data removal methods to stop this data leaking. Next, we per-
form membership inference attacks against models before
and after data removal to show the effectiveness of data re-
moval methods against record-level data leaking. Finally, we
evaluate the effect of different levels of amnesiac unlearn-
ing on model accuracy, showing the relationship between
amount of amnesiac unlearning and model degradation.
Experimental Environment: Our algorithms are imple-
mented in Python 3.7 and use the PyTorch deep learn-

ing library (Paszke et al. 2019). All experiments were
conducted on the Amazon Sagemaker platform using an
ml.g4dn.xlarge instance with 4 vCPUs, 1 GPU, and 16GB
of memory.
Code: Code used to run experiments can be found at
https://github.com/lmgraves/AmnesiacML
Datasets: We conducted experiments on the following two
well-known datasets. These datasets were chosen because of
the ubiquity of experiments using them as well as to high-
light the performance of our algorithm against tasks of vary-
ing complexity.

1. MNIST handwritten image dataset (LeCun and
Cortes 2010) is a widely used 10-class dataset consisting
of 60,000 training images and 10,000 testing images. These
images are in grayscale with a resolution of 1x28x28 pixels
each.

2. CIFAR100 (Krizhevsky, Hinton et al. 2009) is a 100-
class dataset consisting of 600 images from each class.
Classes are varied and consist of objects and living things
such as dolphins, sunflowers, bottles, and trains. The images
have 3 colour channels and have a resolution of 32x32 pixels
each.
Neural Network: Our experiments were performed on the
Resnet18 convolutional neural network (He et al. 2016), a
state-of-the-art residual learning architecture.
Attack Algorithms: Here we describe the two state-of-the-
art attack methods considered in our paper.

1. Model Inversion Attack: Our model inversion attack
is a slightly modified version of the standard model inversion
attack seen in Fredrikson et al. (Fredrikson, Jha, and Risten-
part 2015). The standard attack is deterministic, beginning
with a feature vector with all features assigned to 0 (or a suit-
able starting point for the domain) and labeling this feature
vector with the label of the target class yt. The algorithm
then performs a forward pass through the model followed
by a backward pass, gaining the gradient of loss with regard
to the feature vector’s classification and yt. Each feature is
then shifted in the direction of the gradient, and this process
is repeated iteratively, altering the feature vector to be more
similar to what the model considers to be an example from
that class.

In the original model inversion attack, a PROCESS func-
tion is performed after each gradient descent step and is in-
tended to help recognition by performing some image pro-
cessing. We found that this detracted from clarity of gen-
erated images, and instead we periodically apply this im-
age processing every n gradient descent steps (where n ∈
[500, 1000]). The original attack also begins each inversion
from the same state, making each attack deterministic. We
found we had better results starting each inversion with a
small amount of noise added to each feature, so each inver-
sion is different. Finally, the original attack continues until
the change in loss is below some threshold, while we found
the attack to be more effective if we continued the attack for
some set number of iterations, even while the change in loss
was small. These modifications allowed us to generate in-
versions even on complex convolutional architectures such
as Resnet18, a task that was previously judged to be infeasi-
ble (Hitaj, Ateniese, and Perez-Cruz 2017).
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2. Membership Inference Attack: We implemented the
membership inference attack as described in the follow-
ing paper (Yeom et al. 2018). As described, the attack
dataset was created by taking the softmax prediction vector
y = fshadow modeli(x) from each example x and creating a
dataset Dy for each class y, where each example is a predic-
tion vector for an example in that class y and each label is
either a 0 or 1, depending on if the example was in the train-
ing data for that shadow model. An attack model was then
trained on each dataset, and this suite of attack models was
used for testing. The attack model is a fully connected net-
work with two hidden layers of width 256 and 128, respec-
tively, with ReLU activation functions and a sigmoid output
layer. Increasing the number of shadow models increases the
accuracy of the attack but brings additional computational
cost.

Model Accuracy on Target and Non-target Data
MNIST: Figure 1a shows the model performance for naive
retraining. The model retains a significant amount of knowl-
edge about the sensitive target data for a long period, and
the model accuracy on the target data drops slowly over the
retraining period. Conversely, figure 1b and figure 1c show
the model accuracy for the sensitive target data drops ex-
tremely rapidly for both the unlearning and amnesiac un-
learning methods, respectively. In figure 1c, performing am-
nesiac unlearning on every example from a full class meant
effecting almost every batch, so to mitigate this the number
of training examples of the target class is limited to 100 ex-
amples. In the amnesiac unlearning method, the model accu-
racy on the non-target data takes a slight dip when the batch
learning is initially reversed, but a small amount of training
corrects that.
CIFAR100: As seen in figure 2a, the naive retraining
method here is even less effective than in the MNIST setting,
and after 10 retraining epochs the model still has an approx-
imately 40% prediction accuracy on the target data. By con-
trast, the unlearning method (shown in figure 2b) shows a
much steeper drop in accuracy on the target data, and within
2 epochs the model has a very small prediction accuracy.
After 5 epochs, the unlearning method removes virtually all
ability for the model to correctly recognize the target data.
The amnesiac unlearning method (shown in figure 2c) im-
mediately removes the ability for the model to recognize the
target data. In both the naive and unlearning methods the
prediction accuracy of the non-target data stays high, show-
ing that these methods do not degrade the learned informa-
tion for non-target data. The amnesiac unlearning method
shows an initial accuracy loss when the batches are reversed,
but this quickly rebounds after a small amount of training.
In this instance, approximately 6% of the batches were re-
moved, which makes for a significant effect on the rest of the
model. This effect is examined in greater detail in the Effect
of Amnesiac Unlearning on Model Efficacy section.

Model Inversion Attacks
Model inversion attacks were performed on trained MNIST
models both before and after the data removal methods were
applied. Each model started from the same before state, and

an inversion attack against the trained model can be seen
in figure 3. Further inversion attacks were performed during
and after the data removal process. In the case of the naive
retraining and unlearning methods, inversion attacks were
performed after each epoch of training on the dataset modi-
fied to cause data removal. In the case of amnesiac unlearn-
ing, the amnesiac unlearning was performed for all batches
containing the target class and then inversion attacks were
performed after each epoch of training on a modified dataset
without the target class. All inversion were performed target-
ing the class representing the digit 3, and all data removal
methods likewise attempted to remove knowledge of that
class. Due to the stochastic nature of our modified inversion
attack, we performed multiple attacks against each model
and selected the ones that most resemble the target class.
Unfortunately, it is very difficult to come up with an accept-
able metric to quantify the ”recognizability” of inverted im-
ages, and visual recognition was our best way of judging the
success of the attacks.

As seen in figure 4, the naive retraining method does
very little to protect against leaking private class informa-
tion. Even after 10 retraining epochs, inversions targeting the
class are still somewhat recognizable. In conjunction with
the test accuracy results, this underlines the unsuitability of
naive retraining to protect private information.

The model inversion attacks results against the models ef-
fected by unlearning can be seen in figure 5. This method
almost immediately completely removes any ability to gain
useful class information with model inversion attacks, show-
ing how effective this method is at protecting against this
sort of data leaking attack.

For the amnesiac unlearning method, the model inversion
attacks have remarkably little gradient information to go off
of, and as a result the images (seen in figure 6) are dark and
jumbled, although they do seem to hint toward the general
shape of the target data. As expected, more training on the
modified dataset removes the ability to gain any meaningful
information about the target data, and the attacks after 5 and
10 epochs of training are almost unrecognizable. This sug-
gests that this method is best used in situations where a small
number of data points needs to be removed, as opposed to an
entire class of data (in this case, a tenth of learned data).

Membership Inference Attacks
Membership inference attacks were performed with 16
shadow models, each trained on CIFAR100 for 10 epochs.
The target model was likewise trained for 10 epochs. We
evaluate the effectiveness of membership inference attacks
using the recall metric, a metric that give us great insight
into how effective these attacks are at leaking data. This met-
ric is more helpful than accuracy in an environment where
we care a lot about correctly recognizing positive instances.
This gives us information about how effective our method
is at preventing membership inference data leaks. All mem-
bership inference attacks were performed targeting a set of
individual examples, and then the data removal techniques
were performed to attempt to remove learned data from this
set of individual examples.

Membership inference attacks were performed on a
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(a) Naive Retraining (b) Unlearning (c) Amnesiac Unlearning

Figure 1: MNIST model accuracy on target and non-target data

(a) Naive Retraining (b) Unlearning (c) Amnesiac Unlearning

Figure 2: CIFAR100 model accuracy on target and non-target data

Figure 3: Model Inversion Attack on trained model

trained model, and the recall value of this attack can be seen
in table 1 at epoch 0. Data removal techniques were then
performed, and the result of membership inference attacks
on the model after the application of the removal technique
but before any retraining can be seen at epoch 0’. In the case
of naive retraining and unlearning, this is simply changing
the datasets and has not had an effect, while in the case of
amnesiac unlearning it represents the reversal of the batches
containing the sensitive data. Subsequent membership infer-
ence attacks were performed after each epoch of training on
the modified datasets.

The results shown in table 1 show that the naive retraining
method does not prevent the membership inference attacks
for more than 2 full epochs of retraining. This highlights the
insufficiency of this method to protect against data leaking
attacks, and emphasizes the need for other methods. By con-

Figure 4: Model Inversion Attack results after 1, 5, and 10
epochs of naive retraining

trast, the unlearning and amnesiac unlearning methods both
protect against membership inference attacks with less than
an epoch of retraining (and in the case of amnesiac unlearn-
ing, with no retraining whatsoever).

Effect of Amnesiac Unlearning on Model Efficacy
Amnesiac unlearning, while extremely effective at remov-
ing the learning from specific data examples, has a signifi-
cant effect on the efficacy of the model if it is used too often.
With 1% or less of the batches removed the model accuracy
remains close to what it was before any amnesiac unlearning
was performed, but this quickly drops as the learning from
more batches is removed, as seen in figure 7. Drops in ac-
curacy can be easily remedied with a small amount of fine-
tuning, but this underscores the need for the user to be wise
in selecting their data removal method - if they have a small
amount of data that needs to be removed, amnesiac unlearn-
ing is efficient and effective, without significantly effecting
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Figure 5: Model Inversion Attack results after 1, 5, and 10
epochs of unlearning

Figure 6: Model Inversion Attack results after 1, 5, and 10
epochs after amnesiac unlearning

the rest of the model. However, if a larger amount of data
needs to be removed, consideration should be given to un-
learning, which is able to remove larger amounts of learned
data without needing the same fine-tuning after the removal
step.

Discussion
Metrics: We emphasize that while test accuracy, model in-
version attacks, and membership inference attacks can give
useful information about a model’s propensity to leak pri-
vate information about sensitive data, they are not methods
of measuring how much information has been retained about
that sensitive data. Some models and settings aren’t vulner-
able to model inversion attacks and membership inference
attacks can be protected against with methods such as differ-
ential privacy, but neither of these things provide a guarantee
that models cannot leak other private information. However,
finding a comprehensive method of evaluating how much
private data can be leaked from a model through any means
is a difficult task, and to-date we are not aware of any method
that claims to do so.
Black-box Attacks: One may argue that the impact of
model inversion and membership inference attacks can be
mitigated by allowing only black-box access to the models
themselves. Unfortunately, model extraction attacks (Jagiel-
ski et al. 2019), (Tramèr et al. 2016), (Shi, Sagduyu, and
Grushin 2017) have the ability to steal functionality of mod-
els even with only black-box access, and in some cases even
with only access to truncated prediction vectors (Orekondy,
Schiele, and Fritz 2019). The existence and success of these
attacks show that limiting access to black-box access alone
is not sufficient to protect against motivated attackers who
can steal a model and then attack it under a white-box set-
ting.

Epoch Naive
Retraining

Unlearning Amnesiac
Unlearning

0 0.97478991 0.97478991 0.97478991
0’ 0.97478991 0.97478991 0.0
1 0.09243697 0.0 0.0
2 0.05882352 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.0 0.0 0.0

Table 1: Recall of membership inference attacks

Figure 7: Test accuracy on all classes with increased amne-
siac unlearning (mean of 10 runs)

Conclusion
In this paper, we examined and evaluated methods aimed
at removing learned data from trained neural network mod-
els. This is especially relevant because of right to be for-
gotten regulations, such as in the European Union’s GDPR
law, that require data holders to delete data on individu-
als when requested. Training new models from scratch can
be prohibitive, and there is an acute need for methods that
can effectively and efficiently remove learned data from the
models to protect user privacy, while at the same time pre-
serving model performance on non-target data. We introduce
two novel methods of data removal, namely unlearning and
amnesiac unlearning, that can be used to protect privacy of
target (sensitive) data without incurring significant cost or
degrading model performance on non-target data. We evalu-
ated these methods against two state-of-the-art data leaking
attacks, namely model inversion and membership inference,
and showed that both data removal methods are effective at
protecting data from leaking. An additional interesting find-
ing was that the unlearning method is better for removing
large amounts of learned data, while amnesiac unlearning is
better for laser-focused removal of specific sections of data,
such as a single example or set of examples. Given that this
line of research at the intersection of data privacy and ma-
chine learning is a relatively new and very rich field, there
remains a number of important problems to be solved, in-
cluding a method of measuring data retention after data re-
moval techniques are applied.
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