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Abstract

We present a framework for analysing agent incentives using
causal influence diagrams. We establish that a well-known
criterion for value of information is complete. We propose a
new graphical criterion for value of control, establishing its
soundness and completeness. We also introduce two new con-
cepts for incentive analysis: response incentives indicate which
changes in the environment affect an optimal decision, while
instrumental control incentives establish whether an agent can
influence its utility via a variable X. For both new concepts,
we provide sound and complete graphical criteria. We show by
example how these results can help with evaluating the safety
and fairness of an Al system.

Introduction

A recurring question in Al research is how to choose an
objective to induce safe and fair behaviour (O’Neil 2016;
Russell 2019). In a given setup, will an optimal policy depend
on a sensitive attribute, or seek to influence an important
variable? For example, consider the following two incentive
design problems, to which we will return throughout the
paper:

Example 1 (Grade prediction). To decide which applicants
to admit, a university uses a model to predict the grades of
new students. The university would like the system to predict
accurately, without treating students differently based on their
gender or race (see Figure 1a).

Example 2 (Content recommendation). An Al algorithm
has the task of recommending a series of posts to a user. The
designers want the algorithm to present content adapted to
each user’s interests to optimize clicks. However, they do not
want the algorithm to use polarising content to manipulate
the user into clicking more predictably (Figure 1b).

Contributions This paper provides a common language
for incentive analysis, based on influence diagrams (Howard
1990) and causal models (Pearl 2009). Traditionally, influ-
ence diagrams have been used to help decision-makers make
better decisions. Here, we invert the perspective, and use the
diagrams to understand and predict the behaviour of machine
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learning systems trained to optimize an objective in a given
environment. To facilitate this analysis, we prove a number
of relevant theorems and introduce two new concepts:

Value of Information (Vol): First defined by Howard
(1966), a graphical criterion for detecting positive Vol
in influence diagrams were proposed and proven sound
by Fagiuoli and Zaffalon (1998), Lauritzen and Nilsson
(2001), and Shachter (2016). Here we offer the first correct
completeness proof, showing that the graphical criterion is
unique and cannot be further improved upon.

Value of Control (VoC): Defined by Shachter (1986), Math-
eson (1990), and Shachter and Heckerman (2010), an in-
complete graphical criterion was discussed by Shachter
(1986). Here we provide a complete graphical criterion,
along with both soundness and completeness proofs.

Instrumental Control incentive (ICI): We propose a re-
finement of VoC to nodes the agent can influence with
its decision. Conceptually, this is a hybrid of VoC and re-
sponsiveness (Shachter 2016). We offer a formal definition
of instrumental control incentives based on nested coun-
terfactuals, and establish a sound and complete graphical
criterion.

Response incentive (RI): Which changes in the environ-
ment does an optimal policy respond to? This is a central
problem in fairness and Al safety (e.g. Kusner et al. 2017;
Hadfield-Menell et al. 2017). Again, we give a formal
definition, and a sound and complete graphical criterion.

Our analysis focuses on influence diagrams with a single-
decision. This single-decision setting is adequate to model
supervised learning, (contextual) bandits, and the choice of a
policy in an MDP. Previous work has also discussed ways to
transform a multi-decision setting into a single-decision set-
ting by imputing policies to later decisions (Shachter 2016).

Applicability This paper combines material from two
preprints (Everitt et al. 2019¢; Carey et al. 2020). Since the
release of these preprints, the unified language of causal in-
fluence diagrams have already aided in the understanding of
incentive problems such as an agent’s redirectability, ambi-
tion, tendency to tamper with reward, and other properties
(Armstrong et al. 2020; Holtman 2020; Cohen, Vellambi,
and Hutter 2020; Everitt et al. 2019a,b; Langlois and Everitt
2021).
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Figure 1: Two examples of decision problems represented as causal influence diagrams. In a) a predictor at a hypothetical
university aims to estimate a student’s grade, using as inputs their gender and the high school they attended. We ask whether the
predictor is incentivised to behave in a discriminatory manner with respect to the students’ gender and race. In this hypothetical
cohort of students, performance is assumed to be a function of the quality of the high-school education they received. A student’s
high-school is assumed to be impacted by their race, and can affect the quality of their education. Gender, however, is assumed
not to have an effect. In b) the goal of a content recommendation system is to choose posts that will maximise the user’s click
rate. However, the system’s designers prefer the system not to manipulate the user’s opinions in order to obtain more clicks.

Setup

To analyse agents’ incentives, we will need a graphical frame-
work with the causal properties of a structural causal model
and the node categories of an influence diagram. This section
will define such a model after reviewing structural causal
models and influence diagrams.

Structural Causal Models

Structural causal models (SCMs) Pearl (2009) are a type
of causal model where all randomness is consigned to ex-
ogenous variables, while deterministic structural functions
relate the endogenous variables to each other and to the ex-
ogenous ones. As demonstrated by Pearl (2009), this struc-
tural approach has significant benefits over traditional causal
Bayesian networks for analysing (nested) counterfactuals and
“individual-level” effects.

Definition 1 (Structural causal model; Pearl 2009, Chapter
7). A structural causal model (with independent errors) is a
tuple (€, V, F, P), where € is a set of exogenous variables;
V is a set of endogenous variables; and F = {f"},, oy
is a collection of functions, one for each V. Each func-
tion fV: dom(Pa¥ U {£Y}) — dom(V) specifies the
value of V' in terms of the values of the corresponding ex-
ogenous variable £ and endogenous parents Pa” ¢ V,
where these functional dependencies are acyclic. The do-
main of a variable V' is dom (V") and for a set of variables,
dom(W) := Xy cyy dom(W). The uncertainty is encoded
through a probability distribution P(e) such that the exoge-
nous variables are mutually independent.

For example, Figure 2b shows an SCM that models how
posts (D) can influence a user’s opinion (O) and clicks (U).x

The exogenous variables £ of an SCM represent factors
that are not modelled. For any value £ = ¢ of the exogenous
variables, the value of any set of variables W C V is given
by recursive application of the structural functions F' and
is denoted by W (g). Together with the distribution P(e)
over exogenous variables, this induces a joint distribution
Pr(W =w) =3 jw(e)—w} (&)

SCMs model causal interventions that set variables to
particular values. These are defined via submodels:
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Definition 2 (Submodel; Pearl 2009, Chapter 7). Let M =
(E,V,F,P) be an SCM, X a set of variables in V,
and x a particular realization of X. The submodel M,
represents the effects of an intervention do(X = ),
and is formally defined as the SCM (€, V| F,, P) where
F, = {fV|V ¢ X} U{X = z}. That s to say, the original
functional relationships of X € X are replaced with the
constant functions X = z.

More generally, a soft intervention on a variable X in
an SCM M replaces f~ with a function g : dom(PaX U
{£X1) — dom(X) (Eberhardt and Scheines 2007; Tian and
Pearl 2001). The probability distribution Pr(W,x) on any
W C V is defined as the value of Pr(W) in the submodel
M x where M x is M modified by replacing f~ with g*.

If W is a variable in an SCM M, then W, refers to the
same variable in the submodel M, and is called a potential
response variable. In Figure 2b, the random variable O rep-
resents user opinion under “default” circumstances while Oy
in Figure 2c represents the user’s opinion given an interven-
tion do(D = d) on the content posted. Note also how the
intervention on D severs the link from £” to d in Figure 2c,
as the intervention on D overrides the causal effect from D’s
parents. Throughout this paper we use subscripts to indicate
submodels or interventions, and superscripts for indexing.

More elaborate hypotheticals can be described with a
nested counterfactual, in which the intervention is itself a
potential response variable. In Figure 2c, the click probability
U depends on both the chosen posts D and the user opinion
O, which is in turn also influenced by D. The nested potential
response variable Up,, defined by Up, (&) := U,(e) where
o = Oy(€), represents the probability that a user clicks on a
“default” post D given that their opinion has been influenced
by a hypothetical post d. In other words, the effect of the
intervention do(D = d) is propagated to U only through O.

Causal Influence Diagrams

Influence diagrams are graphical models with special deci-
sion and utility nodes, developed to model decision making
problems (Howard 1990; Lauritzen and Nilsson 2001). In-
fluence diagrams do not in general have causal semantics,
although some causal structure can be inferred (Heckerman
and Shachter 1995). We will assume that the edges of the
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Figure 2: An example of a SCIM and interventions. In the SCIM, either political or apolitical posts D are displayed. These affect
the user’s opinion O. D and O influence the user’s clicks U (a). Given a policy, the SCIM becomes a SCM (b). Interventions
and counterfactuals may be defined in terms of this SCM. For example, the nested counterfactual Up, represents the number of
clicks if the user has the opinions that they would arrive at, after viewing apolitical content (c).

influence diagram reflect the causal structure of the environ-
ment, so we use the term “Causal Influence Diagram”.

Definition 3 (Causal influence diagram). A causal influence
diagram (CID) is a directed acyclic graph G where the vertex
set V is partitioned into structure nodes X, decision nodes
D, and utility nodes U . Utility nodes have no children.

We use Pa" and Desc" to denote the parents and descen-
dants of anode V' € V. The parents of the decision, Pa”, are
also called observations. An edge from node V' to node Y is
denoted V' — Y. Edges into decisions are called information
links, as they indicate what information is available at the
time of the decision. A directed path (of length at least zero)
is denoted V --» Y. For sets of variables, V --» Y means
that V --»> Y holds forsome V e V,Y € Y.

Structural Causal Influence Models

For our new incentive concepts, we define a hybrid of the
influence diagram and the SCM. Such a model, originally
proposed by Dawid (2002), has structure and utility nodes
with associated functions, exogenous variables with an asso-
ciated probability distributions, and decision nodes, without
any function at all, until one is selected by an agent.! This
can be formalised as the structural causal influence model
(SCIM, pronounced ‘skim’).

Definition 4 (Structural causal influence model). A struc-
tural causal influence model (SCIM) is a tuple M =
(G,E, F, P) where:

* G is a CID with finite-domain variables V' (partitioned into
X, D, and U) where utility variable domains are a subset
of R. We say that M is compatible with G.

« £ ={&V} ¢y is aset of finite-domain exogenous vari-
ables, one for each endogenous variable.

« F {fV}VGV\D is a set of structural functions
fV: dom(Pa” U{£V}) — dom(V) that specify how
each non-decision endogenous variable depends on its
parents in G and its associated exogenous variable.

"Dawid called this a “functional influence diagram”. We favour
the term SCIM, because the corresponding term SCM is more preva-
lent than “functional model”.
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P is aprobability distribution for € such that the individual
exogenous variables £V are mutually independent.

We will restrict our attention to single-decision settings
with D = {D}. An example of such a SCIM for the con-
tent recommendation example is shown in Figure 2a. In
single-decision SCIMs, the decision-making task is to max-
imize expected utility by selecting a decision d € dom(D)
based on the observations Pa”. More formally, the task is
to select a structural function for D in the form of a pol-
icy m : dom(Pa” U {£P}) — dom(D). The exogenous
variable £ provides randomness to allow the policy to be
a stochastic function of its endogenous parents Pa”. The
specification of a policy turns a SCIM M into an SCM
M, = (E,V,F U {r}, P), see Figure 2b. With the re-
sulting SCM, the standard definitions of causal interventions
apply. Note that what determines whether a node is observed
or not at the time of decision-making is whether the node is
a parent of the decision. Commonly, some structure nodes
represent latent variables that are unobserved.

We use Pr, and [E,; to denote probabilities and expecta-
tions with respect to M. For a set of variables X not in
Desc”, Pr,(x) is independent of 7 and we simply write
Pr(x). An optimal policy for a SCIM is defined as any policy
7 that maximises E.[U], where U ==}, , U. A potential
response Uy, is defined as U, = ZUEU Ug.

Materiality

Next, we review a characterization of which observations are
material for optimal performance, as this will be a fundamen-
tal building block for most of our theory.?

Definition 5 (Materiality; Shachter 2016). For any given
SCIM M, let V*(M) = max, E.[U] be the maximum at-
tainable utility in M, and let M x_»p be M modified by
removing any information link X — D. The observation
X € Pa® is material it V*(Mx 4p) < V*(M).

Nodes may often be identified as immaterial based on
the graphical structure alone (Fagiuoli and Zaffalon 1998;

*In contrast to subsequent sections, the results in this section and
the Vol section do not require the influence diagrams to be causal.



Lauritzen and Nilsson 2001; Shachter 2016). The graphical
criterion uses uses the notion of d-separation.

Definition 6 (d-separation; Verma and Pearl 1988). A path
p is said to be d-separated by a set of nodes Z if and only if:

1. p contains a collider X — W < Y, such that the middle
node W is not in Z and no descendants of W are in Z, or

2. pcontainsachain X - W — Yorfork X «+ W — Y
where W isin Z, or

3. one or both of the endpoints of p isin Z.

A set Z is said to d-separate X from Y, written
(X LY | Z)if and only if Z d-separates every path from a
node in X to a node in Y. Sets that are not d-separated are
called d-connected.

According to the graphical criterion of Fagiuoli and Zaf-
falon (1998), an observation cannot provide useful informa-
tion if it is d-separated from utility, conditional on other
observations. This condition is called nonrequisiteness.

Definition 7 (Nonrequisite observation; Lauritzen and Nils-
son 2001). Let UP := U NDesc? be the utility nodes down-
stream of D. An observation X € Pa” in a single-decision
CID G is nonrequisite if:

X LUP| (Pa” U{D}\ {X}) (1)

In this case, the edge X — D is also called nonrequisite.
Otherwise X and X — D are requisite.

For example, in Figure 3a, high school is a requisite obser-
vation while gender is not.

Value of Information

Materiality can be generalized to nodes not observed, to
assess which variables a decision-maker would benefit from
knowing before making a decision, i.e. which variables have
Vol (Howard 1966; Matheson 1990). To assess Vol for a
variable X, we first make X an observation by adding a link
X — D, and then test whether X is material in the updated
model (Shachter 2016).

Definition 8 (Value of information). A node X € V'\ Desc”
in a single-decision SCIM M has VoI if it is material in the
model M x_, p obtained by adding the edge X — D to M.
A CID G admits VoI for X if X has Vol in a a SCIM M
compatible with G.

Since Definition 8 adds an information link, it can only
be applied to non-descendants of the decision, lest cycles
be created in the graph. Fortunately, the structural functions
need not be adapted for the added link, since there is no
structural function associated with D.

We prove that the graphical criterion of Definition 7 is tight
for both materiality and VoI, in that it identifies every zero
Vol node that can be identified from the graphical structure
(in a single decision setting).

Theorem 9 (Value of information criterion). A single deci-
sion CID G admits Vol for X € V \DescD if and only if X
is a requisite observation in Gx _, p, the graph obtained by
adding X — D to G.
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The soundness direction (i.e. the only if direction) follows
from d-separation (Fagiuoli and Zaffalon 1998; Lauritzen and
Nilsson 2001; Shachter 2016). In contrast, the completeness
direction does not follow from the completeness property of
d-separation. The d-connectedness of X to U implies that
U may be conditionally dependent on X. It does not imply,
however, that the expectation of U or the utility attainable
under an optimal policy will change. Instead, our proof in the
supplementary material® constructs a SCIM such that X is
material. This differs from a previous attempt by Nielsen and
Jensen (1999), as discussed in Related Work.

We apply the graphical criterion to the grade prediction
example in Figure 3a. One can see that the predictor has
an incentive to use the incoming student’s high school but
not gender. This makes intuitive sense, given that gender
provides no information useful for predicting the university
grade in this example.

Response Incentives

There are two ways to understand a material observation. One
is that it provides useful information. From this perspective,
a natural generalisation is Vol, as described in the previous
section. An alternative perspective is that a material obser-
vation is one that influences optimal decisions. Under this
interpretation, the natural generalisation is the set of all (ob-
served and unobserved) variables that influence the decision.
We say that these variables have a response incentive.*

Definition 10 (Response incentive). Let M be a single-
decision SCIM. A policy 7 responds to a variable X € X
if there exists some intervention do(X = x) and some set-
ting £ = €, such that D, () # D(e). The variable X has a
response incentive if all optimal policies respond to X.

A CID admits a response incentive on X if it is compatible
with a SCIM that has a response incentive on X.

For a response incentive on X to be possible, there must
be: i) a directed path X --» D, and ii) an incentive for D to
use information from that path. For example, in Figure 3a,
gender has a directed path to the decision but it does not
provide any information about the likely grade, so there is no
response incentive. The graphical criterion for RI builds on a
modified graph with nonrequisite information links removed.

Definition 11 (Minimal reduction; Lauritzen and Nilsson
2001). The minimal reduction G™" of a single-decision CID
G is the result of removing from G all information links from
nonrequisite observations.

The presence (or absence) of a path X --» D in the
minimal reduction tells us whether a response incentive can
occur.

Theorem 12 (Response incentive criterion). A single-
decision CID G admits a response incentive on X € X
if and only if the minimal reduction G™" has a directed path
X --» D.

3 Available at https://arxiv.org/abs/2102.01685
“The term responsiveness (Heckerman and Shachter 1995;
Shachter 2016) has a related but not identical meaning — it refers to

whether a decision D affects a variable X rather than whether X
affects D.
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Figure 3: In (a), the admissible incentives of the grade predic-
tion example from Figure 1a are shown, including a response
incentive on race. In (b), the predictor no-longer has access
to the students’ high school, and hence there can no-longer
be any response incentive on race.

Proof. The if (completeness) direction is proved in the sup-
plementary material. For the soundness direction, assume
that for G, the minimal reduction G™" does not contain a di-
rected path X --» D.Let M = (G, &, F, P) be any SCIM
compatible with G. Let M™" = <Qmi“, EF, P> be M, but
with the minimal reduction G™", By Lemma 25 in the supple-
mentary material, there exists a G™"-respecting policy 7 that
is optimal in M. In M2 X is causally irrelevant for D so
D(e) = D, (g). Furthermore, Mz and M™" are the same
SCM, with the functions F' U {7}. So D(e) = D,(e) also
in Mz, which means that there is an optimal policy in M
that does not respond to interventions on X foranye. [J

The intuition behind the proof is that an optimal decision
only responds to effects that propagate to one of its requisite
observations. For the completeness direction, we show in
the supplementary material that if X --» D is present in
the minimal reduction G™" then we can select a SCIM M
compatible with G such that D receives useful information
along that path, that any optimal policy must respond to.

In a safety setting, it may be desirable for an Al system to
have an incentive to respond to its shutdown button, so that
when asked to shut down, it does so (Hadfield-Menell et al.
2017). In a fairness setting, on the other hand, a response
incentive may be a cause for concern, as illustrated next.

Incentivised unfairness Response incentives are closely
related to counterfactual fairness (Kusner et al. 2017; Kilber-
tus et al. 2017). A prediction — or more generally a decision
— is considered counterfactually unfair if a change to a sensi-
tive attribute like race or gender would change the decision.

Definition 13 (Counterfactual fairness; Kusner et al. 2017).
A policy 7 is counterfactually fair with respect to a sensitive
attribute A if

a) a)

Pr, (Dy = d | pa”
for every decision d € dom(D), every context pa’ ¢
dom(Pa®), and every pair of attributes a, a’ € dom(A) with

=Pr, (D =d|pa”
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Pr(pa®”,a) > 0.
A response incentive on a sensitive attribute indicates that
counterfactual unfairness is incentivised, as it implies that all

optimal policies are counterfactually unfair:

Theorem 14 (Counterfactual fairness and response incen-
tives). In a single-decision SCIM M with a sensitive at-
tribute A € X, all optimal policies ™ are counterfactually
unfair with respect to A if and only if A has a response
incentive.

The proof is given in the supplementary material.

A response incentive on a sensitive attribute means that
counterfactual unfairness is not just possible, but incentivised.
As a result, it has a more restrictive graphical criterion. The
graphical criterion for counterfactual fairness states that a
decision can only be counterfactually unfair with respect
to a sensitive attribute if that attribute is an ancestor of the
decision (Kusner et al. 2017, Lemma 1). For example, in
the grade prediction example of Figure 3a, it is possible
for a predictor to be counterfactually unfair with respect
to either gender or race, because both are ancestors of the
decision. The response incentive criterion can tell us in which
case counterfactual unfairness is actually incentivised. In
this example, the minimal reduction includes the edge from
high school to predicted grade and hence the directed path
from race to predicted grade. However, it excludes the edge
from gender to predicted grade. This means that the agent
is incentivised to be counterfactually unfair with respect to
race but not to gender.

Based on this, how should the system be redesigned? Ac-
cording to the response incentive criterion, the most important
change is to remove the path from race to predicted grade
in the minimal reduction. This can be done by removing the
agent’s access to high school. This change is implemented
in Figure 3b, where there is no response incentive on either
sensitive variable.

Value of information is also related to fairness. For a sen-
sitive variable that is not a parent of the decision, positive
Vol means that if the predictor gained access to its value,
then the predictor would use it. For example, if in Figure 3b
an edge is added from race to predicted grade, then unfair
behaviour will result. In practice, such access can result from
unanticipated correlations between the sensitive attribute and
parents of the decision, rather than the system being given
direct access to the attribute. Analysing Vol may help detect
such problems at an early stage. However, Vol is less closely
related to counterfactual fairness than response incentives.
In particular, race lacks Vol in Figure 3a, but counterfactual
unfairness is incentivised. On the other hand, Figure 3b ad-
mits positive Vol for race, but counterfactual unfairness is
not incentivised.

The incentive approach is not restricted to counterfactual
fairness. For any fairness definition, one could assess whether
that kind of unfairness is incentivised by checking whether it
is present under all optimal policies.

Value of Control

A variable has VoC if a decision-maker could benefit from
setting its value (Shachter 1986; Matheson 1990; Shachter



and Heckerman 2010). Concretely, we ask whether the attain-
able utility can be increased by letting the agent decide the
structural function for the variable.

Definition 15 (Value of control). In a single-decision SCIM
M, a non-decision node X has positive value of control if

max Er (U] < maxEr[U,x]

9%

where ¢¥ : dom(Pa”* U {£X}) — dom(X) is a soft inter-
vention at X, i.e. a new structural function for X that respects
the graph.

A CID G admits positive value of control for X if there
exists a SCIM M compatible with G where X has positive
value of control. This can be deduced from the graph, using
again the minimal reduction (Definition 11) to rule out effects
through observations that an optimal policy can ignore.

Theorem 16 (Value of control criterion). A single-decision
CID G admits positive value of control for a node X €
V \ {D} if and only if there is a directed path X --+ U in
the minimal reduction G™".

Proof. The if (completeness) direction is proved in the sup-
plementary material. The proof of only if (soundness) is as
follows. Let M = (G, €, F, P) be a single-decision SCIM.
Let M ,x be M, but with the structural function f X replaced
with ¢g%. Let M™" and Mg%? be the same SCIMs, respec-
tively, but replacing each graph with the minimal reduction
gmm.

Recall that E,[U,x] is defined by applying the soft inter-
vention g to the (policy-completed) SCM M .. However,
this is equivalent to applying the policy 7 to the modified
SCIM M x, as the resulting SCMs are identical. Since M x
is a SCIM, Lemma 25 in the supplementary material can be
applied, to find a G™"-respecting optimal policy 7 for M x.

Consider now the expected utility under an arbitrary inter-
vention g for a policy 7 optimal for M gx:

Er[U,x]in M

= E.[U] in M x by SCM equivalence
= Ez[U] in M x by Lemma 25
=Ez[U]in M?}? since 7 is GM"-respecting
= Ex[U] in M™D by Lemma 23
=Ez[U] in M only increasing the policy set
<maxE.«[U]in M  max dominates all elements.

This shows that X must lack value of control. ]

The proof of the completeness direction in the supplemen-
tary material establishes that if a path exists, then a SCIM
be selected where the intervention on X can either directly
control U or increase the useful information available at D.

To apply this criterion to the content recommendation
example (Figure 4a), we first obtain the minimal reduction,
which is identical to the original graph. Since all non-decision
nodes are upstream of the utility in the minimal reduction,
they all admit positive VoC. Notably, this includes nodes like
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original user opinions and model of user opinions that the
decision has no ability to control according to the graphical
structure. In the next section, we propose instrumental control
incentives, which incorporate the agent’s limitations.

Instrumental Control Incentive

Would an agent use its decision to control a variable X ? This
question has two parts: whether X is useful to control (VoC),
and whether X is possible to control (responsiveness). As de-
scribed in the previous section, VoC uses L{gx to consider the
utility attainable from arbitrary control of X. Meanwhile, X4
describes the way X can be controlled by D. These notions
can be combined with a nested counterfactual {/x,, which

expresses the effect that D can have on I/ by controlling X.

Definition 17 (Instrumental control incentive). In a single-
decision SCIM M, there is an instrumental control incentive
on a variable X in decision context pa® if, for all optimal
policies 7*,

En-[Usx, | pa”] # E.- U | pa”]. 2)

Conceptually, an instrumental control incentive can be in-
terpreted as follows. If the agent got to choose D to influence
X independently of how D influences other aspects of the
environment, would that choice matter? We call it an instru-
mental control incentive, as the control of X is a tool for
achieving utility (cf. instrumental goals Omohundro 2008;
Bostrom 2014). ICIs do not consider side-effects of the opti-
mal policy: for instance, it may be that all optimal policies
affect X in a particular way, even if X is a not an ancestor of
any utility node — in such cases, no ICI is present. Finally, in
Pearl’s (2001) terminology, an instrumental control incentive
corresponds to a natural indirect effect from D to U via X
in M« for all optimal policies 7*.

A CID G admits an instrumental control incentive on X if
G is compatible with a SCIM M with an instrumental control
incentive on X for some decision context pa”. The following
theorem gives a sound and complete graphical criterion for
which CIDs admit instrumental control incentives.

Theorem 18 (Instrumental Control Incentive Criterion). A
single-decision CID G admits an instrumental control incen-
tive on X € V ifand only if G has a directed path from the
decision D to a utility node U € U that passes through X,
i.e. adirected path D --» X --» U.

Proof. Completeness (the if direction) is proved in the sup-
plementary material. The proof of soundness is as follows.
Let M be any SCIM compatible with G and 7 any policy
for M. We consider variables in the SCM M . If there is no
directed path D --+ X --» U in G, then either D -/+ X or
X -/>U.If D -#» X, then Xy(e) = X (e) for any setting
€ € dom(&) and decision d (Lemma 20 in the supplementary
material). Therefore, U (e) = Ux,(¢). Similarly, if X -/> U
then U(e) = U,(e) for every setting € € dom(E), = €
dom(X) and U € U so U(e) = Ux,(g). In either case,
E,[U | paP] = E.[Ux, | paP] and there is no instrumental
control incentive on X. O

The logic behind the soundness proof above is that if there
is no path from D to X to U, then D cannot have any effect
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Figure 4: In (a), the content recommendation example from
Figure 1b is shown to admit an instrumental control incentive
on user opinion. This is avoided in (b) with a change to the
objective.

on U via X. For the completeness direction proved in the
supplementary material, we show how to construct a SCIM so
that Uy, differs from the non-intervened U for any diagram
withapath D --» X --» U.

Let us apply this criterion to the content recommendation
example in Figure 4a. The only nodes X in this graph that
lie on a path D --» X --» U are clicks and influenced user
opinions. Since influenced user opinions has an instrumental
control incentive, the agent may seek to influence that vari-
able in order to attain utility. For example, it may be easier to
predict what content a more emotional user will click on and
therefore, a recommender may achieve a higher click rate by
introducing posts that induce strong emotions.

How could we instead design the agent to maximise clicks
without manipulating the user’s opinions (i.e. without an in-
strumental control incentive on influenced user opinions)?
As shown in Figure 4b, we could redesign the system so
that instead of being rewarded for the true click rate, it is
rewarded for the clicks it would be predicted to have, based
on a separately trained model of the user’s preferences. An
agent trained in this way would view any modification of
user opinions as irrelevant for improving its performance;
however, it would still have an instrumental control incentive
for predicted clicks so it would still deliver desired content.
To avoid undesirable behaviour in practice, the click predic-
tion must truly predict whether the original user would click
the content, rather than baking in the effect of changes to
the user’s opinion from reading earlier posts. This could be
accomplished, for instance, by training a model to predict
how many clicks each post would receive if it was offered
individually.

This dynamic is related to concerns about the long-term
safety of Al systems. For example, Russell (2019) has hypoth-
esised that an advanced Al system would seek to manipulate
its objective function (or human overseer) to obtain reward.
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This can be understood as an instrumental control incentive
on the objective function (or the overseer’s behaviour). A
better understanding of incentives could therefore be relevant
for designing safe systems in both the short and long-term.

Related Work

Causal influence diagrams Jern and Kemp (2011) and
Kleiman-Weiner et al. (2015) define influence diagrams with
causal edges, and similarly use them to model decision-
making of rational agents (although they are less formal
than us, and focus on human decision-making).

An informal precursor of the SCIM that also used structural
functions (as opposed to conditional probability distributions)
was the “functional influence diagram” (Dawid 2002). The
most similar alternative model is the Howard canonical form
influence diagram (Howard 1990; Heckerman and Shachter
1995). However, this only permits counterfactual reasoning
downstream of decisions, which is inadequate for defining
the response incentive. Similarly, the causality property for
influence diagrams introduced by Heckerman and Shachter
(1994) and Shachter and Heckerman (2010) only constrains
the relationships to be partially causal downstream of the
decision (though adding new decision-node parents to all
nodes makes the diagram fully causal). Appendix A in the
supplementary material shows by example why the stronger
causality property is necessary for most of our incentive
concepts.

An open-source Python implementation of CIDs has re-
cently been developed® (Fox et al. 2021).

Value of information and control Theorems 9 and 16 for
value of information and value of control build on previous
work. The concepts were first introduced by Howard (1966)
and Shachter (1986), respectively. The Vol soundness proof
follows previous proofs (Shachter 1998; Lauritzen and Nils-
son 2001), while the Vol completeness proof is most similar
to an attempted proof by Nielsen and Jensen (1999). They
propose the criterion X / UP | Pap for requisite nodes,
which differs from (1) in the conditioned set. Taken literally,®
their criterion is unsound for requisite nodes and positive Vol.
For example, in Figure 3a, High school is d-separated from
accuracy given Pa” , so their criterion would fail to detect
that High school is requisite and admits VoI.”®

Shttps://github.com/causalincentives/pycid

Def. 6 defines d-separation for potentially overlapping sets.

"Furthermore, to prove that nodes meeting the d-connectedness
property are requisite, Nielsen and Jensen claim that “X is [req-
uisite] for D if Pr(dom(U) | D, Pa®) is a function of X and U
is a utility function relevant for D”. However, U being a function
of X only proves that U is conditionally dependent on X, not that
it changes the expected utility, or is requisite or material. Addi-
tional argumentation is needed to show that conditioning on X can
actually change the expected utility; our proof provides such an
argument.

8Since a preprint of this paper was placed online (Everitt et al.
2019c), this completeness result was independently discovered by
Zhang, Kumor, and Bareinboim (2020, Thm. 2) and Lee and Barein-
boim (2020, Thm. 1). Theorem 2 in the latter also provides a crite-



To have positive VoC, it is known that a node must be an
ancestor of a value node (Shachter 1986), but the authors
know of no more-specific criterion. The concept of a relevant
node introduced by Nielsen and Jensen (1999) also bears
some semblance to VoC.

The relation of the current technical results to prior work
is summarised in Table S1 in the Appendix.

Instrumental control incentives Kleiman-Weiner et al.
(2015) use (causal) influence diagrams to define a notion of
intention, that captures which nodes an optimal policy seeks
to influence. Intention is conceptually similar to instrumental
control incentives and uses hypothetical node deletions to
ask which nodes the agent intends to control. Their concept
is more refined than ICI in the sense that it includes includes
only the nodes that determine optimal policy behaviour, but
the definition is not properly formalized and it is not clear
that it can be applied to all influence diagram structures.

Al fairness Another application of this work is to evalu-
ate when an Al system is incentivised to behave unfairly,
on some definition of fairness. Response incentives address
this question for counterfactual fairness (Kusner et al. 2017;
Kilbertus et al. 2017). An incentive criterion corresponding
to path-specific effects (Zhang, Wu, and Wu 2017; Nabi and
Shpitser 2018) is deferred to future work. Nabi, Malinsky,
and Shpitser (2019) have shown how a policy may be chosen
subject to path-specific effect constraints. However, they as-
sume recall of all past events, whereas the response incentive
criterion applies to any CID.

Mechanism design The aim of mechanism design is to un-
derstand how objectives and environments can be designed,
in order to shape the behavior of rational agents (e.g. Nisan
et al. 2007, Part II). At this high level, mechanism design is
closely related to the incentive design results we have devel-
oped in this paper. In practice, the strands of research look
rather different. The core challenge of mechanism design is
that agents have private information or preferences. As we
take the perspective of an agent designer, private information
is only relevant for us to the extent that some types of agents
or objectives may be harder to implement than others. In-
stead, our core challenge comes from causal relationships in
agent environments, a consideration of little interest to most
of mechanism design.

Discussion and Conclusion

We have proved sound and complete graphical criteria for
two existing concepts (Vol and VoC) and two new concepts:
response incentive and instrumental control incentive. The
results have all focused on the (causal) structure of the in-
teraction between agent and environment. This is both a
strength and a weakness. On the one hand, it means that for-
mal conclusions can be made about a system’s incentives,
even when details about the quantitative relationship between
variables is unknown. On the other hand, it also means that

rion for material observations in a multi-decision setting.
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these results will not help with subtler comparisons, such as
the relative strength of different incentives. It also means that
the causal relationships between variables must be known.
This challenge is common to causal models in general. In the
context of incentive design, it is partially alleviated by the
fact that causal relationships often follow directly from the
design choices for an agent and its objective. Finally, causal
diagrams struggle to express dynamically changing causal
relationships.

While important to be aware of, these limitations do not
prevent causal influence diagrams from providing a clear,
useful, and unified perspective on agent incentives. It has
seen applications ranging from value learning (Armstrong
et al. 2020; Holtman 2020), interruptibility (Langlois and
Everitt 2021), conservatism (Cohen, Vellambi, and Hutter
2020), modeling of agent frameworks (Everitt et al. 2019b),
and reward tampering (Everitt et al. 2019a). Through such
applications, we hope that the incentive analysis described in
this paper will ultimately contribute to more fair and safe Al
systems.
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