
Verifiable Machine Ethics in Changing Contexts

Louise A. Dennis1, Martin Mose Bentzen2, Felix Lindner3, Michael Fisher1

1Department of Computer Science, University of Manchester,
2 Management Engineering, Technical University of Denmark,

3 Institute of Artificial Intelligence, Ulm University
{louise.dennis, michael.fisher}@manchester.ac.uk, mmbe@dtu.dk, felix.lindner@uni-ulm.de

Abstract

Many systems proposed for the implementation of ethical
reasoning involve an encoding of user values as a set of rules
or a model. We consider the question of how changes of con-
text affect these encodings. We propose the use of a reason-
ing cycle, in which information about the ethical reasoner’s
context is imported in a logical form, and we propose that
context-specific aspects of an ethical encoding be prefaced
by a guard formula. This guard formula should evaluate to
true when the reasoner is in the appropriate context and the
relevant parts of the reasoner’s rule set or model should be
updated accordingly. This architecture allows techniques for
the model-checking of agent-based autonomous systems to
be used to verify that all contexts respect key stakeholder
values. We implement this framework using the hybrid ethi-
cal reasoning agents system (HERA) and the model-checking
agent programming languages (MCAPL) framework.

Introduction
Moor (2006) defines an explicitly ethical agent as one which
reasons using some explicit representation of ethical con-
cepts. Several such systems have been produced (for exam-
ples see (Tolmeijer et al. 2020; Nallur 2020)). Explicit repre-
sentations of ethical concepts require some encoding of val-
ues and/or ethics in order to perform their reasoning. We will
refer to this as the ethical encoding. This encoding may be,
for example, utilities for outcomes or obligations and prohi-
bitions. We are concerned with how this information can be
transferred from one context to another.

A practical reality is that current reasoning systems are
limited in the extent to which they can fully analyse context.
This makes it difficult to provide an ethical encoding that
does not refer explicitly to contexts. As a simple example,
people in general need to be able to see during the evening
but do not need to see at night. A utilitarian reasoning sys-
tem calculates utilities for the consequences of an action so
we can imagine providing different utilities for “lights on”
depending upon whether it is evening or night time. Such
considerations mean that machine ethics systems need some
account for how their reasoning adapts to changing contexts.

We here identify three key questions relating to this issue:

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. Is it possible to provide a general account for how to in-
clude context in an ethical encoding even though these en-
codings themselves vary widely from system to system?

2. Similarly, is it possible to provide a generic architecture
which allows a machine ethics system to reason with con-
text specific ethical encodings?

3. Assuming users are, at least in part, responsible for cre-
ating context-specific ethical encodings and may do so at
runtime, are there techniques which can assist in checking
that an encoding is consistent with their values and those
of other stakeholders?

We propose that a context is represented as a logical for-
mula which acts as a guard on an update function for ethi-
cal encodings. An ethical reasoner can then be embedded in
a reasoning cycle that gathers contextual information via a
combination of perception and reasoning, updates its ethical
encoding using the update function, reasons and then acts.
Concepts and tools from the cognitive agent community pro-
vide a natural architecture for such a system and provide a
framework for verification.

We have implemented our proposal using the Hybrid Eth-
ical Reasoning Agents system (HERA) (Lindner, Bentzen,
and Nebel 2017) and the model-checking agent program-
ming languages (MCAPL) framework (Dennis 2018).
HERA has developed an approach to machine ethics that is
rich enough to support reasoning in a variety of ethical sys-
tems. This allows us to evaluate our framework for context
specific ethical reasoning using different ethical encodings.
Our implementation forms JUNO – a cognitive agent based
system that contains a HERA ethical reasoner which can be
instantiated to reason using different ethical systems and so
use different ethical encodings. We show how a JUNO agent
can be formally verified to ensure that each context preserves
key user values. All the code and examples in this paper are
available in the MCAPL distribution 1.

Background
Automated reasoning systems represent information to be
reasoned about in a pure logical format. For such systems the
problem of context-specificity is minor. Logical implication
(φ =⇒ ψ) can be used to express naturally that some ψ

1https://autonomy-and-verification.github.io/tools/mcapl

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11470

is true in the context where φ is true. We take this as our
starting point. A context is identified as a logical formula φ
that holds true in that context. We can then use the truth of
φ to control the ethical encoding used by our system.

The field of cognitive agents (Bratman 1987) provides
many theoretical and practical tools that allow some agent,
operating in a changing environment, to employ logical rea-
soning to guide its actions. Beliefs, Desires, and Intentions
(BDI) agent programming languages are based on cogni-
tive agents and draw heavily from the logic programming
paradigm (Rao and Georgeff 1991, 1995). BDI agents make
decisions based on intuitive concepts of how an agent’s be-
liefs and desires lead to particular choices. There are many
different agent programming languages and agent platforms
based, at least in part, on the BDI approach (e.g., (Bordini,
Hübner, and Wooldridge 2007; Rao 1996)). At the core of
most lies a reasoning cycle. Details vary but key aspects in-
clude polling an external environment for new perceptions
which become beliefs which are then used to select actions.
The MCAPL framework (Dennis 2018) provides tools for
implementing BDI languages so that their programs can be
verified using model-checking.

Unlike may programming paradigms, cognitive agent
programming languages are designed on the assumption that
the program exists as part of a wider system. Perceptions
come in from this system and the agent performs actions
that have effects in this system. This system, external to the
agent, is generally referred to as the environment. Environ-
ments may be purely software environments or may include
actions and perceptions from the real world. We assume that
a context is detected by using logical deduction on some set
of predicates that have been perceived, and that this set has
been assembled externally to the agent by its environment.

The use of context to control computational reasoning has
been well-studied, particularly in the areas of pervasive and
mobile systems and in agent reasoning. A context can be
something as simple as the location of the computing device
or agent, or can involve rich information about, for instance,
a user’s physical, social and emotional state. Many tech-
niques exist for detecting, identifying, characterizing and
reasoning with contexts (see Bolchini et al. (2007) and Per-
era et al. (2014) for surveys). In our work we assume that
contexts are detected through a simple process of perception
and logical reasoning. We use simple consistency checks to
avoid encountering conflicting contexts.

HERA

We use the HERA system (Lindner, Bentzen, and Nebel
2017) as an embedded ethical reasoner. HERA implements
(among others) reasoners for Utiliarianism (Lindner and
Bentzen 2017) and Kant’s second formulation of the cate-
gorical imperative (Lindner and Bentzen 2018) (henceforth
referred to as the “Kantian” reasoner). HERA agents are
specified as models.

Utilitarian Model A Utilitarian HERA model is a tu-
ple 〈A,B,C, F, u,W 〉 where A,B and C are disjoint sets
of propositional variables representing respectively actions

available to the system; background information; and the
consequences of actions or other events. F is a set of mech-
anisms which describe how the truth value of each conse-
quence c ∈ C depends upon the interpretation of the other
variables in A ∪ B ∪ C – for example, people can see if
it is day time or if the lights are on. This is written as
people can see := day ∨ lights are on . u (the utilities)
is a mapping from each v ∈ A ∪ B ∪ C to a real number.
W is a set of interpretations for the variables in A ∪ B in
which precisely one variable in A is interpreted as true in
each w ∈W .

Kantian Model A Kantian HERA model is a tuple
〈A,B,C, F, P,K,G,W 〉 where: A, B, C, F , and W are
defined as for the utilitarian reasoner. P is a set of variables
indicating the moral patients. K : (A ∪ C) × P → {+,−}
(the affects mapping) is a partial function indicating whether
and how some action or consequence affects some moral pa-
tient p ∈ P . G : A × C (the goal relation) is a relation that
captures the end goals of each a ∈ A;

Combined Model As implemented, HERA uses one
model for all reasoners. A specific reasoner accesses
only those parts of the model relevant to it. We refer
to this as the combined HERA model which is a tuple
〈A,B,C, F, P,K,G, u,W 〉.

For u,K, and G (the utility and affects mappings and the
goal relation) appearing in some HERA model, M , we use
the notation M |= u(v) = d — the utility of v is d in model
M , M |= K(v, p) = + (resp. −) — v affects p positively
(resp. negatively) in model M ; and M |= (a, c) ∈ G — c is
a goal of a in M .

Causality In both models we need to reason about the
outcomes of actions. HERA’s model of causality is based
on Halpern’s use of the concept of a but-for-cause (Halpern
2016) and is set out in (Lindner, Bentzen, and Nebel 2017).
We do not have space to describe this in full here but note
that it involves using the mechanisms, F , to calculate all the
consequences c ∈ C that are true in some interpretation W
in which an action a ∈ A is in interpreted as true and con-
trasting this with the set of consequences that are true in an
interpretation that is identical to W save that a is interpreted
as false. We write F,w |= a c to indicate that a causes c
in some interpretation w using mechanisms, F .

Permissibility The utilitarian reasoner calculates the sum
of the utilities of all the consequences of an interpretation
and compares it to the all other interpretations. The only per-
missible actions are those where the interpretation in which
they are true has an overall utility which is greater than or
equal to the utility of all the other interpretations in M . This
is more fully set out in (Lindner and Bentzen 2017).

Kant’s second formulation of the categorical imperative
states that someone cannot be used as a means to an end. In
terms of the HERA formalism some moral patient, p, is the

11471

end of an action, M,w |= end(p) if there is some conse-
quence cg such that (a, cg) ∈ G and K(cg, p) = + (i.e., one
of the goals of the action affected them positively). A moral
patient is a means to that end, M,w |= means(p) if there
is some consequence cm such that F,w |= a cm and
F,w |= cm cg and K(cm, p) = +/− (i.e., some conse-
quence caused by the action and needed to bring about the
goal affects the patient, either positively or negatively). For
HERA some option, w (and hence the action a ∈ A that is
true in w), is morally acceptable according to the categorical
imperative if

M,w |= ∀p. means(p) =⇒ end(p)

This is more fully set out in (Lindner and Bentzen 2018).
We write perm(H,M, a) to mean that HERA reasoner H

considers a to be permissible given model M .

Context Sensitive Ethical Reasoners
We use an ethical guard formula embedded in a reasoning
cycle to control the adaptation of ethical reasoners depend-
ing upon context. To start our development we need to define
our concepts of an ethical reasoner and an ethical encoding.

Definition 1 An ethical reasoner, ER, is a system which
uses an ethical encoding to recommend (or allow) some ac-
tion (or set of actions) given some situation. Formally we
represent situations as sets of formulae from a language, L,
ethical encodings as a set or type EE, and actions as a set,
A. So an ethical reasoner is a function ER : (L × EE ×
A) → P(A), where P is the powerset function. We are de-
liberately imprecise about L, EE and A due to the diverse
nature of proposed ethical reasoning systems.

Note here that we are using the terminology of a situation
to represent a specific problem – for instance a particular
time and place, set of actors and circumstances in which an
ethical decision must take place while a context describes a
set of situations (although it should be noted that a situation
can belong to several contexts). A context is a generalisation
of situations to ones with similar features in which the same
ethical encoding applies.

A context specification describes how a context is de-
tected and an ethical encoding can be changed.

Definition 2 (Context Specification) A context specification
is a tuple, 〈φ, fcx〉 where φ is a formula in L and fcx :
EE → EE is an update function on ethical encodings.

Given an ethical reasoner, ER, an ethical encoding ee ∈
EE, and a context specification 〈φ, fcx〉, fcx(ee) is a variant
of ee appropriate to situations where φ holds.

Example 1 Let us consider a simple ethical reasoner that
reasons using utilities about whether to turn out the lights.
Three contexts have been identified, day, evening and
night. The reasoner considers the utilities of lights off and
poor visibility. The utility of the lights being off is slightly
positive in all situations (since the lights use up electricity).
However the utility of poor visibility varies being negative
during the day and evening and zero at night. This gives us

two ethical encodings of interest, c1 and c2:

c1 = {u(lights off) = 1, u(poor visibility) = −10}
c2 = {u(lights off) = 1, u(poor visibility) = 0}
We define two simple update functions. fc1 takes any eth-

ical encoding and returns c1. fc2 takes any ethical encoding
and returns c2. Thus we can construct three context specifi-
cations:

〈day, fc1〉, 〈evening, fc1〉, 〈night, fc2〉
These tell us that during the day and evening we should

use ethical encoding c1 and at night we should use c2.
Definition 3 (Context Sensitive Ethical Reasoner) A con-
text sensitive ethical reasoner is a tuple 〈B, ee,ER,CX〉
consisting of a belief base, B, ethical encoding ee, an ethical
reasoner ER, and a set of context specifications, CX . The
reasoner polls some external environment in order to update
B, then it examines the context specifications, 〈φ, fcx〉 ∈
CX and, forms a set of new candidate encodings EE =
{ee′ | ee′ = fcx(ee) where 〈φ, fcx〉 ∈ CX ∧ B |= φ}. It
then merges EE into a single encoding using some conflict
resolution strategy. When it is required to make an ethical
judgement about some set of options it passes its current
ethical encoding to the ethical reasoner for use.

We do not specify here how the system should resolve
conflicts between multiple applicable contexts.
Example 2 In Example 1 we considered three context spec-
ifications for an ethical reasoner, ER, that reasoned using
utilities. Let us suppose ER is responsible for energy sav-
ing within a smart home. The system checks the state of the
world every 10 minutes. If a light is on it calculates the utility
of the state where the light is switched off and if that utility
is greater than 0 then it turns the light off. In calculating the
state after a light is switched off the system is able to deduce
that switching a light off during the day makes no difference
to visibility, while switching a light off during the evening or
at night will lead to poor visibility.

Assume that last timeER polled the state of the world, the
lights were off, it was night time and there was no visibility.
The context sensitive ethical reasoner built from ER is thus:

B night, lights off , poor visibility
ee c2
ER ER
CX 〈day, fc1〉, 〈evening, fc1〉, 〈night, fc2〉

The next time it polls its environment it is now day time
and the lights have been turned on. The reasoner’s belief
base is now {day} and this triggers a context update using
the context specification 〈day, fc1〉:

B day
ee c1
ER ER
CX 〈day, fc1〉, 〈evening, fc1〉, 〈night, fc2〉

Although the reasoner now assigns a negative utility to
poor visibility, its internal reasoning determines that this
will not be effected by switching off the lights and so the
overall utility will still be greater than zero if the lights are
switched off. It does this and the state becomes:

11472

B day, lights off
ee c1
ER ER
CX 〈day, fc1〉, 〈evening, fc1〉, 〈night, fc2〉

JUNO
We embed HERA in a cognitive agent system. We describe
this system by means of a formal operational semantics
which we subsequently used to create an implementation. A
key element of the semantics is a JUNO model from which
we can construct a HERA model each time ethical reason-
ing is required. In order to do this we need to provide some
machinery for constructing HERA models. We consider first
the construction of an interpretation given some action a and
some background facts, L, believed by the agent.

Definition 4 (Interpretation for a) For some set of atoms,L,
and an atom a 6∈ L we define the interpretation construction
function fw for a as follows:

fw(a, L) = wa

where

wa(a) => (a is interpreted as true)
wa(b) => if b ∈ L
wa(b) =⊥ otherwise

In a HERA’s Kantian model, the user specifies the goals
(the relation G) of each action using the goal relation. This
potentially requires users to have a strong grasp of the causal
networks that might be constructed via these mechanisms.
From the pragmatic point of view we quickly realised it was
difficult for users to specify these easily. However it was
possible to create a framework that would allow us to in-
fer these relations from a more easily specified concept of
system goals, G; the mechanisms, F ; and the interpretation
under consideration.

Definition 5 (Goal Inference) For some set of mechanisms,
F , system goals, G, atoms L, and some action a, we define
the goal inference function fG : (a, F,G, L)→ G such that

∀a, c. (a, c) ∈ fG(F,G, L) iff c ∈ G ∧F, fw(a, L) |= a c

We write fG(J) for the goal inference function derived
from some JUNO model, J .

Thus, some consequence is deemed a goal of an action, if it
is caused by the action and is a system goal.

Definition 6 (JUNO model) A combined JUNO model is
a tuple 〈A,B,C, F, P,K,G, u, L〉 where A,B,C, F, P,K
and u are defined as for a HERA model. G ⊆ C are the sys-
tem goals and L ⊆ B is a set of atoms that are believed to
be true at the current point in time.

When we need to refer to some particular element, X , of a
JUNO model, J , we will use the notation J |X . So J |A is the
set of action variables, A, in J and so on.

We now explain how we can construct a HERA model
from a JUNO model.

Definition 7 (Constructed HERA models) The set of inter-
pretations for a HERA model constructed from a JUNO
model J are: fW (J) = {fw(a, J |L) | a ∈ J |A}.
MJ is a HERA model constructed from a JUNO model J:

MJ = 〈J |A, J |B , J |C , J |F , J |P , J |K , fG(J), J |u, fW (J)〉

So a JUNO model shares its propositional variables, mech-
anisms, utility and affects mapping with the HERA model
created from it. The goal relation is inferred from the system
goals (Definition 5) and the set of interpretations are created
using fW (Definition 7). There is one interpretation for each
action in the JUNO model.

The complexity of constructing the goal relation is cubic
in | A ∪ C | (for each action a and each goal g we must de-
termine whether F, a, L |= a g.). The complexity of con-
structing the interpretations is linear (there is one for each
action). Therefore the overall complexity of constructing a
HERA model is polynomial in | A ∪ C |.

Context Specifications in JUNO

Recall from Definition 2 that a context specification is a pair
of a guard formula, φ, and an update function, fcx.

Definition 8 The JUNO update function fcx is
a tuple 〈Kcx,Gcx, ucx, Lcx〉. Given a combined
JUNO model J = 〈A,B,C, F, P,K,G, u, L〉,
fcx(J) = 〈A,B,C, F, P,K ′,G′, u′, L′〉 where:

• Kcx(A ∪ C,P) → {+,−} is a partial function which
updates the affects mapping such that

∀v ∈A ∪ C, p ∈ P.

K ′(v, p) =

{
Kcx(v, p) if (v, p) ∈ D(Kcx)

K(v, p) otherwise

• Gcx ⊆ C is a set of system goals that extend G: G′ =
G ∪ Gcx
• ucx : C → R is a partial function which updates the

utilities such that

∀c ∈ C. u′(c) =

{
ucx(c) if c ∈ D(ucx)

u(c) otherwise

• Lcx ⊆ C is a set of ground first-order predicates that
extend L: L′ = Lcx ∪ L

Because Gcx andLcx extend the sets in the model, the model
they apply to needs to be minimal. Therefore JUNO agents
operate with a default model, Jd to which all context updates
are applied.

Example 3 Consider the default model for K, G, u and L
in a smart home system that can evacuate and controls the
lights. The moral patients are the residents of the house:

K K(safe, residents) = +
G {safe}

u
u(safe) = 50
u(electricity consumed) = −1
u(can see) = 10

L ∅
Let us consider a day time context:

11473

φ day
Kcx

Gcx ∅
ucx
Lcx {can see}

So the day time context does not create any goals, change
utilities or affects relations but a daytime context does mean
that people can see (i.e., without needing to turn lights on).

A night context might be:

φ night
Kcx Knight(awake, residents) = −
Gcx ∅
ucx

unight(can see) = 0
unight(awake) = −1

Lcx ∅

So at night the residents of the house are badly affected
by being awake and gain no utility from being able to see.

If we update our model with the day context it becomes:

K K(safe, residents) = +
G {safe}

u
u(safe) = 50
u(electricity consumed) = −1
u(can see) = 10

L {can see}

Because each component of the update function describes
only how the new model should differ from the default JUNO
model, we deal with multiple applicable contexts by apply-
ing multiple update functions one after the other. In order to
avoid inconsistencies arising from the order in which update
functions are applied we will require our context specifica-
tions to be consistent.

Definition 9 (Consistent Context Specification) We say a set
of context specifications, CX , is consistent if for 〈φ, fcx〉,
〈φ′, fcx′〉 ∈ CX if φ ∧ φ′ 6= ⊥ (i.e., there is some situation
in which both update functions apply) then

1. ∀(v, p) ∈ D(Kcx) ∩D(Kcx′). Kcx(v, p) = Kcx′(v, p)

2. ∀c ∈ D(ucx) ∩D(ucx′). ucx(c) = ucx′(c)

Note that because Kcx and ucx are partial functions this
does not imply that Kcx = Kcx′ nor that ucx = ucx′ only
that they are identical where their domains intersect.

Given our assumption that contexts are consistent, the up-
date process is simple and need only consider each context
once in order to create a new JUNO model. This therefore
scales well as new contexts are added. The complexity of de-
termining whether any given context specification, 〈φ, fcx〉
applies, depends upon the complexity of deciding φ. In our
implementation the language, L, of φ is propositional logic
and a formula is evaluated against a belief base of proposi-
tions using the closed world assumption. Thus, deciding if
a given context formula φ applies can be answered in linear
time by fixing the truth value of the literals in φ to the ones
they have in the agent’s belief base.

Figure 1: The JUNO Reasoning Cycle

We extend HERA to a cognitive agent system JUNO:

Definition 10 (JUNO agent)
A JUNO agent is a tuple 〈B, Jd, J,H,∆,CX, a〉 where B

is a belief base, Jd is a default JUNO model, J is the current
JUNO model, H is a HERA reasoner, ∆ is a set of inference
rules, CX is a set of consistent context specifications and a
is the action last selected for execution.

The inference rules ∆ are structured as two sets, ∆B and
∆A. Each set consists of tuples 〈φ,B〉 where φ is a formula
and B is a set of atomic formulae in the language of B.

JUNO agents are context-sensitive ethical reasoners as de-
fined in Definition 3, where Jd and J combine to form the
ethical encoding and H is the ethical reasoner.

We use the JUNO models Jd and J to construct HERA
models for H as described in Definitions 6 and 8. The in-
ference rules, ∆, allow JUNO to create and manage tempo-
ral aspects of contexts. JUNO agents use these rules to cre-
ate obligations, represented as propositions, for some future
point which are discharged by actions at that point 2.

A high level view of JUNO’s reasoning cycle is shown in
Figure 1. JUNO imports facts from the environment through
a process of perception to form beliefs. Inference may occur
(using rules from ∆B) to generate additional beliefs 3. JUNO
determines which context(s) it is currently in and updates
the model by replacing the current model J with the default
model Jd, then repeatedly applying all applicable update
functions (Definition 8). A HERA model is constructed from
the JUNO model and passed to the HERA reasoner which
produces a set of ethically acceptable actions. JUNO selects
an action from this set and executes it. After the action phase
additional reasoning using rules from ∆A may be applied to
remove beliefs. The cycle then repeats.

This reasoning cycle is formally defined through an op-
erational semantics that comprises a transition system on
JUNO agents and is shown in Figure 2 where each equa-
tion refers to one phase in the reasoning cycle4. In these

2Much richer treatments of temporal aspects of contexts are ob-
viously possible but we wished to keep things simple here.

3We note here that we have two sets of beliefs – those in the
agent and those in the model. This need not necessarily be the case
though has some advantages in terms of separating considerations
around perception from those invovled with ethical reasoning.

4We obscure some details such has how transition between
stages of the cycle is handled, and the details of the interaction

11474

transition rules ζ is the environment external to the agent
which can return a set of percepts (which are labelled as
from source percept) and execute an action. Hence (1) up-
dates the beliefs with new percepts while removing any per-
ception beliefs that are no longer observed. Rule (2) consid-
ers all the rules 〈φ,B〉 ∈ ∆B . Where φ follows by logical
inference from the belief base the beliefs in B are added.
Rule (3) repeatedly updates the JUNO model using all the
context specifications that apply. (4) selects an ethical ac-
tion from a set of permissible actions, determined using a
HERA model, MJ , created from the JUNO model. If there is
no permissible action then a default do nothing action is
selected. (5) executes the selected action. After an action is
executed, (6) considers the rules 〈φ,B〉 ∈ ∆A. If φ is the
last action executed then the beliefs in B are removed.

Several properties follow from this reasoning cycle. For
instance: Any action performed by the system has been
judged permissible by the HERA reasoner. Formally, if
select(Act) ∈ Act then if ζ.execute(a) is performed and
a 6= do nothing then perm(H,MJ , a).

We want this process to allow HERA to reason correctly
in each context. This is difficult to capture formally but it
is possible to prove a set of theorems that state that if some
context update function specifies some property (for exam-
ple, that a variable has a particular utility) then the HERA
model will have that property when in the relevant context.
Moreover all the HERA models assign either the value from
the default model to these properties or a value from an ap-
plicable context update function.

Case Study
We consider the case of a JUNO agent operating in a smart
home based on (Bentzen et al. 2018). It is able to turn lights
on, turn the games console on, or evacuate the house in the
case of a fire. If children are playing with the games console
then they are quiet. Full formal models for this case study
can be found in the MCAPL distribution. We consider key
aspects informally here:

Day. During the day people are able to see. In the default
JUNO model there is a small disutility for turning on the
lights (it is, after all, bad for the environment).

Night ∧ Awake. If it is night time and people are awake
then people are not able to see (unless the lights are on),
but they do gain utility from being able to see. Children
are affected positively by playing games and there is no
negative utility from them doing so.

Fire. If there is a fire then there is danger in the house. By
default there is a small disutility for leaving the house, this
becomes 0 in the case of fire.

Parent watching Television/Wrapping Presents. If a par-
ent is watching television/wrapping presents (it is near
Christmas!) then the system’s goal is that (s)he should
be able to watch TV/wrap presents; it is a background
fact that (s)he wants to watch TV/wrap presents and there
is utility from the children being quiet. In the default

with the environment. These are implemented in the same way as
for the GWENDOLEN language (Dennis 2017).

model, children are affected positively by a parent wrap-
ping presents, but not by them watching TV 5.

Noise. If the children are not noisy then they are quiet.

Utilitarian Reasoning As contexts change in a JUNO
agent that uses a utilitarian HERA reasoner, it chooses to
refrain from action during a normal day (since people are
safe — there is no fire — and they can see), turns on lights
in the evening, evacuates in the case of fire, and switches on
the video game if the children are being noisy and the parent
wants to watch TV or wrap presents (unless there is a fire in
which case it evacuates the house).

Kantian Reasoning Recall that in the Kantian reasoner
a moral patient may not be used as the means to an end.
The Kantian principle therefore only vetoes options, it has
no mechanism for selecting one “good” option from among
many. So, for instance in the evening, if the children are
quiet, the Kantian principle does not distinguish between
any of the available actions (it is as likely to evacuate the
house as to turn on the lights).

Some other system is therefore needed to reason among
the ethically acceptable options. In the operational seman-
tics (Equation (4)), this process of selecting some action
a′ from among a set of ethically acceptable actions is writ-
ten a′ = select(Act). For the purposes of testing we opted
to reuse the utilitarian reasoner for this. So, first, the Kantian
reasoner vetoes actions and then a utilitarian reasoner selects
the most preferable from among those that remain.

Where changing contexts do have an effect, a Kantian
JUNO agent, in contrast to the utilitarian agent, only turns
on the games console if the children are noisy and the par-
ent wants to wrap presents (since in this case the children
benefit from the goal of the action). Even if it was evening
(when the children were allowed screen time), the Kantian
agent would not turn on the video game if the purpose was
to keep the children quiet so that a parent could watch TV.

Verifying Models
We hypothesise that users may wish to update the ethical en-
codings in a system as their perception of the world changes.
For instance, their attitude towards screen time may change.
In some cases it will be possible to use a trial and error ap-
proach to evaluate the outcomes of such change.

In other situations, particularly where safety is involved,
such a trial and error approach won’t be suitable. Further-
more there may be many situations where it is not the user
alone who determines what counts as ethical: there may be
legal and societal constraints the system must obey irrespec-
tive of the user’s personal ethics and preferences.

Formal verification is the process of assessing whether a
formal specification is satisfied on a particular formal de-
scription of a system. For a specific logical property, ϕ, there
are many different approaches to this (Fetzer 1988; DeMillo,
Lipton, and Perlis 1979; Boyer and Strother Moore 1981).
We explore here the use of model checking (Clarke, Grum-
berg, and Peled 1999). This takes a model of the system

5This assumption could be argued against but a discussion
about the nuances of good parenting are not relevant here.

11475

P = ζ.Percepts OP = {b | b ∈ B\P ∧ source of (b) = percept}
〈B, Jd, J,H,CX, a〉 → 〈B\OP ∪ P, Jd, J,H,CX, a〉

(1)

B = {b | 〈φ,Φ〉 ∈ ∆B ∧ B |= φ ∧ b ∈ Φ}
〈B, Jd, J,H,CX, a〉 → 〈B ∪B, Jd, J,H,CX, a〉

(2)

J ′ = Jd for each 〈φ, fcx〉 ∈ CX if B |= φ then J ′ := fcx(J ′)

〈B, Jd, J,H,CX, a〉 → 〈B, Jd, J ′, H,CX, a〉
(3)

Act = {a | a ∈ J |A. perm(H,MJ , a)} if Act 6= ∅ then a′ = select(Act) else a′ = do nothing

〈B, Jd, J,H,CX, a〉 → 〈B, Jd, J,H,CX, a′〉
(4)

ζ.execute(a)

〈B, Jd, J,H,CX, a〉 → 〈B, Jd, J,H,CX, a〉
(5)

B = {b | 〈a,Φ〉 ∈ ∆A ∧ b ∈ Φ}
〈B, Jd, J,H,CX, a〉 → 〈B\B, Jd, J,H,CX, a〉

(6)

Figure 2: JUNO’s Operational Semantics. Each equation applies to one phase in the reasoning cycle shown in Figure 1. The
expressions below the line indicate how the JUNO agent is transformed as a result of the transition, while above the line are
given equations that instantiate variables, or side effects of the transition. (1) defines Perception; (2) defines Inference; (3)
defines Update Model; (4) defines HERA reasoning; (5) defines Act; and (6) defines Clean Up.

in question, defining all the possible executions, and then
checks a logical property against this model. One particu-
larly attractive property of model checking is its ability to
return a counter-example. In the case of a user changing the
context specifications of a system such a counter-example
will be able to inform them of a particular situation in which
their changes cause some property to be violated and so will
help them in understanding and correcting the problem.

The MCAPL Framework (Dennis 2018) in which we im-
plemented JUNO supports a model-checking approach for
the verification of agent-based systems outlined in (Dennis
et al. 2016b). This considers the decisions taken by the sys-
tem given any combination of incoming information. In the
case of JUNO agents we consider this information to be the
set of interpretations of guard formulae in context specifica-
tions and ∆B then analyse all possible sequences of changes
in these interpretations and thus all possible combinations of
contexts and sequences of changing contexts.

For our case study we considered a simple safety prop-
erty: In the case of a fire the agent will evacuate the house,
expressed in AJPF’s property specification language as:

�(B(fire) =⇒ ♦D(evacuate))

AJPF’s property specification language is based on linear
temporal logic where � means it is always the case that,
while ♦ means it is eventually the case that. AJPF provides
special connectives to indicate agent concepts. B(φ) means
that φ is in the agent’s belief base and D(φ) means that the
agent has attempted to perform the action φ.

We were able to automatically prove that the above prop-
erty held in both our Utilitarian and Kantian agents.

Related Work
While there are several systems that implement explicit ma-
chine ethics none of these, to our knowledge, have consid-
ered in depth the interplay between the system’s context, its
ethical encoding and reasoning as the context changes. Of
these systems DCECCL (Bringsjord, Arkoudas, and Bello
2008) reasons using automated reasoning with an explicit

logical formalism. This means it can naturally incorporate
our guard formulae into the rules provided to the reasoner.

Berreby, Bourgne, and Ganascia (2017) presents a frame-
work based on answer set programming that can be used to
model reasoning in a variety of ethical theories. In principle
this should allow the natural incorporation of guard formu-
lae, however the various implementations discussed assume
unchanging representations of ethical encodings. An exten-
sion of these implementations to cope with variable contexts
would, we contend, require a mechanism similar to ours.

The ETHAN system (Dennis et al. 2016a) does explicitly
allow that its encoding is context specific – it anticipates
some context-specific ranking of ethical concerns being sup-
plied by some external agent and then reasons using that
ranking but no account is provided for this process.

Further Work and Conclusions

We have described a theoretical framework for context-
sensitive ethical encodings. The framework is abstract and
generic in nature and while we have supplied a proof-of-
concept instantiation of the framework which demonstrates
it works with at least two ethical theories, there are a number
of interesting avenues not explored by this proof of concept,
in particular the issue of handling conflicting contexts.

Nevertheless our proof-of-concept demonstrates that an
explicit ethical reasoners can be embedded in a reasoning
cycle which controls updates to its ethical encodings by rea-
soning about contexts in a manner that is verifiable.

Acknowledgements

This work was funded by EPSRC Grant EP/L024845/1 Ver-
ifiable Autonomy and EPSRC Grant EP/V026801/1 Trust-
worthy Autonomous Systems Verifiability Node. The work
was enabled by a visiting researcher grant from the Univer-
sity of Liverpool. Fisher was funded by the Royal Academy
of Engineering through a Chair in Emerging Technologies.

11476

Ethics Statement
Our work fits within a general programme of ensuring that
computational systems behave ethically and has been un-
dertaken in the hopes that it will contribute to the aims of
such research. However we are well aware that “intent is not
magic”. The particular approach taken to ethical behaviour
in this paper presumes the ability of some person, or group
of people, to provide an ethical encoding that captures stake-
holder values. In parts of this paper we discuss the need for
such encodings to be flexible over time, and for users to have
some control over these, but we also touch on the need for
wider societal values to be respected as well.

This naturally raises wider concerns such as:
1. Whose ethics are we capturing. Who is consulted as a

stakeholder as part of the “ethical engineering” work and,
more importantly, who is excluded from such consulta-
tion?

2. When should societal values take precedence over indi-
vidual stakeholder values?

3. What are the consequences, and more importantly the mit-
igation measures in place, if the encoding fails to ade-
quately capture stakeholder values?
While we believe that transparent, context-dependent ex-

pression of stakeholder values are important, we do not be-
lieve in any way that our work provides a complete solution
to guaranteeing the ethical behaviour of such systems. It pro-
vides some technical machinery that we believe will assist in
providing solutions but does not make the wider psychologi-
cal, philosophical and social science problems disappear and
should be viewed as one piece of the solution within a wider
context.

It should also be noted that the same techniques we pro-
pose here for encoding context-dependent ethical behaviour
could be analogously applied to provide context-dependent
unethical behaviour. We believe that transparent, clear en-
codings make it harder within a societal context to develop
and deploy deliberately unethical systems and are worth pur-
suing for that reason, but we can not pretend that, in and of
themselves, these techniques prevent the possibility of mis-
use.

In short, the danger of work such as this is that it is viewed
as a complete solution to the question of ethical artificial
intelligence, rather than understood as a potential tool for
providing solutions that must operate within a much wider
multi-disciplinary context. As authors, we do our best to
make this understanding clear when we engage with our
peers, students and the general public and endeavour to take
this wider context into account within our research pro-
grammes as a whole.

References
Bentzen, M.; Lindner, F.; Dennis, L.; and Fisher, M. 2018.
Moral Permissability of Actions in Smart Home Systems.
In Proc. FLoC Workshop on Robots, Morality, and Trust
through the Verification Lens.
Berreby, F.; Bourgne, G.; and Ganascia, J.-G. 2017. A
Declarative Modular Framework for Representing and Ap-

plying Ethical Principles. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, AA-
MAS ’17, 96–104. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems. URL
http://dl.acm.org/citation.cfm?id=3091125.3091145.

Bolchini, C.; Curino, C. A.; Quintarelli, E.; Schreiber, F. A.;
and Tanca, L. 2007. A Data-oriented Survey of Context
Models. SIGMOD Rec. 36(4): 19–26. ISSN 0163-5808.
doi:10.1145/1361348.1361353. URL http://doi.acm.org/10.
1145/1361348.1361353.

Bordini, R.; Hübner, J.; and Wooldridge, M. 2007. Program-
ming Multi-agent Systems in AgentSpeak Using Jason. Wi-
ley.

Boyer, R. S.; and Strother Moore, J., eds. 1981. The Cor-
rectness Problem in Computer Science. Academic Press.

Bratman, M. E. 1987. Intentions, Plans, and Practical Rea-
son. Harvard University Press. ISBN 1575861925.

Bringsjord, S.; Arkoudas, K.; and Bello, P. 2008. Toward
a General Logicist Methodology for Engineering Ethically
Correct Robots. IEEE Intelligent Systems 21(4): 38–44.

Clarke, E. M.; Grumberg, O.; and Peled, D. 1999. Model
Checking. MIT Press.

DeMillo, R. A.; Lipton, R. J.; and Perlis, A. 1979. Social
Processes and Proofs of Theorems of Programs. ACM Com-
munications 22(5): 271–280.

Dennis, L.; Fisher, M.; Slavkovik, M.; and Webster, M.
2016a. Formal Verification of Ethical Choices in Au-
tonomous Systems. Robotics and Autonomous Systems 77:
1–14. ISSN 0921-8890.

Dennis, L. A. 2017. Gwendolen Semantics: 2017. Technical
Report ULCS-17-001, University of Liverpool, Department
of Computer Science.

Dennis, L. A. 2018. The MCAPL Framework including the
Agent Infrastructure Layer and Agent Java Pathfinder. The
Journal of Open Source Software 3(24).

Dennis, L. A.; Fisher, M.; Lincoln, N.; Lisitsa, A.; and
Veres, S. 2016b. Practical Verification of Decision-making
in Agent-based Autonomous systems. Automated Software
Engineering 23(3): 305–359. ISSN 0928-8910.

Fetzer, J. H. 1988. Program Verification: The Very Idea.
ACM Communications 31(9): 1048–1063.

Halpern, J. Y. 2016. Actual Causality. MIT Press.

Lindner, F.; and Bentzen, M. 2017. The Hybrid Ethical Rea-
soning Agent IMMANUEL. In Companion of the 2017
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 187–188.

Lindner, F.; and Bentzen, M. 2018. A Formalization of
Kant’s Second Formulation of the Categorical Imperative.
In Proceedings of The 14th International Conference on De-
ontic Logic and Normative Systems (DEON 2018).

Lindner, F.; Bentzen, M.; and Nebel, B. 2017. The HERA
Approach to Morally Competent Robots. In Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS).

11477

Moor, J. 2006. The Nature, Importance, and Difficulty of
Machine Ethics. IEEE Intelligent Systems 21(4): 18–21.
ISSN 1541-1672.
Nallur, V. 2020. Landscape of Machine Implemented Ethics.
Science and Engineering Ethics doi:10.1007/s11948-020-
00236-y. URL https://doi.org/10.1007/s11948-020-00236-
y.
Perera, C.; Zaslavsky, A.; Christen, P.; and Georgakopou-
los, D. 2014. Context Aware Computing for The Internet of
Things: A Survey. IEEE Communications Surveys Tutorials
16(1): 414–454. doi:10.1109/SURV.2013.042313.00197.
Rao, A. 1996. AgentSpeak(L): BDI Agents Speak Out
in a Logical Computable Language. In Agents Breaking
Away: Proceedings 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, volume 1038
of LNCS, 42–55. Springer.
Rao, A. S.; and Georgeff, M. P. 1991. Modeling Agents
within a BDI-Architecture. In Proceedings 2nd Interna-
tional Conference Principles of Knowledge Representation
and Reasoning (KR&R), 473–484. Morgan Kaufmann.
Rao, A. S.; and Georgeff, M. P. 1995. BDI Agents: From
Theory to Practice. In Proceedings 1st International Con-
ference Multi-Agent Systems (ICMAS), 312–319. San Fran-
cisco, USA.
Tolmeijer, S.; Kneer, M.; Sarasua, C.; Christen, M.; and
Bernstein, A. 2020. Implementations in Machine Ethics: A
Survey. ArXiv:2001.07573 [cs.AI].

11478

