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Abstract

For multi-class classification under class-conditional label
noise, we prove that the accuracy metric itself can be robust.
We concretize this finding’s inspiration in two essential as-
pects: training and validation, with which we address critical
issues in learning with noisy labels. For training, we show
that maximizing training accuracy on sufficiently many noisy
samples yields an approximately optimal classifier. For valida-
tion, we prove that a noisy validation set is reliable, address-
ing the critical demand of model selection in scenarios like
hyperparameter-tuning and early stopping. Previously, model
selection using noisy validation samples has not been theoreti-
cally justified. We verify our theoretical results and additional
claims with extensive experiments. We show characterizations
of models trained with noisy labels, motivated by our theoreti-
cal results, and verify the utility of a noisy validation set by
showing the impressive performance of a framework termed
noisy best teacher and student (NTS). Our code is released1.

1 Introduction
In real-world classification tasks, annotation methods such
as crowdsourcing systems (Yan et al. 2014) and online
queries (Schroff, Criminisi, and Zisserman 2010) inevitably
introduce noisy labels. In learning with noisy labels, many
works study the robustness, providing theoretical guarantees
for some robust loss functions (Ghosh, Kumar, and Sastry
2017; Zhang and Sabuncu 2018; Charoenphakdee, Lee, and
Sugiyama 2019; Xu et al. 2019; Ma et al. 2020): a classifier
minimizing the loss on noisy distribution is guaranteed to
minimize the loss on clean distribution. These works com-
monly assume that the label noise is conditional on the true
class, i.e., the class-conditional noise (Natarajan et al. 2013).

In this paper, we first prove that the accuracy metric itself
is robust for common diagonally-dominant class-conditional
noise, i.e., a classifier maximizing its accuracy on the noisy
distribution is guaranteed to maximize the accuracy on clean
distribution. It seems counterintuitive since we previously
believe maximizing accuracy on noise results in overfitting.

∗Corresponding authors.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/chenpf1025/RobustnessAccuracy

In fact, Deep Neural Networks (DNNs) can achieve 100%
training accuracy on finite samples (Zhang et al. 2017) but not
the noisy distribution. Theorem 1 shows that for any classifier,
the maximized accuracy on noisy distribution is 1− ε, and
we obtain an optimal classifier if the maximum is attained,
where ε is the noise rate. The definition of robustness used in
Theorem 1 is consistent with existing works on robust loss
functions. On the one hand, such robustness is not sufficient
to guarantee ‘good’ generalization performance when trained
with finite noisy samples because by sampling, we are not
directly optimizing the classifier w.r.t. a distribution. On the
other hand, we can still show inspirations of Theorem 1 by
analyzing the gaps between training/validation accuracy on
finite samples and the accuracy on noisy distribution.

For training, even if without any robust loss functions
or advanced training strategies, we can obtain an approxi-
mately optimal classifier by maximizing training accuracy
on sufficiently many noisy samples. This claim is justified by
Theorem 1 and an additional Theorem 2, which presents
a counterpart of the generalization bound derived from
Vapnik–Chervonenkis (VC) dimension (Vapnik 1999; Abu-
Mostafa, Magdon-Ismail, and Lin 2012). For validation, the
accuracy on hold-out noisy samples is an unbiased estimator
of the accuracy on noisy distribution. Therefore, a noisy vali-
dation set is reliable. Together with Theorem 1, the validation
bound presented in Theorem 3 formally justifies the utility
of a noisy validation set. Some previous works (Zhang and
Sabuncu 2018; Nguyen et al. 2020; Xia et al. 2019, 2020) em-
pirically use a noisy validation set to tune hyperparameters,
while our contribution is the theoretical justification.

In experiments, we focus on verifying our theoretical re-
sults and additional claims. We verify characterizations of
models derived from Theorem 1&2, including a dummy clas-
sifier given few samples, predicting exactly the noise transi-
tion process given more samples, and approaching a global
optimal classifier with sufficiently many noisy samples. To
show the utility of a noisy validation, we present a framework
termed Noisy best Teacher and Student (NTS), which selects
a teacher with the highest accuracy on a noisy validation
set and retrains a student. It improves many baselines on
CIFAR-10/100 with synthetic noise and Clothing1M (Xiao
et al. 2015) with real-world noise.
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Figure 1: A systematical illustration of learning with noisy labels.

2 Backgrounds
For a K-classes classification problem, we denote the feature
space by X and the label space by Y = {1, 2, · · · ,K}. Let
DX,Y be the clean distribution of (X,Y ) ∈ X × Y . With
label noise, we have only access to samples from a noisy
distribution D̃X,Ỹ of (X, Ỹ ) ∈ X ×Y . The random variable
of noisy labels Ỹ is corrupted from Y via a noise transition
matrix T ∈ [0, 1]K×K , s.t.,

Pr[Ỹ = j|Y = i] = Ti,j . (1)

Then the noise rate is ε = 1 −
∑
i∈Y Pr[Y = i]Ti,i. Such

a noise model is common in the literature (Ghosh, Kumar,
and Sastry 2017; Zhang and Sabuncu 2018; Han et al. 2018a;
Charoenphakdee, Lee, and Sugiyama 2019; Yao et al. 2020b),
known as class-conditional noise (Natarajan et al. 2013), s.t.,

Assumption 1. X is independent of Ỹ conditioning on Y .

A classifier is denoted by h ∈ H : X 7→ Y , whereH is the
hypothesis space. The performance of a classifier is evaluated
by its accuracy on clean distribution

AD(h) := E(x,y)∼D[1(h(x) = y)] = Pr[h(X) = Y ], (2)

where 1(·) is the indicator function. By training a classifier
on a collection of noisy samples S̃ = {(xi, ỹi)}mi=1 drawn
i.i.d. from D̃X,Ỹ , we can obtain the training accuracy as
following,

AS̃(h) :=
1

m

m∑
i=1

1(h(xi) = ỹi). (3)

Thus, an essential problem is to bound the gap between
AS̃(h) and AD(h). To this end, we introduce the accuracy
on noisy distribution,

AD̃(h) := E(x,ỹ)∼D̃[1(h(x) = ỹ)] = Pr[h(X) = Ỹ ]. (4)

In this paper, Theorem 1 bridges the gap between AD̃(h) and
AD(h) by showing the robustness of the accuracy metric.
With Theorem 1, the remaining issue is the gap between
AS̃(h) and AD̃(h), as if without noise.

Following (Chen et al. 2019b), we use a confusion matrix
C(h) ∈ [0, 1]K×K to characterize the performance of h in
detail,

Ci,j(h) := Pr[h(X) = j|Y = i]. (5)

3 Related Works
There have been many robust loss functions (Ghosh, Kumar,
and Sastry 2017; Zhang and Sabuncu 2018; Charoenphakdee,
Lee, and Sugiyama 2019; Xu et al. 2019; Ma et al. 2020),
whereas the 0−1 loss (Bartlett, Jordan, and McAuliffe 2006),
justified to be robust under binary classification (Manwani
and Sastry 2013; Ghosh, Manwani, and Sastry 2015), has
not attracted enough attention. We previously believe that
to combat noisy labels, a loss function should be not only
robust, but also easy to optimize in training. In this paper,
we first show that accuracy metric itself is robust for multi-
class classification under common diagonally-dominant class-
conditional noise. We then present several related findings
useful in training and validation, where the optimization is
not a concern since we can easily maximize training accuracy
with a surrogate loss such as the cross-entropy loss.

For the generalization bound, the Vapnik-Chervonenkis
(VC) dimension (Vapnik 1999; Abu-Mostafa, Magdon-
Ismail, and Lin 2012) and the Natarajan dimension (Natarajan
1989; Daniely and Shalev-Shwartz 2014) are classical tech-
niques that have been used in analysing label noise (Natarajan
et al. 2013; Khetan, Lipton, and Anandkumar 2018). In this
paper, thanks to Theorem 1, a simple counterpart of the gen-
eralization bound derived from VC dimension is sufficient to
justify our claim that we can obtain an approximately opti-
mal classifier by maximizing training accuracy on sufficiently
many noisy samples. It further motivates us to present a thor-
ough characterizations of models trained with noisy labels,
including a dummy classifier given few samples, predicting
exactly the noise transition process given more samples, and
approaching a global optimal classifier with sufficiently many
noisy samples.

For robust training methods, apart from using a robust loss
function, one can adopt sample-selection/weighting (Malach
and Shalev-Shwartz 2017; Han et al. 2018b; Jiang et al. 2018;
Yu et al. 2019; Fang et al. 2020), loss-correction (Patrini
et al. 2017; Hendrycks et al. 2018), label-correction (Reed
et al. 2015; Tanaka et al. 2018; Zheng et al. 2020) and other
refined training strategies (Nguyen et al. 2020; Li, Socher,
and Hoi 2020). Specifically, the idea of using teacher pre-
dictions is common in loss-correction (Arazo et al. 2019),
label-correction (Tanaka et al. 2018) and the classical dis-
tillation (Hinton, Vinyals, and Dean 2015). It is known that
early-stopped teachers (Arpit et al. 2017; Cho and Hariha-
ran 2019) may be better. Our NTS’s critical point is a noisy
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validation set, theoretically justified by Theorem 1&3, with
which we can easily select a good teacher. Thus, we can
obtain impressive performance using merely cross-entropy
loss, without explicitly preventing overfitting using advanced
training techniques. In contrast, existing methods such as
Tanaka et al. (2018) uses regularization to avoid memorizing
noise when training the teacher network. Our performance
gain is not simply due to distilling a teacher, but due to select-
ing a good teacher using a noisy validation set. Otherwise,
distilling a converged model, which memorizes noise, can
not improve the generalization much. Moreover, our aim is
not merely presenting the algorithm NTS and comparing it
with baselines, but to verify the utility of a noisy validation
set with NTS’s impressive performance. Justifying the utility
of a noisy validation set both theoretically and empirically is
a critical contribution, considering that almost all methods
need to tune hyperparameters, whereas the usage of a noisy
validation set has been empirically demonstrated (Zhang and
Sabuncu 2018; Nguyen et al. 2020; Xia et al. 2019, 2020) but
has not been theoretically justified.

4 Main Results
In a classification task, our ultimate goal is obtaining a global
optimal classifier that shall generalize well on clean distribu-
tion.
Definition 1. (Global optimal classifier). The global optimal
classifier, denoted by h?, is a classifier such that h?(X) = Y
almost everywhere, i.e., the accuracy on clean distribution is
AD(h

?) = 1. Equivalently, the confusion matrix C(h?) = I ,
where I is a K ×K identity matrix.

The definition holds except for a trivial case where there
exists uncertainty for Y conditioning on fully knowing X .

4.1 The Accuracy Metric is Robust
We first show that the accuracy metric itself is robust to
diagonally-dominant noise, where the diagonally-dominant
condition is a mild assumption commonly adopted in litera-
ture (Ghosh, Kumar, and Sastry 2017; Zhang and Sabuncu
2018; Chen et al. 2019b).
Assumption 2. The noise transition matrix T is diagonally-
dominant, i.e., ∀i, Ti,i > maxj∈Y,j 6=i Ti,j .
Theorem 1. With Assumption 1&2, if there exists a global
optimal classifier h? ∈ H, then
(i) h? is the classifier that maximizes the accuracy on the
noisy distribution, i.e.,

max
h∈H

AD̃(h) = AD̃(h
?) = 1− ε, (6)

where ε = 1−
∑
i∈Y Pr[Y = i]Ti,i is the noise rate;

(ii) when the accuracy of a classifier on noisy distribution
approaches its maximum, the classifier will approach the
global optimal classifier, i.e.,

AD̃(h)→ max
h∈H

AD̃(h) =⇒ AD(h)→ 1. (7)

In Appendix A, we show a convergence rate 1−AD(h) ≤
1

min
i,j∈Y,j 6=i

(Ti,i−Ti,j)
·(maxh∈HAD̃(h)−AD̃(h)). For any clas-

sifier, the maximum of accuracy on noisy distribution is 1−ε

rather than 1. It is not contradictory to the observation that we
can achieve 100% training accuracy on finite samples with
sufficiently powerful DNNs (Zhang et al. 2017) because by
sampling, we are maximizing the accuracy on finite samples
rather than the accuracy on noisy distribution. On the one
hand, we must be aware that the robustness, as in its widely
used form in many existing works, is not sufficient to guar-
antee ‘good’ generalization performance when trained with
finite noisy samples. On the other hand, we can still show the
inspirations of Theorem 1 from two essential aspects: train-
ing and validation, by analyzing the gaps between accuracy
on finite samples and the accuracy on noisy distribution.

4.2 Training with Noisy Labels
In this section, we analyze the generalization to noisy dis-
tribution given noisy samples drawn from it. Intuitively, the
training accuracy is a biased estimator of accuracy on noisy
distribution. The bias converges to 0 with sufficiently many
training samples. This intuition is formalized by the gener-
alization bound in the following Theorem 2. The bound is
a counterpart of the generalization bound derived from VC
dimension (Vapnik 1999; Abu-Mostafa, Magdon-Ismail, and
Lin 2012). It can be generalized very well to multi-class clas-
sification by Natarajan dimension (Natarajan 1989; Daniely
and Shalev-Shwartz 2014). We first recall the definition of
shattering and VC dimension, which can be interpreted as a
measurement of the complexity/expressivity of all possible
classifiers in a hypothesis space.
Definition 2. (Shattering and VC dimension (Vapnik 1999;
Abu-Mostafa, Magdon-Ismail, and Lin 2012)). LetH be the
hypothesis space of all possible classifiers (functions). We
say a set of m points {x1, x2, · · · , xm} ⊂ X is shattered
by H if all possible binary labeling of the points can be
realized by functions inH. The VC dimension ofH, denoted
by dV C(H), is the cardinality of the largest set of points in
X that can be shattered byH.
Theorem 2. Considering training a classifier h ∈ H on
a collection of noisy samples S̃ = {xi, ỹi}mi=1 drawn i.i.d.
from D̃X,Ỹ , where the hypothesis space H has a finite VC
dimension. Then with probability at least 1− δ,

AD̃(h)− AS̃(h) ≥ −

√
8 (dV C · (ln(2m/dV C) + 1) + ln(4/δ))

m
, (8)

where AS̃(h) is the training accuracy on noisy samples and
AD̃(h) is the accuracy on noisy distribution.

The proof is in Appendix A. The bound converges to 0
with sufficiently large m. The significance is how the bound
helps us understand the essence of learning with noisy labels.
Firstly, the bound implies that with sufficiently many noisy
samples, the accuracy on noisy distribution is approximately
lower bounded by the training accuracy. In this case, if we
maximize training accuracy, the accuracy on noisy distribu-
tion is approximately maximized. Then Theorem 1 implies
that the classifier approaches an optimal classifier. Therefore,
we conclude that we can obtain an approximately optimal
classifier by maximizing training accuracy on sufficiently
many noisy samples. Moreover, the results motivate charac-
terizations of neural networks trained with noisy labels. In
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particular, with respect to training size m, models trained
with noisy labels can be typically categorized into the follow-
ing three cases:

1) If m is quite small such that the model can not learn any
generalized features, then the generalization accuracy typi-
cally has a high error and a high variance.

2) If m is relatively large such that the distribution of X
is well approximated yet the model still fits all training
samples, then AS̃(h) ≈ 1, C(h) ≈ T and AD(h) ≈ 1− ε.

3) If m is sufficiently large, then the bound in Theorem 2
approaches 0, and the highest training accuracy that any
classifier can achieve approaches 1 − ε. When the maxi-
mum is attained, we approximately obtain a global optimal
classifier, s.t., AS̃(h) ≈ 1− ε, C(h) ≈ I and AD(h) ≈ 1.

Case 1) is obvious if training samples are limited; case 2)
has been demonstrated in the literature (Chen et al. 2019b);
case 3) is derived from Theorem 1&2. In practice, apart from
these typical cases, we can observe transition phase, e.g.,
1)→ 2) and 2)→ 3) as we gradually increase m. We will
demonstrate these cases in experiments.

To quickly understand the characterizations, we present
a tabular example. As shown in Figure 2 (a), we show
a classification problem on a discrete space, s.t., X =
{(1,±2), (2,±2), (1,±1), (2,±1)}, Y = {0, 1}, where
samples in {(1, 2), (2, 2), (1, 1), (2, 1)} belong to class 0 and
the rest belong to class 1. The data has a uniform distribution,
s.t., Pr[X = x] = 1/8, ∀x ∈ X . For the noisy distribution,
we use a noise transition matrix T = [0.75, 0.25; 0.25, 0.75],
i.e, each sample has a probability of 1/4 to be mislabeled.
Now we sample m i.i.d. samples for training, the example
sampling results and predictions of a classifier that maximizes
training accuracy are illustrated in Figure 2 (b-d).

1) m = 4, Figure 2 (b). The optimal training accuracy is 1,
and the resulting classifier can not generalize well. Since
the classifier’s prediction on data-points without a training
sample is unknown, the testing accuracy is unknown.

2) m = 8, Figure 2 (c). The optimal training accuracy is 1,
and the resulting classifier h has a confusion C(h) = T .
The testing accuracy on clean distribution is 0.75, which
equals to 1− ε.

3) m = 32, Figure 2 (d). The optimal training accuracy is
0.75, which equals to our theoretical result 1 − ε. The
resulting classifier is a global optimal classifier with testing
accuracy 1 on the clean distribution.

4.3 Validation with Noisy Labels
Validation is a crucial step in the standard machine learning
pipeline. When there is label noise, how to conduct validation
reliably without clean samples is rarely discussed in previ-
ous works. A noisy validation set is used in some previous
works (Zhang and Sabuncu 2018; Nguyen et al. 2020; Xia
et al. 2019, 2020) but without theoretical justification. In this
paper, our Theorem 1 implies that we can approach the opti-
mal classifier by approximately maximizing the accuracy on
noisy distribution. Taking a step further, we see that the accu-
racy on hold-out noisy samples is an unbiased estimator of

1) True label
Class 0
Class 1

2) Noisy label
Class 0
Class 1

3) Prediction
Class 0
Class 1 (b) m = 4 (c) m = 8 (d) m = 32(a) Clean dist

1 1

1 2 2 2

2 1

1 -1 2 -1

1 -2 2 -2

Figure 2: A tabular example of classification under noisy
labels. (a): the distribution of data points with true labels.
(b-d): examples of sampling m instances with noisy labels
for training, where m = 4, 8, 32. In (d), we slightly shift the
overlapped samples for display.

the accuracy on noisy distribution. Therefore, a noisy valida-
tion set is reliable. The reliability is measured by a validation
bound presented in the following Theorem 3, which is very
tight even with few noisy validation samples.
Theorem 3. Given a classifier h, considering validating it
on a noisy validation set Ṽ = {(xi, ỹi)}ni=1 drawn i.i.d. from
D̃X,Ỹ and observing the validation accuracy

AṼ (h) :=
1

n

n∑
i=1

1(h(xi) = ỹi), (9)

then for any 0 < δ ≤ 1, we have that with probability at least
1− δ,

AD̃(h)−AṼ (h) ≥ −
√

ln(1/δ)

2n
, (10)

where AD̃(h) is the accuracy on noisy distribution.

The proof is in Appendix A. To see how tight the bound
is, considering n = 1000 noisy samples and δ = 0.01, the
gap in Eq. (10) is no larger than 0.048. It means we shall
obtain an error no larger than 0.048 with at least probability
0.99. Theorem 1&3 justify that it is reliable to use a small
noisy validation set for model selection. Previously, there
has not been a theoretically widely-accepted criterion for
validation without clean samples. For example, many previ-
ous experiments on CIFAR-10 use the 10k clean samples to
tune hyperparameters, which may not be practical in learning
with noisy labels since we assume no access to many clean
samples. Therefore, our theoretical justification for a noisy
validation set is critical, especially considering lack of clean
samples and the unavoidable needs of model selection in
scenarios such as hyperparameters-tuning and early stopping.

5 Experiments
5.1 Training with Noisy Labels
Theorem 1&2 imply that we can obtain an optimal classi-
fier by maximizing training accuracy on sufficiently many
noisy samples, even if without any advanced training strate-
gies. Models’ characterizations motivated by the theoretical
results have been discussed in Section 4.2. Here we con-
duct experiments to visualize neural networks’ typical char-
acterizations when trained with noisy labels. As shown in
Figure 3, we adopt two classical synthetic datasets ‘circles’
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Figure 3: Synthetic training samples and the classifier’s decision regions. From left to right: an oracle case trained on clean
samples; three typical cases when trained with noisy labels; train/test accuracy (at the last training step) w.r.t. number of training
samples. Orange: class 0; Blue: class 1. First raw: ‘circles’ dataset; Second raw: ‘moons’ dataset. The ε is noise rate.

and ‘moons’, and pollute them with a noise transition matrix
T = [0.7, 0.3; 0.2, 0.8]. We implement an MLP with two
hidden layer of size 32. We train the classifier using full-
batch gradient descent for at most 20K steps to ensure the
training accuracy is optimized until convergence, and test on
10k clean samples. We vary the training sizes to demonstrate
different characterizations and repeat each experiment 10
times. Results in Figure 3 cover the three typical characteri-
zations summarized in Section 4.2. We also present curves
of train/test accuracy at the last step w.r.t. number of training
samples, where the shadow indicates the standard deviation.
It clearly demonstrates transitions 1) → 2) → 3) as the
number of training samples increases. For case 2), the train-
ing accuracy is approximately 1 and the testing accuracy is
around 1− ε = 0.75; as the number of samples increase, the
trained network finally approaches case 3), with the training
accuracy converging to 1 − ε and the testing accuracy ap-
proaching 1. For deep networks and high dimensional space,
we may not have sufficient samples to approximately ob-
tain an optimal classifier. Still, Theorem 1&2 and numerical
experiments here justify the utility of data augmentation tech-
niques (Cubuk et al. 2019; He et al. 2016) in learning with
noisy labels: data augmentation narrows the gap between
noisy samples and noisy distribution. Previously, it is intu-
itively believed but not explained that why augmented noisy
samples, which have the same noise, improves generalization.

5.2 A Noisy Validation Set is Reliable
To verify the utility of a noisy validation set, which has been
theoretically justified by Theorem 1&3, we present the NTS
framework. The implementation consists of two steps, (1)
noisy best teacher (NT): training on given noisy labels and
selecting a teacher model with the highest accuracy on the
noisy validation set, (2) noisy best student (NS): training on
labels predicted by NT and selecting a student model simi-
larly. We empirically validate NTS on extensive benchmark
datasets, including CIFAR-10 and CIFAR-100 with uniform

noise and realistic asymmetric noise flipped between similar
classes such as DEER→HORSE, as well as the large-scale
benchmark Clothing1M (Xiao et al. 2015), which contains 1
million real-world noisy training samples.

CIFAR-10 and CIFAR-100. We use Wide ResNet-28-10
(WRN-28-10) (Zagoruyko and Komodakis 2016) as the clas-
sifier on CIFAR-10 and CIFAR-100. We corrupt the training
set which has 50000 samples and randomly split 5000 noisy
samples for validation. We conduct experiments on uniform
noise (symmetric noise) and asymmetric noise, following pre-
vious settings (Han et al. 2018b; Patrini et al. 2017; Ren et al.
2018; Nguyen et al. 2020; Chen et al. 2019a). Uniform noise
is generated by uniformly flipping labels to other classes (Han
et al. 2018b; Ren et al. 2018; Han et al. 2020), which is the
most studied scenario in literature. For asymmetric noise, fol-
lowing (Patrini et al. 2017; Zhang and Sabuncu 2018; Nguyen
et al. 2020), on CIFAR-10, it is generated by flipping la-
bels between similar classes, i.e., TRUCK→AUTOMOBILE,
BIRD→AIRPLANE, DEER→HORSE, and CAT↔DOG,
with a given probability; on CIFAR-100, it is generated by
flipping each class into the next circularly with a given prob-
ability, which is also known as pair noise (Han et al. 2018b).
Apart from implementing NTS on the most common Cross
Entropy (CE) loss, we show NTS is also applicable to other
advanced training methods, including Generalized Cross En-
tropy (GCE) (Zhang and Sabuncu 2018) loss, which is proved
to be noise-robust; Co-teaching (Co-T) (Han et al. 2018b),
which is an effective method that uses two networks to select
small-loss training samples for each other; Determinant based
Mutual Information (DMI), which is an information-theoretic
robust loss. In NTS, all student networks share the same train-
ing schedule and hyperparameters with their teachers. Strong
data augmentation (Cubuk et al. 2019) is implemented, while
we will show in the ablation that the improvement obtained
by NTS is consistent with/without data augmentation. More
training details can be found in Appendix B.
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Dataset Base Model
Uniform Noise Asymmetric Noise

0.2 0.4 0.6 0.2 0.3 0.4

CIFAR-10

CE
Last 86.30± 0.20 74.18± 2.27 59.15± 1.31 89.95± 1.23 86.75± 0.64 79.47± 1.60

NT 93.63± 0.21 90.09± 0.41 82.48± 0.47 94.59± 0.10 93.33± 0.32 89.07± 1.44

NS 95.73± 0.11 93.76± 0.18 87.88± 0.23 95.09± 0.10 94.80± 0.44 91.49± 1.68

GCE
Last 95.02± 0.22 92.72± 0.25 86.99± 0.24 94.15± 0.45 91.55± 0.65 82.41± 1.61

NT 94.81± 0.07 92.53± 0.04 87.11± 0.10 94.41± 0.17 92.72± 0.08 87.60± 1.15

NS 95.34± 0.24 94.50± 0.30 91.32± 0.12 95.08± 0.09 94.11± 0.08 90.43± 0.73

Co-T
Last 95.09± 0.07 92.18± 0.36 87.32± 0.38 93.56± 0.08 91.39± 0.29 88.79± 0.36

NT 95.17± 0.14 92.42± 0.29 87.18± 0.29 94.44± 0.14 92.15± 0.14 89.93± 0.10

NS 96.26± 0.14 94.73± 0.20 92.11± 0.40 95.47± 0.09 93.73± 0.36 91.32± 0.30

DMI
Last 94.20± 0.20 41.60± 29.08 11.68± 0.72 95.29± 0.21 36.29± 37.87 10.35± 2.76

NT 94.25± 0.30 91.10± 0.46 79.38± 5.17 95.14± 0.26 94.12± 0.52 89.04± 3.31

NS 94.10± 0.11 91.11± 0.53 83.46± 0.46 95.29± 0.08 95.03± 0.08 92.28± 1.33

CIFAR-100

CE
Last 70.61± 0.20 55.96± 0.62 38.25± 0.58 70.10± 0.01 61.51± 0.21 51.11± 0.13

NT 73.38± 0.47 66.46± 0.26 57.94± 0.30 74.20± 0.35 68.27± 0.44 54.46± 1.22

NS 76.85± 0.29 71.71± 0.59 63.69± 0.25 77.07± 0.21 70.51± 0.30 55.61± 1.56

GCE
Last 70.95± 0.25 55.32± 0.35 20.21± 0.59 62.59± 0.62 52.75± 0.50 41.75± 0.69

NT 73.54± 0.25 65.48± 0.22 24.22± 0.88 71.55± 0.17 60.30± 0.18 43.51± 1.69

NS 75.41± 0.26 67.87± 0.13 23.34± 1.30 73.52± 0.41 61.38± 1.04 43.07± 1.43

Co-T
Last 78.24± 0.28 71.63± 0.33 64.93± 0.37 74.82± 0.07 67.72± 0.36 59.05± 1.01

NT 78.51± 0.20 72.33± 0.43 66.32± 0.05 75.45± 0.24 69.92± 0.39 60.22± 0.49

NS 80.02± 0.06 76.16± 0.49 72.30± 0.18 77.68± 0.84 74.02± 1.49 62.66± 0.67

DMI
Last 73.80± 0.40 66.80± 0.22 58.09± 0.06 74.54± 0.20 68.25± 0.24 54.69± 0.96

NT 73.80± 0.41 66.82± 0.16 58.35± 0.10 74.79± 0.22 68.65± 0.08 54.64± 1.05

NS 73.89± 0.34 66.95± 0.23 58.35± 0.06 74.82± 0.23 68.91± 0.41 54.74± 1.03

Table 1: Results of WRN-28-10 on CIFAR-10 and CIFAR-100 under uniform noise and asymmetric noise. Each experiment is
repeated three times. The best accuracy under each base method is in bold.

Figure 4: Test accuracy of the teacher and student during training epochs. NT and NS are selected using a noisy validation set,
justified by Theorem 1 and Theorem 3.

Table 1 summarizes results on CIFAR-10 and CIFAR-100,
where we repeat each experiment three times. The results
verify that our NTS framework and the noisy validation set
not only improve performance for CE, but are also applicable
to many advanced training algorithms. Firstly, in all noise
settings, the best accuracy is always achieved by our NS. Sec-
ondly, a noisy validation, which is justified by Theorem 1&3,
is an enhancement for all methods. When severe overfitting
happens at the later stage (e.g., CE), we can get a significantly
better NT than the last epoch. Even if existing methods can
reduce overfitting, our NT still achieves higher or compa-
rable accuracy than the last epoch. Moreover, we can not
tune hyperparameters of existing methods without the noisy

validation, whereas conduct validation on clean samples may
violate the fair setting in learning with noisy labels. Hence
our Theorem 1&3 and the NTS framework are critical, which
justify the utility of a noisy validation set theoretically and
empirically. Finally, we see that in most cases, we get a better
NS by learning knowledge form NT. Figure 4 shows that
we benefit from early-stopped teachers (Cho and Hariharan
2019). It is known that early stopping may help due to the
memorization effect (Arpit et al. 2017; Yao et al. 2020a), s.t.,
DNNs learn simple and correct patterns first before memoriz-
ing noise. Our critical point is justifying the noisy validation
set, with which we can easily select the good teachers.
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Base CE DMI DivideMix

Validation Last NT NS Last NT NS Last NT NS

Clean 67.91 68.99 70.02 71.82 72.23 72.99 73.09/73.48/73.81 73.98/74.31/74.65 74.48/74.70/74.89
Noisy 68.05 69.12 70.21 72.01 72.18 72.82 73.63/73.38/73.84 73.75/73.73/74.18 73.99/74.09/74.36

Table 2: Results of ResNet-50 on Clothing1M, using clean/noisy validation. The three results of DivideMix indicate the first
model/second model/ensemble model (following Li, Socher, and Hoi (2020)). The utility of NTS and a noisy validation set is
verified: 1) results of clean/noisy validation are comparable, 2) NTS obtains consistent performance gain over each baseline.

Dataset Model
No Augmentation Standard Augmentation Strong Augmentation

Uniform 0.4 Asymmetric 0.4 Uniform 0.4 Asymmetric 0.4 Uniform 0.4 Asymmetric 0.4

CIFAR-10
Last 60.94 73.82 70.10 77.54 74.18 79.47
NT 72.15 75.30 86.14 87.66 90.09 89.07
NS 75.04 76.69 89.45 90.23 93.76 91.49

CIFAR-100
Last 33.83 42.31 53.72 49.26 55.96 51.11
NT 41.40 41.20 62.96 55.92 66.46 54.46
NS 41.72 52.61 65.92 59.27 71.71 55.61

Table 3: Ablation results of WRN-28-10 trained with CE. The best accuracy is in bold.

Clothing1M. Clothing1M is a large-scale benchmark con-
taining real-world noise. Strictly following the standard set-
ting (Patrini et al. 2017; Tanaka et al. 2018; Xu et al. 2019;
Li, Socher, and Hoi 2020), we first access a ResNet-50 pre-
trained on ImageNet, then use 1 million noisy samples of
Clothing1M for training, 14k and 10k clean data respectively
for validation and test. Moreover, to demonstrate the util-
ity of a noisy validation set, we additionally show a more
challenging setting where the clean validation set is assumed
unavailable. In this case, we randomly draw 14k samples
from the noisy training set for validation. More training de-
tails can be found in Appendix B. Table 2 summarizes results
on Clothing1M. Since DivideMix (Li, Socher, and Hoi 2020)
trains two networks, apart from the ensemble result obtained
by averaging two networks’ predictions following the origi-
nal paper (Li, Socher, and Hoi 2020), we also report results
of each network for a fair comparison with other baselines.
For NTS, when we use DivideMix as the teacher, a student
is trained for each teacher. Results of both student and their
average ensemble are reported similarly. In Table 2, we re-
port results of the last epoch, NT and NS for each baseline
method. The utility of NTS and a noisy validation set is ver-
ified on this real-world noisy dataset, because 1) results of
clean/noisy validation are comparable, 2) NTS obtains con-
sistent performance gain over each baseline. Notably, without
our theoretical justification for a noisy validation set, it would
be intractable to tune hyperparameters for all baselines.

Ablation. To comprehensively verify the utility of a noisy
validation set when there is no augmentation, standard aug-
mentation (He et al. 2016) or strong augmentation (Cubuk
et al. 2019), we conduct an ablation study on CIFAR-10 and
CIFAR-100. Results are presented in Table 3. It is not surpris-
ing that data augmentation can improve test accuracy. Still,
it has not been made clear why augmented noisy samples,

which have the same noisy labels, improve generalization.
This paper reveals that the reason is the robustness of accu-
racy, which fills the gap between the noisy and clean dis-
tribution. Augmented samples, though have the same noise,
can narrow the gap between training samples and the noisy
distribution. In rare cases such as CIFAR-100 with 0.4 asym-
metric noise, strong augmentation can be harmful since too
much randomness may result in underfitting. Importantly, we
see that the performance gain of NTS, which uses a noisy
validation set, is consistent under different augmentations or
no augmentation. The results verify that NTS is practical and
a noisy validation set is reliable.

6 Conclusion

In this paper, we target at revealing the essence of learn-
ing with noisy labels. We prove that the accuracy metric
itself is robust for multi-class classification under common
diagonally-dominant class-conditional noise, i.e., a classifier
maximizing its accuracy on the noisy distribution is guar-
anteed to maximize the accuracy on clean distribution. We
then show inspirations of this finding in two essential aspects:
training and validation. For training, maximizing training
accuracy on sufficiently many noisy samples yields an ap-
proximately optimal classifier. Characterizations of models
trained with noisy samples are derived. For validation, it is
reliable to use a noisy validation set. Justifying the noisy val-
idation set is a critical contribution, considering that almost
all methods need to tune hyperparameters, whereas conduct-
ing model-selection reliably without clean samples has not
been theoretically justified in previous works. In experiments,
we verify our theoretical results and additional claims by
visualizing characterizations of DNNs and demonstrating the
impressive performance of NTS.
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A Proofs

Lemma 1. With Assumption 1, given any classifier h : X 7→
Y , Ỹ is independent of h(X) conditioning on Y .

The conclusion easily follows since Ỹ is independent of
X conditioning on Y (Assumption 1).

Proof. (Theorem 1). (i) Without loss of generality, we as-
sume each true class has nonzero probability, i.e., Pr[Y =
i] > 0, ∀i ∈ Y . Otherwise we can remove the class with
probability 0.

Recall that the confusion matrix C(h) for a classifier h
is defined as Ci,j(h) := Pr[h(X) = j|Y = i]. Thus, 0 ≤
Ci,j(h) ≤ 1 and for any i ∈ Y ,

∑
j∈Y Ci,j(h) = 1.

With Assumption 2, for any i ∈ Y , we have
∑
j∈Y Ti,j ·

Ci,j(h) ≤
∑
j∈Y Ti,i · Ci,j(h) = Ti,i.

With Lemma 1, we have, ∀i, j ∈ Y , Pr[h(X) = j|Y =

i, Ỹ = j] = Pr[h(X) = j|Y = i] = Ci,j(h). Therefore,

AD̃(h) = Pr[h(X) = Ỹ ]

=
∑
i∈Y

Pr[Y = i] · Pr[h(X) = Ỹ |Y = i]

=
∑
i∈Y

(Pr[Y = i]
∑
j∈Y

Ti,j · Ci,j(h))

≤
∑
i∈Y

Pr[Y = i] · Ti,i

= 1− ε.

(11)

The maximum is attained if and only if C(h) = I , i.e., when
h is a global optimal classifier h?.

(ii) Note that
∑
j∈Y Ci,j(h) = 1, ∀i ∈ Y . Using Eq. (11),

we obtain the gap between AD̃(h) and its maximum,

max
h∈H

AD̃(h)−AD̃(h)

=
∑
i∈Y

Pr[Y = i] · Ti,i −
∑
i∈Y

(Pr[Y = i]
∑
j∈Y

Ti,j · Ci,j(h))

=
∑
i∈Y

(Pr[Y = i](Ti,i −
∑
j∈Y

Ti,j · Ci,j(h)))

=
∑
i∈Y

(Pr[Y = i](Ti,i ·
∑
j∈Y

Ci,j(h)−
∑
j∈Y

Ti,j · Ci,j(h)))

=
∑

i,j∈Y,j 6=i

Pr[Y = i] · (Ti,i − Ti,j) · Ci,j(h).

(12)

Therefore,
maxh∈HAD̃(h)−AD̃(h)

min
i,j∈Y,j 6=i

(Ti,i − Ti,j)

=

∑
i,j∈Y,j 6=i Pr[Y = i] · (Ti,i − Ti,j) · Ci,j(h)

min
i,j∈Y,j 6=i

(Ti,i − Ti,j)

≥
∑

i,j∈Y,j 6=i

Pr[Y = i] · Ci,j(h)

=
∑
i∈Y

Pr[Y = i](1− Ci,i(h))

= 1−
∑
i∈Y

Pr[Y = i]Ci,i(h)

= 1−
∑
i∈Y

Pr[Y = i]Pr[h(X) = Y |Y = i]

= 1−AD(h).

(13)

That is

0 ≤ 1−AD(h) ≤
maxh∈HAD̃(h)−AD̃(h)

min
i,j∈Y,j 6=i

(Ti,i − Ti,j)
. (14)

Then the conclusion follows from the above inequality.

Proof. (Theorem 2). Note that accuracy metric is equivalent
to error metric defined by 0 − 1 loss. Therefore, using the
uniform error bound (Vapnik 1999; Abu-Mostafa, Magdon-
Ismail, and Lin 2012) for general h ∈ H, we have, ∀ε > 0,

Pr

[
sup
h∈H

(AS̃(h)−AD̃(h)) ≥ ε
]

≤ 4(2em/dV C(H))dV C(H)e−mε
2/8

(15)

Let δ = 4(2em/dV C(H))dV C(H)e−mε
2/8, we get

Pr

[
sup
h∈H

(AS̃(h)−AD̃(h)) ≥ ε
]
≤ δ.

Thus, Pr
[
inf
h∈H

(AD̃(h)−AS̃(h)) ≤ −ε
]
≤ δ.

Then the conclusion follows by substituting ε =√
8 (dV C(H) · (ln(2m/dV C(H)) + 1) + ln(4/δ))

m
.

Proof. (Theorem 3). The noisy validation samples Ṽ =
{(xi, ỹi)}ni=1 are drawn i.i.d. from D̃X,Ỹ . Therefore, the
indication function on each sample 1(h(xi) = ỹi), i =
1, 2, · · · , n are i.i.d., such that E(x,ỹ)∼D̃[1(h(x) = ỹ)] =

AD̃(h). Using Hoeffding’s inequality (Bentkus et al. 2004)
for these i.i.d. Bernoulli random variables with expectation
AD̃(h), we have

Pr[AṼ (h)−AD̃(h) ≥ ε] ≤ e
−2nε2 , (16)

where AṼ (h) := 1
n

∑n
i=1 1(h(xi) = ỹi) is the observed

validation accuracy. Equivalently,

Pr[AD̃(h)−AṼ (h) ≤ −ε] ≤ e
−2nε2 . (17)

Let δ = e−2nε
2

, then the conclusion follows by substituting

ε =

√
ln(1/δ)

2n
.
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B More Details on Experiments
Here we present more experimental details. All models are
trained with Tesla V100 GPU. Our code is released 2.

B.1 CIFAR-10 and CIFAR-100
We add label noise to the initial training set with 50000
samples and randomly split 5000 noisy samples for vali-
dation. Wide ResNet-28-10 (WRN-28-10) (Zagoruyko and
Komodakis 2016) is used as the classifier. Our NTS frame-
work is implemented on four typical methods: Cross Entropy
(CE), Generalized Cross Entropy (GCE) (Zhang and Sabuncu
2018), Co-teaching (Co-T) (Han et al. 2018b) and Determi-
nant based Mutual Information (DMI). Though each basic
method may require some specific hyperparameters, we en-
sure that in each method, training of the teacher and the
student share exactly the same setting.

CE, GCE and Co-T shares the same batch size of 128 and
learning rate schedule, i.e., training using SGD optimizer
for 200 epochs, with a initial learning rate of 0.1, which is
decreased by a factor of 5 after 60, 120 and 160 epochs. Fol-
lowing its original paper and official implementation, DMI
uses a model pretrained by CE as initialization and requires a
larger batch size of 256 and a smaller learning rate, which is
tuned in {10−4, 10−5, 10−6} and fixed to 10−6 finally. It is
trained using SGD optimizer for 100 epochs without learning
rate change. In all methods, the SGD optimizer is imple-
mented with momentum 0.9 and weight decay 5× 10−4. For
GCE, following its original paper, there is a warm-up epoch,
before which no loss pruning is applied. It is set as the epoch
of first and second learning rate change for CIFAR-10 and
CIFAR-100 respectively (Zhang and Sabuncu 2018). We tune
the warm-up epoch in {30, 60, 120} and finally use 60, 120
for CIFAR-10 and CIFAR-100 respectively. For Co-T, we
also find that a warm-up (tuned in {30, 60, 120}) where no
sample selection is applied can help the training, especially
under strong noise, hence we use a warm-up epoch 60 for
0.6 uniform noise and 0.4 asymmetric noise.

We use strong augmentation and dropout 0.2 for all meth-
ods by default, except for GCE on CIFAR-100, where we
found it works better with standard augmentation and no
dropout. Here, standard augmentation (He et al. 2016) in-
cludes per-pixel normalization, horizontal random flip and
32×32 random crop after padding with 4 pixels on each side.
Strong augmentation (Cubuk et al. 2019) includes operations
described in (Cubuk et al. 2019), i.e., ShearX/Y, TranslateX/Y,
Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize,
Contrast, Color, Brightness, Sharpness and Cutout (DeVries
and Taylor 2017). In the ablation study presented in Sec-
tion 5.2, we conduct experiments without augmentation, with
standard augmentation and with strong augmentation, which
verifies that the utility of NTS and a noisy validation set is
consistent in all these settings.

B.2 Clothing1M
Strictly following the standard setting (Patrini et al. 2017;
Tanaka et al. 2018; Xu et al. 2019; Li, Socher, and Hoi 2020),
we first access a ResNet-50 pre-trained on ImageNet, then

2https://github.com/chenpf1025/RobustnessAccuracy

use 1 million noisy samples of Clothing1M for training, 14k
and 10k clean data respectively for validation and test. For
DMI (Xu et al. 2019) and DivideMix (Li, Socher, and Hoi
2020), we reproduce results following their official implemen-
tations. In NTS, we find that simply training the student using
normal cross-entropy loss works well. We train the ResNet-
50 using SGD optimizer for 10 epochs, with a batchsize 256
and an initial learning rate of 0.001, which is decreased by
a factor of 10 after 5 epochs. The SGD optimizer is imple-
mented with momentum 0.9 and weight decay 0.001. We
use standard data augmentation with per-pixel normalization,
horizontal random flip and 224×224 random crop. Note that
DivideMix (Li, Socher, and Hoi 2020) trains two networks,
hence we train a student for each teacher.

Using exactly the same training hyperparameters, we also
demonstrate a more challenging setting, where the 14k clean
validation samples are assumed unavailable. We randomly
sample 14k noisy samples (i.e., 1k samples per class) from
the 1 million noisy training samples for validation. This set-
ting further verifies the utility of a noisy validation set.

References
Abu-Mostafa, Y. S.; Magdon-Ismail, M.; and Lin, H. 2012.
Learning from data: a short course. AMLBook.com .
Arazo, E.; Ortego, D.; Albert, P.; O’Connor, N. E.; and
McGuinness, K. 2019. Unsupervised label noise modeling
and loss correction. In International Conference on Machine
Learning.
Arpit, D.; Jastrzebski, S.; Ballas, N.; Krueger, D.; Bengio,
E.; Kanwal, M. S.; Maharaj, T.; Fischer, A.; Courville, A.;
Bengio, Y.; et al. 2017. A closer look at memorization in deep
networks. In International Conference on Machine Learning.
Bartlett, P. L.; Jordan, M. I.; and McAuliffe, J. D. 2006.
Convexity, classification, and risk bounds. Journal of the
American Statistical Association .
Bentkus, V.; et al. 2004. On Hoeffding’s inequalities. The
Annals of Probability .
Charoenphakdee, N.; Lee, J.; and Sugiyama, M. 2019. On
Symmetric Losses for Learning from Corrupted Labels. In
International Conference on Machine Learning.
Chen, P.; Liao, B.; Chen, G.; and Zhang, S. 2019a. A meta
approach to defend noisy labels by the manifold regularizer
PSDR. arXiv preprint arXiv:1906.05509 .
Chen, P.; Liao, B. B.; Chen, G.; and Zhang, S. 2019b. Un-
derstanding and Utilizing Deep Neural Networks Trained
with Noisy Labels. In International Conference on Machine
Learning.
Cho, J. H.; and Hariharan, B. 2019. On the efficacy of knowl-
edge distillation. In IEEE International Conference on Com-
puter Vision.
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2019. Autoaugment: Learning augmentation strategies
from data. In IEEE Conference on Computer Vision and
Pattern Recognition.
Daniely, A.; and Shalev-Shwartz, S. 2014. Optimal learners
for multiclass problems. In Conference on Learning Theory.

11459



DeVries, T.; and Taylor, G. W. 2017. Improved regularization
of convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552 .
Fang, T.; Lu, N.; Niu, G.; and Sugiyama, M. 2020. Rethinking
Importance Weighting for Deep Learning under Distribution
Shift. In Advances in Neural Information Processing Systems.
Ghosh, A.; Kumar, H.; and Sastry, P. 2017. Robust loss
functions under label noise for deep neural networks. In
AAAI Conference on Artificial Intelligence.
Ghosh, A.; Manwani, N.; and Sastry, P. 2015. Making risk
minimization tolerant to label noise. Neurocomputing .
Han, B.; Niu, G.; Yu, X.; Yao, Q.; Xu, M.; Tsang, I.; and
Sugiyama, M. 2020. Sigua: Forgetting may make learning
with noisy labels more robust. In International Conference
on Machine Learning.
Han, B.; Yao, J.; Niu, G.; Zhou, M.; Tsang, I.; Zhang, Y.; and
Sugiyama, M. 2018a. Masking: A new perspective of noisy
supervision. In Advances in Neural Information Processing
Systems.
Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I.; and Sugiyama, M. 2018b. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In
Advances in Neural Information Processing Systems.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition.
Hendrycks, D.; Mazeika, M.; Wilson, D.; and Gimpel, K.
2018. Using trusted data to train deep networks on labels
corrupted by severe noise. In Advances in Neural Information
Processing Systems.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .
Jiang, L.; Zhou, Z.; Leung, T.; Li, L.-J.; and Fei-Fei, L. 2018.
MentorNet: Learning Data-Driven Curriculum for Very Deep
Neural Networks on Corrupted Labels. In International Con-
ference on Machine Learning.
Khetan, A.; Lipton, Z. C.; and Anandkumar, A. 2018. Learn-
ing From Noisy Singly-labeled Data. In International Con-
ference on Learning Representations.
Li, J.; Socher, R.; and Hoi, S. C. 2020. DivideMix: Learning
with Noisy Labels as Semi-supervised Learning. In Interna-
tional Conference on Learning Representations.
Ma, X.; Huang, H.; Wang, Y.; Erfani, S. R. S.; and Bailey,
J. 2020. Normalized Loss Functions for Deep Learning
with Noisy Labels. In International Conference on Machine
Learning.
Malach, E.; and Shalev-Shwartz, S. 2017. Decoupling “when
to update” from “how to update”. In Advances in Neural
Information Processing Systems.
Manwani, N.; and Sastry, P. 2013. Noise tolerance under risk
minimization. IEEE Transactions on cybernetics .
Natarajan, B. K. 1989. On learning sets and functions. Ma-
chine Learning .

Natarajan, N.; Dhillon, I. S.; Ravikumar, P. K.; and Tewari,
A. 2013. Learning with noisy labels. In Advances in Neural
Information Processing Systems.

Nguyen, T.; Mummadi, C.; Ngo, T.; Beggel, L.; and Brox,
T. 2020. SELF: learning to filter noisy labels with self-
ensembling. In International Conference on Learning Repre-
sentations.

Patrini, G.; Rozza, A.; Krishna Menon, A.; Nock, R.; and
Qu, L. 2017. Making deep neural networks robust to label
noise: A loss correction approach. In IEEE Conference on
Computer Vision and Pattern Recognition.

Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.; and
Rabinovich, A. 2015. Training deep neural networks on noisy
labels with bootstrapping. In International Conference on
Learning Representations.

Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learn-
ing to Reweight Examples for Robust Deep Learning. In
International Conference on Machine Learning.

Schroff, F.; Criminisi, A.; and Zisserman, A. 2010. Harvest-
ing image databases from the web. IEEE Transactions on
Pattern Analysis and Machine Intelligence .

Tanaka, D.; Ikami, D.; Yamasaki, T.; and Aizawa, K. 2018.
Joint optimization framework for learning with noisy labels.
In IEEE Conference on Computer Vision and Pattern Recog-
nition.

Vapnik, V. N. 1999. An overview of statistical learning theory.
IEEE Transactions on neural networks .

Xia, X.; Liu, T.; Han, B.; Wang, N.; Gong, M.; Liu, H.; Niu,
G.; Tao, D.; and Sugiyama, M. 2020. Part-dependent label
noise: Towards instance-dependent label noise. In Advances
in Neural Information Processing Systems.

Xia, X.; Liu, T.; Wang, N.; Han, B.; Gong, C.; Niu, G.; and
Sugiyama, M. 2019. Are Anchor Points Really Indispensable
in Label-Noise Learning? In Advances in Neural Information
Processing Systems.

Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; and Wang, X. 2015.
Learning from massive noisy labeled data for image classifi-
cation. In IEEE Conference on Computer Vision and Pattern
Recognition.

Xu, Y.; Cao, P.; Kong, Y.; and Wang, Y. 2019. L DMI:
A Novel Information-theoretic Loss Function for Training
Deep Nets Robust to Label Noise. In Advances in Neural
Information Processing Systems.

Yan, Y.; Rosales, R.; Fung, G.; Subramanian, R.; and Dy,
J. 2014. Learning from multiple annotators with varying
expertise. Machine learning .

Yao, Q.; Yang, H.; Han, B.; Niu, G.; and Kwok, J. T.-Y.
2020a. Searching to exploit memorization effect in learning
with noisy labels. In International Conference on Machine
Learning.

Yao, Y.; Liu, T.; Han, B.; Gong, M.; Deng, J.; Niu, G.; and
Sugiyama, M. 2020b. Dual T: Reducing estimation error
for transition matrix in label-noise learning. In Advances in
Neural Information Processing Systems.

11460



Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.; and Sugiyama, M.
2019. How does Disagreement Help Generalization against
Label Corruption? In International Conference on Machine
Learning.
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual
networks. In Proceedings of the British Machine Vision
Conference.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
O. 2017. Understanding deep learning requires rethinking
generalization. In International Conference on Learning
Representations.
Zhang, Z.; and Sabuncu, M. 2018. Generalized cross entropy
loss for training deep neural networks with noisy labels. In
Advances in Neural Information Processing Systems.
Zheng, S.; Wu, P.; Goswami, A.; Goswami, M.; Metaxas,
D.; and Chen, C. 2020. Error-Bounded Correction of Noisy
Labels. In International Conference on Machine Learning.

11461


