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Abstract

Supervised learning under label noise has seen numerous ad-
vances recently, while existing theoretical findings and em-
pirical results broadly build up on the class-conditional noise
(CCN) assumption that the noise is independent of input fea-
tures given the true label. In this work, we present a theoretical
hypothesis testing and prove that noise in real-world dataset
is unlikely to be CCN, which confirms that label noise should
depend on the instance and justifies the urgent need to go
beyond the CCN assumption.The theoretical results motivate
us to study the more general and practical-relevant instance-
dependent noise (IDN). To stimulate the development of the-
ory and methodology on IDN, we formalize an algorithm to
generate controllable IDN and present both theoretical and
empirical evidence to show that IDN is semantically meaning-
ful and challenging. As a primary attempt to combat IDN, we
present a tiny algorithm termed self-evolution average label
(SEAL), which not only stands out under IDN with various
noise fractions, but also improves the generalization on real-
world noise benchmark Clothing1M. Our code is released1.
Notably, our theoretical analysis in Section 2 provides rigor-
ous motivations for studying IDN, which is an important topic
that deserves more research attention in future.

1 Introduction
Noisy labels are unavoidable in practical applications, where
instances are usually labeled by workers on crowdsourcing
platforms (Yan et al. 2014; Schroff, Criminisi, and Zisser-
man 2010). Unfortunately, Deep Neural Networks (DNNs)
can memorize noisy labels easily but generalize poorly on
clean test data (Zhang et al. 2017). Hence, how to mitigate
the effect of noisy labels in the training of DNNs has at-
tracted considerable attention recently. Most existing works,
for their theoretical analysis or noise synthesizing in exper-
iments, follow the class-conditional noise (CCN) assump-
tion (Scott, Blanchard, and Handy 2013; Zhang and Sabuncu
2018; Menon et al. 2020; Ma et al. 2020), where the label
noise is independent of its input features conditional on the
latent true label.
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Copyright c© 2021, Association for the Advancement of Artificial
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1https://github.com/chenpf1025/IDN

Figure 1: Examples of 8 in MNIST (first row) and Airplane
in CIFAR-10 (second row). The corruption probability depen-
dent on the true class does not model such diverse features in
each class.

In fact, instances with the same label can be entirely dif-
ferent, hence the probability of mislabeling should be highly
dependent on the specific instance. As shown in the first row
of Fig. 1, the second right image is likely to be mislabeled
as the number 6 and the fourth right image is likely to be
manually mislabeled as the number 7; in the second row, the
last image is more likely to be mislabeled as the ship. In
this paper, our first contribution (Section 2) is to present a
theoretical hypothesis testing on the well-known real-world
dataset, Clothing1M, to demonstrate the urgent need to go
beyond the CCN assumption in practical applications. Mean-
while, we discuss the challenge of instance-dependent noise
(IDN) with both theoretical and empirical evidence. Some
pioneer efforts has been contributed to IDN, but most results
are restricted to binary classification (Menon, van Rooyen,
and Natarajan 2018; Bootkrajang and Chaijaruwanich 2020;
Cheng et al. 2020) or based on assumptions such as the noise
is parts-dependent (Xia et al. 2020).

To stimulate the development of theory and methodology
on more practical-relevant IDN, we propose an algorithm to
generate controllable IDN and present extensive characteriza-
tions of training under IDN, which is our second contribution
(Section 3). Our third contribution (Section 4) is to propose
an algorithm termed self-evolution average label (SEAL) to
defend IDN, motivated by an experimental observation that
the DNN’s output corresponding to the latent true label can
be activated with oscillation before memorizing noise. Specif-
ically, SEAL provides instance-dependent label correction
by averaging predictions of a DNN on each instance over
the whole training process, then retrains a classifier using the
averaged soft labels. The superior performance of SEAL is
verified on extensive experiments, including synthetic/real-
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world datasets under IDN of different noise fractions, and
the large benchmark Clothing1M (Xiao et al. 2015) with
real-world noise.

2 From CCN to IDN - Theoretical Evidences
2.1 Preliminaries
Considering a c-class classification problem, let X be the
feature space, Y = {1, ..., c} be the label space, (X,Y ) ∈
X × Y be the random variables with distribution DX,Y and
D = {(xi, yi)}ni=1 be a dataset containing i.i.d. samples
drawn from DX,Y . In practical applications, the true label
Y may not be observable. Instead, we have an observable
distribution of noisy labels (X, Ȳ ) ∼ D̄X,Ȳ and a dataset
D̄ = {(xi, ȳi)}ni=1 drawn from it. A classifier f : X → Pc is
defined by a DNN that outputs a probability distribution over
all classes, where Pc = {s ∈ Rc+ : ‖s‖1 = 1}. Unless speci-
fied, f denote the output after a softmax layer (Goodfellow,
Bengio, and Courville 2016).

2.2 Beyond the CCN Assumption
The CCN assumption is commonly used in previous works,
as clearly stated in theoretical analysis (Blum and Mitchell
1998; Yan et al. 2017; Patrini et al. 2016; Zhang and Sabuncu
2018; Xu et al. 2019; Menon et al. 2020; Ma et al. 2020)
or inexplicitly used in experiments for synthetizing noisy
labels (Han et al. 2018b; Yu et al. 2019; Arazo et al. 2019;
Li, Socher, and Hoi 2020; Lukasik et al. 2020). Under the
CCN assumption, the observed label Ȳ is independent of X
conditioning on the latent true label Y .
Definition 1. (CCN Model) Under the CCN assumption,
there is a noise transition matrix M ∈ [0, 1]c×c and we
observe samples (X, Ȳ ) ∼ D̄ = CCN(D,M), where first
we draw (X,Y ) ∼ D as usual, then flip Y to produce Ȳ
according to the conditional probability defined by M , i.e.,
Pr(Ȳ = q|Y = p) = Mp,q , where p, q ∈ Y .

We have seen various specific cases of CCN, including
uniform/symmetric noise (Ren et al. 2018; Arazo et al. 2019;
Chen et al. 2019a; Lukasik et al. 2020), pair/asymmetric
noise (Han et al. 2018b; Chen et al. 2019b), tri/column/block-
diagonal noise (Han et al. 2018a). Since the noise transition
process is fully specified by a matrix M , one can mitigate the
effect of CCN by modelingM (Patrini et al. 2017; Hendrycks
et al. 2018; Han et al. 2018a; Xia et al. 2019; Yao et al. 2019).
Alternatively, several robust loss functions (Natarajan et al.
2013; Patrini et al. 2017; Zhang and Sabuncu 2018; Xu et al.
2019) have been proposed and justified. Many other works
do not focus on theoretical analysis, yet propose methods
based on empirical findings or intuitions, such as sample
selection (Han et al. 2018b; Song, Kim, and Lee 2019; Yu
et al. 2019), sample weighting (Ren et al. 2018) and label
correction (Ma et al. 2018; Arazo et al. 2019).

Intuitively, CCN does not model such diverse features in
each class, as illustrated by examples in Fig. 1. Theoretically,
we can justify the need to go beyond the CCN assumption
with the following theorem.
Theorem 1. (CCN hypothesis testing) Given a noisy dataset
with n instances, considering randomly sampling a validation

set V̄ = {(xi, ȳi)}mi=1, m < n, and training a network f on
the rest instances. Let f(·) denote a hard prediction here and
êr0−1
V̄

[f ] =
∑m
i=1

1
m1(f(xi) 6= ȳi) be the validation error,

where 1(·) is the indicator function. Let wp = Pr[Y = p]
be the fraction of samples per class. If the CCN assumption
holds, we shall have

Pr

[
1−

c∑
p=1

wp max
q∈Y

Mp,q − êr0−1
V̄

[f ] ≥ ε

]
≤ e−2mε2

(1)

Proof. Let er0−1
D̄ [f ] = E(x,ȳ)∼D̄1(f(x) 6= ȳ) be the ex-

pected error on noisy distribution. For any f , the CCN as-
sumption implies f(X) is independent of Ȳ conditioning on
Y , then we have,

er0−1
D̄ [f ] = 1− E(x,ȳ)∼D̄1(f(x) = ȳ)

= 1−
c∑

p=1

wpPr[f(X) = Ȳ |Y = p]

= 1−
c∑

p=1

wp

c∑
q=1

Pr[f(X) = q, Ȳ = q|Y = p]

= 1−
c∑

p=1

wp

c∑
q=1

Pr[f(X) = q|Y = p] ·Mp,q

≥ 1−
c∑

p=1

wp max
q∈Y

Mp,q.

Note that the error êr0−1
V̄

[f ] is estimated on validation sam-
ples that are not used when training f , hence {1(f(xi) 6=
ȳi)}mi=1 are m i.i.d. Bernoulli random variables with ex-
pectation er0−1

D̄ [f ]. Using Hoeffding’s inequality, we have,
∀ε > 0,

Pr

[
1−

c∑
p=1

wp max
q∈Y

Mp,q − êr0−1
V̄

[f ] ≥ ε

]
≤ Pr

[
er0−1
D̄ [f ]− êr0−1

V̄
[f ] ≥ ε

]
≤ e−2mε2 .

Now we apply Theorem 1 to the widely used noise bench-
mark Clothing1M, which contains one million noisy training
samples of clothing images in 14 classes. We keep 500k ran-
dom samples from validation while train a ResNet-50 on
the rest samples. After training, we get a validation error
êr0−1
V̄

[f ] = 0.1605. The original paper (Xiao et al. 2015)
provides additional refined labels and a noise confusion
matrix that can be an estimator of M under the CCN as-
sumption. Moreover, we estimate wp using the proportion
of labels on the 14k refined subset. In this way, we get
1−

∑c
p=1 wp maxq∈YMp,q − êr0−1

V̄
[f ] = 0.2212. By sub-

stituting ε = 0.2212 and m = 500k to Eq. (1), we get a
probability lower than 10−21250, which is statistically im-
possible. This contradiction implies that the CCN assumption
does not hold on Clothing1M. In fact, this result is explain-
able by analyzing the difference between CCN and IDN. For
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(a) CCN (b) IDN

Figure 2: The graphical model of label noise.

CCN, label noise is independent of input features condition-
ing on the true class; hence the network can not generalize
well on such independent noise. Thus, we expect a high val-
idation error if the noise is CCN. While here, we obtain
an empirical error much lower than expected; this implies
that the network learned feature-dependent noise that can be
generalized to the noisy validation set.

2.3 The IDN Model and Its Challenges
Now both theoretical evidences and intuitions imply that la-
bel noise should be dependent on input features, yet limited
research efforts have been devoted to IDN. For binary classifi-
cation under IDN, there have been several pioneer theoretical
analysis on robustness (Menon, van Rooyen, and Natarajan
2018; Bootkrajang and Chaijaruwanich 2020) and sample
selection methods (Cheng et al. 2020), mostly restricted to
small-scale machine learning such as logistic regression. In
the deep learning scenario, Xia et al. (2020) combat IDN by
assuming that the noise is parts-dependent, with which they
can estimate the noise transition for each part. Thulasidasan
et al. (2019) investigate the co-occurrence of noisy labels
with underlying features by adding synthetic features, such
as the smudge, to mislabeled instances. However, this is not
the typical realistic IDN where the noisy label should be
dependent on inherent input features.

As presented in Definition 2, we can model instance-
dependent label corruption, such that the noise transition
matrix is a function of X . Note that both IDN and CCN
consider close-set noise, as contrast to a specific label noise
termed open-set noise (Wang et al. 2018), where the noisy
instances does not belong to any considered classes. The
graphical model of label noise is shown in Fig. 2. CCN can
be seen as a degenerated case of IDN such that all instances
have the same noise transition matrix.
Definition 2. (IDN Model) Under the IDN model, M : X →
[0, 1]c×c is a function of X . We observe samples (X, Ȳ ) ∼
D̄ = IDN(D,M), where first we draw (X,Y ) ∼ D as
usual, then flip Y to produce Ȳ according to the conditional
probability defined by M(X) , i.e., Pr(Ȳ = q|Y = p) =
Mp,q(X), where p, q ∈ Y .

Many existing robust loss functions (Natarajan et al. 2013;
Patrini et al. 2017; Zhang and Sabuncu 2018; Xu et al. 2019)
have theoretical guarantees derived from the CCN assump-
tion but not IDN. Some sample selection algorithms (Malach
and Shalev-Shwartz 2017; Han et al. 2018b; Yu et al. 2019;
Li, Socher, and Hoi 2020), targeting at selecting clean sam-
ples from the noisy training set, work quite well under CCN.
Though these methods does not directly rely on the CCN
assumption, it can be more challenging to identify clean
samples under IDN since the label noise is correlated with
inherent input features that result in confusion.

Theoretically, the optimal sample selection exists under
CCN but may fail under IDN. This is because under IDN,
even if we select all clean samples accurately, the support of
X can be different to its original support in clean distribution.
While for CCN, it is possible to select an optimal subset. The
key issue is whether the following holds for any p ∈ Y .

supp(P (X|Ȳ = Y, Y = p))
?
= supp(P (X|Y = p)), (2)

where supp(·) denotes the support of a distribution. For CCN,
since X is independent of Ȳ conditioning Y , the equality in
Eq. (2) holds. While for IDN, Eq. (2) possibly does not hold.
For example, if samples near the decision boundary are more
likely to be corrupted, then the supports are different, which
means learning with selected clean samples is statistically
inconsistent (Cheng et al. 2020). More characterizations of
IDN will be presented in the next section.

3 A Typical Controllable IDN
3.1 Enabling Controllable Experiments
The rapid advance of research on CCN not only attributes to
simplicity of the noise model but also the simple generation
process of synthetic noise. We are able to conduct experi-
ments on synthetic CCN of any noise fraction by randomly
flipping labels according to the conditional probability de-
fined by M , which enable us to characterize DNNs trained
with CCN (Arpit et al. 2017; Chen et al. 2019b), develop
algorithms accordingly and quickly verify the idea. Similarly,
it is desired to easily generate IDN with any noise fraction
for any given benchmark dataset. A practical solution is to
model IDN using DNNs’ prediction error because the error
is expected to be challenging for DNNs. To yield calibrated
softmax output for IDN generation, Berthon et al. (2020)
train a classifier on a small subset, calibrate the classifier
on another clean validation set (Guo et al. 2017), then use
predictions on the rest instances to obtain noisy labels. It does
not generate noise for the whole dataset and the noise largely
depends on the small training subset.

To stimulate the development of theory and methodology,
we propose a novel IDN generator in Algorithm 1. Our labeler
follows the intuition that ‘hard’ instances are more likely to
be mislabeled (Du and Cai 2015; Menon, van Rooyen, and
Natarajan 2018). Given a dataset D = {(xi, yi)}ni=1 with
labels believed to be clean, we normally train a DNN for T
epochs and get a sequence of networks with various classi-
fication performance. For each instance, if many networks
predict a high probability on a class different to the labeled
one, it means that it is hard to clearly distinguish the instance
from this class. Therefore, we can compute the score of mis-
labeling N(x) and the potential noisy label ỹ(x) as follow:

S =
T∑
t=1

St/T ∈ Rn×c,

N(xi) = max
k 6=yi

Si,k, ỹ(xi) = arg max
k 6=yi

Si,k,

(3)

where St = [f t(xi)]
n
i=1 is DNN’s output at t-th epoch. The

average prediction here reveals the DNN’s confusion on in-
stances throughout training. We flip the label of p% instances
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Algorithm 1 IDN Generation.

Input: Clean samples D = {(xi, yi)}ni=1, a target noise
fraction p, epochs T .
Initialize a network f .
for t = 1 to T do

for batches {(xi, yi)}i∈B do
Train f on {(xi, yi)}i∈B using cross-entropy loss:

LCE = − 1
|B|
∑
i∈B log(f tyi(xi))

end for
Record output St = [f t(xi)]

n
i=1 ∈ Rn×c.

end for
Compute N(xi), ỹ(xi) using {St}Tt=1 (Eq. (3)).
Compute the index set I = {p% arg max1≤i≤nN(xi)}.
Flip ȳi = ỹi if i ∈ I else keep ȳi = yi.
Output: A dataset with IDN: D̄ = {(xi, ȳi)}ni=1.

with highest mislabeling scores, where p is a target noise frac-
tion. In essence, Algorithm 1 uses predictions of the DNN to
synthetize noisy labels, while it stands out for being able to
generate noisy labels of any noise ratio for the whole train-
ing set, requiring simply a single round of training on given
labels. The noise is instance-dependent since it comes from
the prediction error on each instance. Moreover, it is a typical
challenging IDN since the error is exactly the class which is
confusing for the DNN.

3.2 Characterizations of Training with IDN
To combat label noise, we can firstly characterize behaviors
of DNNs trained with noise. For example, the memoriza-
tion effect (Arpit et al. 2017) under CCN claims that DNNs
tend to learn simple and general patterns first before memo-
rizing noise, which has motivated extensive robust training
algorithms. While our understanding on IDN is still limited.
Here we present some empirical findings on IDN, to help
researchers understand the behaviors of DNNs trained with
IDN and to motivate robust training methods. We conduct ex-
periments on MNIST and CIFAR-10 under IDN with varying
noise fractions generated by Algorithm 1. For CCN, we use
the most studied uniform noise. In all experiments throughout
this paper, the DNN model and training hyperparameters we
use are consistent. More details on experimental settings are
summarized in Section 4.3 and Appendix A.

It is easier for DNNs to fit IDN. Firstly, let us focus on
the training/testing curves in Fig. 4. For IDN and CCN with
the same noise fraction, the training accuracy is higher under
IDN. This implies that it is easier for DNNs to fit IDN. The
finding is consistent with our intuition since noisy labels
under IDN are highly correlated with input features that can
mislead DNNs. In this sense, IDN is more difficult to mitigate
because the feature-dependent noise is very confusing for
DNNs, which can easily result in overfitting. Moreover, the
peak testing accuracy before convergence, which implies the
DNN learns general patterns first (Arpit et al. 2017), is much
lower under IDN. This suggests that due to DNNs can fit
IDN easily, the generalization performance degenerates at

(a) MNIST (b) CIFAR-10

Figure 3: Examples of softmax outputs on the noisy label and
latent true label. The x-axis is training epoch and the y-axis
is DNN’s output probability. The airp. is airplane for short.

early stages of training. The observation is consistent with the
findings on real-world noise presented by Jiang et al. (2020).

The memorization effect is less significant. The memo-
rization effect (Arpit et al. 2017) is a critical phenomenon
of DNNs trained with CCN: DNNs first learn simple and
general patterns of the real data before fitting noise. It has
motivated extensive robust training algorithms. The memo-
rization effect is characterized by the testing accuracy and
critical sample ratio (CSR) (Arpit et al. 2017) during training,
where CSR estimates the density of decision boundaries. A
sample x is a critical sample if there exists a x̂, s.t.,

arg max
k

fk(x) 6= arg max
k

fk(x̂), s.t., ‖x− x̂‖∞ ≤ r. (4)

The curves of testing accuracy and CSR presented in Fig. 4
show typical characterizations of the memorization effect.
Similar to CCN, the model achieves maximum testing ac-
curacy before memorizing all training samples under IDN,
which suggests that DNNs can learn general patterns first.
Moreover, the CSR increases during training, suggesting that
DNNs learn gradually more complex hypotheses. It is worth
noting that under IDN, both peak testing accuracy and CSR
are lower while the gap between peak and converged test-
ing accuracy is smaller. On MNIST, the testing accuracy
decreases at very early stage of training, suggesting that the
memorizing of noise dominates learning of real data. There-
fore, we conclude that the memorization effect still exists
under IDN, but it is less significant compared to CCN.

Individual study: instance-level memorization. Apart
from showing the memorization effect for the whole training
set, we are interested in how memorization happens for indi-
vidual instances. As an individual study, we train DNNs under
20% IDN and show examples in Fig. 3. We plot the entry of
softmax output corresponding to the noisy label and true la-
bel throughout training. DNNs will eventually memorize the
wrong label, while during training, the output corresponding
to the true label can be largely activated with oscillation. The
intensity of oscillation and the epoch when the memorization
happens is quite different for each instance.
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Figure 4: Training/testing accuracy and critical sample ratio throughout training on IDN and CCN with varying noise fractions.

Algorithm 2 An iteration of SEAL.

Input: Noisy samples D̄ = {(xi, ȳi)}ni=1, epochs T , soft
labels from the last iteration S̄ (optional).
Initialize a network f .
if S̄ is not available then

# The initial iteration, use given noisy labels
S̄ = [eȳi ]

n
i=1 ∈ Rn×c # eȳi is one-hot

end if
for t = 1 to T do

for batches {(xi, S̄i)}i∈B do
Train f on {(xi, S̄i)}i∈B using the loss:
LSEAL = − 1

|B|
∑
i∈B

∑c
k=1 S̄i,k log(f tk(xi))

end for
Record output S̄t = [f t(xi)]

n
i=1 ∈ Rn×c.

end for
Update S̄ =

∑T
t=1 S̄

t/T ∈ Rn×c.
Output: Trained f , S̄ (can be used in next iteration).

4 SEAL: A Primary Attempt to Combat IDN
4.1 Methods

To mitigate the effect of label noise, we propose a practical
algorithm termed self-evolution average label (SEAL). SEAL
provides instance-dependent label correction by averaging
predictions of a DNN on each instance over the whole train-
ing process, then retrains a classifier using the averaged soft
labels. An iteration of SEAL is outlined in Algorithm 2 while
we can apply SEAL with multiple iterations.

Here we discuss the intuitions of SEAL. Without loss of
generality, assume there exists a latent optimal distribution of
true label for each instance. Let S∗i ∈ Pc be the latent optimal
label distribution of the i-th instance. S∗i can be one-hot for
a confident instance and be soft otherwise. Intuitively, we
can image S∗i as the output of an oracle DNN. Considering
training a DNN on a c-class noisy dataset D̄ = {(xi, ȳi)}ni=1
for sufficient many T epochs until converged, we let f t(xi)
be the output on xi at t-th epoch. Based on the oscillations

show in Figure 3, we roughly approximate the output on xi
at t-th epoch as

f t(xi) = αtiω
t
i + (1− αti)eȳi , (5)

where t ∈ {1, 2, · · · , T}, eȳi is the one-hot label, αti ∈ [0, 1]
are coefficients dependent on instances and the network,
wti ∈ Pc are i.i.d. random vectors with E[wti ] = S∗i . The
approximation may be inaccurate at the early stage of train-
ing because the network does not learn useful features and
it is better to add a term for random predictions in the ap-
proximation. Still, we ignore this term because random pre-
dictions do not introduce bias toward any class and the ef-
fect is mitigated by taking the average. With the approxi-
mation, we intuitively compare with the prediction of a ran-
dom epoch fτ (xi), where τ is a random epoch such that
Pr[τ = t] = 1/T, ∀t ∈ {1, 2, · · · , T}. Let S̄ ∈ Rn×c be the
soft labels obtained by SEAL and ‖ · ‖ denote a norm on Pc,
it is not difficult to see that for any training instance xi,

‖E[S̄i]− S∗i ‖ ≤ ‖eȳi − S∗i ‖, (6)
var(S̄i,k) ≤ var(fτk (xi)), ∀k ∈ {1, 2, · · · , c}. (7)

That is, SEAL yields instance-dependent label correction that
is expected to be better than the given noisy labels and the
label correction has lower variance due to taking the average.

We can run SEAL for multiple iteration to further correct
the noise, termed as ‘self-evolution’. We take the soft label
(denoted as S̄[m]

i ,m ≥ 0) of the last iteration as input and
output S̄[m+1]

i . Using similar approximation as Eq. (5) by
replacing the training label eȳi with S̄[m]

i , SEAL is expected
to produce labels that gradually approach the optimal ones,

‖E[S̄
[m+1]
i ]− S∗i ‖ ≤ ‖S̄

[m]
i − S∗i ‖. (8)

A concern of SEAL is the increased computational cost due to
retraining the network. In experiments, we focus on verifying
the idea of SEAL and we retrain networks from the scratch in
each iteration to show the evolution under exactly the same
training schedule, requiring scaled computational cost. While
in practice, we may save computational cost by reserving the
best model (e.g., using a noisy validation set) and training for
less epochs.
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4.2 SEAL v.s. Related Methods
Using predictions of DNNs has long been adopted in distil-
lation (Hinton, Vinyals, and Dean 2015) and robust training
algorithms that use label correction (Reed et al. 2015; Ma
et al. 2018; Tanaka et al. 2018; Song, Kim, and Lee 2019;
Nguyen et al. 2020; Arazo et al. 2019). SEAL provides an
elegant solution that is simple, effective and has empirical
and theoretical intuitions. Taking the average of predictions,
motivated by the activation and oscillation of softmax output
at the entry of true label, provides instance-dependent label
correction. SEAL is different to vanilla distillation (Hinton,
Vinyals, and Dean 2015): in the presence of label noise, sim-
ply distilling knowledge from a converged teacher network,
which memorizes noisy labels, can not correct the noise.

Compared with existing label correction methods, SEAL
simply takes the average rather than carefully tuning hyper-
parameters to ensure that (i) the DNN learns enough useful
features and (ii) the DNN dose not fit too much noise. It is
challenging to compromise between (i) and (ii) in learning
with IDN. We have shown that the memorization on cor-
rect/corrupted labels can be quite different for each training
instance. However, the above (i) and (ii) typically require
carefully tuning in existing methods (Reed et al. 2015; Ma
et al. 2018; Tanaka et al. 2018; Song, Kim, and Lee 2019;
Nguyen et al. 2020; Arazo et al. 2019). For example, one
usually needs to tune a warm-up epoch (Tanaka et al. 2018;
Song, Kim, and Lee 2019; Arazo et al. 2019) before which
no label correction is applied. A small warm-up epoch results
in underfitting on useful features while a large one yields
overfitting on noise. Worse still, one may need to tune an
adaptive weight during training to determine how much we
trust predictions of the DNN (Reed et al. 2015; Ma et al.
2018). As theoretically shown by Dong et al. (2019), the
conditions are very strict for DNNs to converge and not to fit
noise.

When implementing SEAL, there is no special hyperpa-
rameters other than the canonical hyperparameters such as the
training epoch and learning rate. To determine these canoni-
cal hyperparameters, we simply need to examine the training
accuracy on the noisy dataset. Since SEAL averages predic-
tions throughout training, the label correction can be effective
even if the DNN memorizes noise when converged. There-
fore, our criterion of choosing hyperparameters is to make
sure the training accuracy is converged and it is as high as
possible. Moreover, the model architecture and training hy-
perparameters can be shared in each iteration of SEAL.

4.3 Empirical Evaluation
Experimental setup. Our experiments focus on challeng-
ing IDN and real-world noise. We demonstrate the perfor-
mance of SEAL on MNIST and CIFAR-10 (Krizhevsky and
Hinton 2009) with varying IDN fractions as well as large-
scale real-world noise benchmark Clothing1M (Xiao et al.
2015). We use a CNN on MNIST and the Wide ResNet
28×10 (Zagoruyko and Komodakis 2016) on CIFAR-10. On
Clothing1M, we use the ResNet-50 (He et al. 2016) following
the benchmark setting (Patrini et al. 2017; Tanaka et al. 2018;
Xu et al. 2019). More details on experiments can be found in
Appendix A.
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Figure 5: Histograms of the distance distribution. The dis-
tance is evaluated between the true label and the soft label
obtained by SEAL in 1-3 iteration.

(b) CIFAR-10

(a) MNIST

Figure 6: The noisy label and corrected label (in parentheses)
obtained from SEAL.

SEAL corrects label noise. We first evaluate the distance
between the true label and the soft label obtained by SEAL
for corrupted instances, which is defined as

d(S̄i, yi) = ‖S̄i − eyi‖1/‖eȳi − eyi‖1, (9)

where the denominator is to normalize the distance such that
d(S̄i, yi) ∈ [0, 1]. Before applying SEAL, the label is initial-
ized as the given label eȳi and the distance concentrates at
1.0. In Fig. 5, we show histograms of the distance distribution
for all corrupted instances. When applying SEAL iteratively,
the distance distribution moves toward the left, suggesting
that the updated soft label approaches the true label. This
verifies that SEAL can correct label noise on varying datasets
and noise fractions. To study individual instances, we de-
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Method 10% 20% 30% 40%

CE 94.07 85.62 75.75 65.83
±0.29 ±0.56 ±0.09 ±0.56

Forward 93.93 85.39 76.29 68.30
±0.14 ±0.92 ±0.81 ±0.42

Co-teaching 95.77 91.07 86.20 79.30
±0.03 ±0.19 ±0.35 ±0.84

GCE 94.56 86.71 78.32 69.78
±0.31 ±0.47 ±0.43 ±0.58

DAC 94.13 85.63 75.82 65.69
±0.02 ±0.56 ±0.58 ±0.78

DMI 94.21 87.02 76.19 67.65
±0.12 ±0.42 ±0.64 ±0.73

SEAL 96.75 93.63 88.52 80.73
±0.08 ±0.33 ±0.15 ±0.41

Table 1: Testing accuracy (%) on MNIST under instance-
dependent label noise with different noise fractions.

Method 10% 20% 30% 40%

CE 91.25 86.34 80.87 75.68
±0.27 ±0.11 ±0.05 ±0.29

Forward 91.06 86.35 78.87 71.12
±0.02 ±0.11 ±2.66 ±0.47

Co-teaching 91.22 87.28 84.33 78.72
±0.25 ±0.20 ±0.17 ±0.47

GCE 90.97 86.44 81.54 76.71
±0.21 ±0.23 ±0.15 ±0.39

DAC 90.94 86.16 80.88 74.80
±0.09 ±0.13 ±0.46 ±0.32

DMI 91.26 86.57 81.98 77.81
±0.06 ±0.16 ±0.57 ±0.85

SEAL 91.32 87.79 85.30 82.98
±0.14 ±0.09 ±0.01 ±0.05

Table 2: Testing accuracy (%) on CIFAR-10 under instance-
dependent label noise with different noise fractions.

fine N̄(x)-the confidence that a label needs correction and
ỹ(x)-the corrected label as follows.

N̄(xi) = max
k 6=ȳi

S̄i,k, ỹ(xi) = arg max
k 6=ȳi

S̄i,k. (10)

In Fig. 6, we present examples of the highest N̄(x) in each
class, with the given noisy label (ȳ, synthesized by Algo-
rithm 1) and corrected label (ỹ, in parentheses, obtained by
Algorithm 2) marked on top of each image. The examples
verify that SEAL can identify and correct noisy labels.

SEAL improves generalization under IDN. We conduct
experiments on MNIST and CIFAR-10 with IDN of vary-
ing noise fractions, compared with extensive baselines in-
cluding (i) cross-entropy (CE) loss; (ii) Forward (Patrini

Method Testing accuracy

CE∗ 68.94
Forward∗ 69.84
Co-teaching 70.15
GCE∗ 69.09
Joint Optimization∗ 72.16
DMI∗ 72.46

CE 69.07
SEAL 70.63

DMI 72.27
SEAL (DMI) 73.40

Table 3: Testing accuracy (%) on Clothing1M. The ∗ marks
published results.

et al. 2017), which trains a network to estimate an instance-
independent noise transition matrix then corrects the loss;
(iii) Co-teaching (Han et al. 2018b), where two classifiers se-
lect small-loss instances to train each other; (iv) Generalized
Cross Entropy (GCE) loss, which is a robust version of CE
loss with theoretical guarantee under CCN; (v) deep abstain-
ing classifier (DAC) (Thulasidasan et al. 2019), which gives
option to abstain samples depending on the cross-entropy er-
ror and an abstention penalty; (vi) Determinant based Mutual
Information (DMI), which is an information-theoretic robust
loss function. The number of iterations is 10 on MNIST and
3 on CIFAR-10. SEAL consistently achieves the best gen-
eralization performance, as shown in Table 1 and Table 2,
where we report the accuracy at the last epoch and repeat
each experiment three times.

SEAL improves generalization under real-world noise.
Clothing1M (Xiao et al. 2015) is a large-scale real-world
dataset of clothes collected from shopping websites, with
noisy labels assigned by the surrounding text. Following the
benchmark setting (Patrini et al. 2017; Tanaka et al. 2018; Xu
et al. 2019), the training set consists of 1M noisy instances
and the additional validation, testing sets consist of 14K,
10K clean instances. The number of SEAL iterations is 3.
In Table 3, we present the test accuracy. By default, SEAL
is implemented with normal cross-entropy, where we see
1.56% absolute improvement. Notably, SEAL also improves
advanced training algorithms such as DMI (Xu et al. 2019)
when we use DMI at the first iteration.

5 Conclusion
In this paper, we theoretically justify the urgent need to go
beyond the CCN assumption and study IDN. We formalize an
algorithm to generate controllable IDN which is semantically
meaningful and challenging. As a primary attempt to combat
IDN, we propose a method SEAL, which is effective for both
synthetic IDN and real-world noise.

Notably, our theoretical analysis in Section 2 provides
rigorous motivations for studying IDN. Learning with IDN
is an important topic that deserves more research attention in
future.
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A More Details on Experiments
On MNIST, we use a convolution neural network (CNN)
with the standard input 28×28 and 4 layers as follows: [conv
5×5, filters 20, stride 1, relu, maxpool /2]; [conv 5×5, filters
50, stride 1, relu, maxpool /2]; [fully connect 4*4*50→500,
relu]; [fully connect 500→10, softmax]. Models are trained
for 50 epochs with a batch size of 64 and we report the testing
accuracy at the last epoch. For the optimizer, we use SGD
with a momentum of 0.5, a learning rete of 0.01, without
weight decay.

On CIFAR-10, we use the Wide ResNet 28×10. Models
are trained for 150 epochs with a batch size of 128 and we
report the testing accuracy at the last epoch. From Fig 4 in
the main paper, we can see that the epoch of 150 is sufficient
to achieve 100% training accuracy. For the optimizer, we use
SGD with a momentum of 0.9 and a weight decay of 5×10−4.
The learning rate is initialized as 0.1 and is divided by 5 after
60 and 120 epochs. We apply the standard data augmentation
on CIFAR-10: horizontal random flip and 32×32 random
crop after padding 4 pixels around images. The standard nor-
malization with mean=(0.4914, 0.4822, 0.4465), std=(0.2023,
0.1994, 0.2010) is applied before feeding images to the net-
work.

On Clothing1M, following the benchmark setting (Patrini
et al. 2017; Tanaka et al. 2018; Xu et al. 2019), we use the
ResNet-50 pre-trained on ImageNet and access the clean val-
idation set consisting of 14K instances to do model selection.
Models are trained for 10 epochs with a batch size of 256
on the noisy training set consisting of 1M instances. For
the optimizer, we use SGD with a momentum of 0.9 and a
weight decay of 10−3. We use a learning rate of 10−3 in the
first 5 epochs and 10−4 in the second 5 epochs in all experi-
ments except for DMI (Xu et al. 2019), where the learning
rate is 10−6 and 0.5× 10−6 according to its original paper.
We apply the standard data augmentation: horizontal random
flip and 224×224 random crop. Before feeding images to
the network, we normalize each image with mean and std
from ImageNet, i.e., mean=(0.485, 0.456, 0.406), std=(0.229,
0.224, 0.225). Considering that a pre-trained model and a
clean validation are accessed in all methods, we do not reini-
tialize our model in each SEAL iteration. Instead, we start
the training on top of the best model from the last iteration.
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