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Abstract

Instance-based model-agnostic feature importance explana-
tions (LIME, SHAP, L2X) are a popular form of algorith-
mic transparency. These methods generally return either a
weighting or subset of input features as an explanation for the
classification of an instance. An alternative literature argues
instead that counterfactual instances, which alter the black-
box model’s classification, provide a more actionable form
of explanation. We present Feature Importance by Minimal
Adversarial Perturbation (FIMAP), a neural network based
approach that unifies feature importance and counterfactual
explanations. We show that this approach combines the two
paradigms, recovering the output of feature-weighting meth-
ods in continuous feature spaces, whilst indicating the direc-
tion in which the nearest counterfactuals can be found. Our
method provides an implicit confidence estimate in its own
explanations, something existing methods lack. Additionally,
FIMAP improves upon the speed of sampling-based methods,
such as LIME, by an order of magnitude, allowing for ex-
planation deployment in time-critical applications. We extend
our approach to categorical features using a partitioned Gum-
bel layer and demonstrate its efficacy on standard datasets.

Introduction
Recent interest in explaining the output of complex machine
learning (ML) models has been characterized by a wide
range of approaches (Lipton 2016; Montavon, Samek, and
Müller 2018). Many of these approaches are model specific;
for example, attempts to explain neural networks rely on in-
terpreting the flow of gradients through the model (Karpa-
thy, Johnson, and Fei-Fei 2015; Shrikumar, Greenside, and
Kundaje 2017; Olah, Mordvintsev, and Schubert 2017), or
decision trees, which might be considered directly inter-
pretable, provide explanations as rules (Molnar 2019).

Model agnostic approaches, however, are attempts to for-
mulate a general framework for per-instance explanation of
a model’s outputs regardless of the model class. This can be
beneficial when the choice of model may change over time
or where the original model is costly to query.

One group of model-agnostic explainers focuses on pro-
viding an explanation of a model’s output as either a sub-
set of input features (Ribeiro, Singh, and Guestrin 2018;
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Chen et al. 2018) or a weighting of input features (Ribeiro,
Singh, and Guestrin 2016; Lundberg and Lee 2017) of the
instance to be explained. Another set of methods proposes
that counterfactual instances, or groups of instances, are a
useful proxy to ‘explanation,’ where the claim is that local
explanations are expected to contain both the outcome of a
prediction and how that prediction would change if the input
changed (Wachter, Mittelstadt, and Russell 2017; White and
Garcez 2019). Many such approaches use sampling proce-
dures to either estimate local decision boundaries (and their
corresponding parameters) or to find proximate counterfac-
tual instances: in both cases, they can be computationally
expensive (Bhatt, Weller, and Moura 2020). The computa-
tional cost of sampling local decision boundaries for each
explanation makes these methods slow to scale and of lim-
ited use in practice (Bhatt et al. 2019).

Herein, we propose FIMAP, Feature Importance by Mini-
mal Adversarial Perturbation, a model that returns the direc-
tion that an instance would have to be perturbed the least
in order for the classification of the underlying model to
change. FIMAP’s contribution is threefold:

• FIMAP combines elements of both feature importance
and counterfactual explanations, and is model-agnostic.

• FIMAP is faster than alternative methods by 5 orders of
magnitude, once constant overheads are taken into ac-
count, allowing for model explanations in time-critical ap-
plications where sampling-based methods are infeasible.

• FIMAP naturally indicates regions of low classifier confi-
dence as a consequence of its design.

The paper is structured as follows. We first provide an
summary of recent approaches to instance-wise model-
agnostic explanation. We then show how our method unifies
counterfactual and feature importance explanations, justify
FIMAP’s approach, and describe how we handle continuous
and categorical input variables. Before concluding, we show
empirical results on synthetic and real-world experiments.

Related Work
One of the most widely-used feature weighting approaches
to per-instance explanation of a black box model’s outputs
is LIME (Ribeiro, Singh, and Guestrin 2016), which learns
a local surrogate approximation to the black box model’s
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output centered on the instance to be explained. It first gen-
erates a new dataset of permuted samples and corresponding
predictions of the black box model, and then trains an inter-
pretable linear model on this new dataset, where each point
is weighted by its proximity to the point of interest. The
weights of the linear model are then considered to be the
explanations of the black box model’s output at that point.
LIME can also be considered to be slow; its reliance on sam-
pling afresh for every data point reduces the speed at which
explanations can be collected for large numbers of instances.

Separate work has shown that those explanation methods
that return a weighting of input features, including LIME,
can all be considered as additive feature attribution methods,
with an explanation model that is a linear function of binary
variables (Lundberg and Lee 2017). This unified framework
is called SHAP, and accompanying methods exist to esti-
mate feature importance values for instance predictions on
particular models (Lundberg, Erion, and Lee 2018).

One attempt to produce fast instance-based explanations
is L2X (Chen et al. 2018), where the authors train a neu-
ral network to output a binary mask over instance features,
and a second network to return the original black box model
output from the masked input. By training on a cross en-
tropy objective, they argue that they are effectively maximis-
ing the mutual information between some subset of input
features and the true model output. The subset of features
chosen once the explainer is trained should be the maxi-
mally informative subset, and thus a good explanation of the
black box model output. This approach shares some similar-
ity with ours, insofar as the second network can be thought
of as learning a differentiable surrogate to the true model,
although the authors do not consider their model in these
terms. A crucial drawback of L2X is that it does not provide
weighting of feature importances, nor does it provide the di-
rection in which a given feature would impact classification.

An example of the fact that adversarial examples can
be good explanations of underlying models is the work of
Wachter, Mittelstadt, and Russell. Here the approach, as-
suming a trained model fw(x), is to minimise

L(x, x′, y′, λ) = λ(fw(x
′)− y′)2 + d(x, x′) ,

where the first term is the quadratic distance between the
output of the model under some counterfactual input x′ and
a new target y′, and the second term is a measure of the
distance between the true input to be explained, x, and its
possible counterfactual instance x′. This approach is similar
in spirit to ours, but differs in several important ways.

Firstly the method returns a set of counterfactual in-
stances, rather than a counterfactual direction. Secondly, the
procedure to generate one counterfactual example for one
point requires iterating between minimising the above ob-
jective and increasing λ, and the authors recommend initial-
ising a sample of potential counterfactuals and repeating the
process on all of them, to avoid getting stuck in local min-
ima. This means the process is slow. Thirdly, optimising the
above objective assumes that fw(x) is tractable (for exam-
ple, a gradient based optimiser would need the gradient of
fw(x) with respect to x). This limits the approach to only
those models where this is the case, whereas by training a

differentiable approximation to the black box model, we cir-
cumvent this issue. Another similar approach can be found
in CLEAR, (White and Garcez 2019), which includes an in-
teresting model of fidelity, although again the process of ex-
tracting an explanation requires sampling, and iterative solv-
ing. In short, LIME, SHAP, and other sampling-based mod-
els require thousands of model-evaluations for each instance
that needs to be explained. L2X needs only one forward pass
of a neural network per explanation, but does not provide a
weighting of feature importances, nor directionality of ex-
planations. With FIMAP, we provide a method that retains
the benefits of LIME and SHAP, while providing computa-
tional efficiency on par with L2X.

When explaining the outputs of neural networks, partic-
ularly for image classification, there are several examples
of papers which use adversarial or perturbation approaches
(Dabkowski and Gal 2017; Dhurandhar et al. 2018; Fong
and Vedaldi 2017; Zhao, Dua, and Singh 2017; Cheng et al.
2018). These approaches often rely on dividing images into
regions, which places a strong modelling prior on correla-
tions between input features (here, pixels). As our approach
is fundamentally more general, we are not able to make sim-
ilar assumptions, and likely would have substantially differ-
ent use-cases. Two such papers (Dabkowski and Gal 2017;
Dhurandhar et al. 2018) assume differentiability, whilst the
third treats ‘perturbations’ as a regional noise masks; instead
of learning feature-specific meaningful perturbations as in
our approach. Dabkowski and Gal use GANs to generate
’natural’ adversarial examples, by finding adversaries which
are similar but also interpretable. This approach is useful in
domains where individual features are not necessarily mean-
ingful (such as images), but may occlude specific feature im-
portance in the name of ’naturalness’. (Cheng et al. 2018)
also provide a black box approach to finding adversarial ex-
amples, but their search requires thousands of queries per
image, rendering them far slower than our approach.

Model
Overview
Our general approach to the problem of explaining an in-
stance’s classification by a model is to find the minimal ad-
versarial perturbation of that instance. This can be thought
of as an answer to the question ’what is the smallest change
we can make to this instance to change its classification?’.
We argue that this is a useful measure for two reasons.

First, it is locally meaningful. An instance’s classification
depends on its location relative to the classifier’s decision
boundary or boundaries. The minimal adversarial perturba-
tion will ’point’ directly to the nearest decision boundary.
Features that contribute substantially to this minimal pertur-
bation must also be features that have contributed substan-
tially to the instance’s classification. If we imagine perturb-
ing the features of an instance equally, those with relatively
large contributions to the original classification will be just
those that have a relatively large contribution to subsequent
misclassification.

Secondly, it is useful for an end-user. The outputs of a
model often require explanation due to a desire for improve-
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ment, or, more specifically, instances that require further jus-
tification are often instances which have been wrongly clas-
sified, or are suspected to have been wrongly classified. Indi-
cating what should be changed to allow an instance to be al-
ternatively classified satisfies this requirement directly, and
in a manner which is arguably more interpretable than pro-
viding the weights of a local linear model.

Continuous Input Features
Let us assume we have access to a set of outputs
{f(xxx(n))}Nn=1 of some model f : Rd → R, where for bi-
nary classification, f(xxx(n)) will be the probability that input
instance xxx(n) belongs to the target class 1, or a correspond-
ing indicator function (1[f(xxx(n))] = 1, f(xxx(n)) ≥ 0.5).
For each xxx(n) we wish to explain, our goal is to find the
smallest adversarial perturbation; i.e. the smallest perturba-
tion ppp(n) such that 1[f(xxx(n))] = 1−1[f(xxx(n)+ppp(n))]. Here,
ppp(n) ∈ Rd, and if minimal, can be thought of as the shortest
distance from xxx(n) to the decision boundary of f .

The space of possible perturbations P is prohibitively
large for an exhaustive search per instance to be explained,
and so we will assume a restricted class of models G : X →
P , mapping data space to perturbations. Our approach in this
paper is to represent such a mapping as g(xxx; θg) : Rd → Rd,
g ∈ G, a differentiable function described by a neural net-
work with parameters θg . Ideally, we would then like to
compute the optimal adversarial parameter settings θ̂g by
standard gradient-based methods, using:

θ̂g = argmin
θg

{
−

N∑
n=1

(
1− 1[f(xxx(n))]

)
log f

(
xxx(n)

+ g(xxx(n); θg)
)
+ λ|g(xxx(n); θg)|2

}
,

(1)

where λ is a hyperparameter restricting the size of generated
perturbations, and 1− 1[f(xxx(n))] are the adversarial labels.

However, in a model-agnostic setting, we cannot assume
f to be differentiable2, or even that we have access to f it-
self to compute f(xxx(n) + g(xxx(n); θg)). We therefore further
define a surrogate s(xxx; θs) : Rd → R, also a neural network,
which is trained to be a differentiable approximation to f by
cross entropy loss:

θ̂s = argmin
θs

−
N∑
n=1

1[f(xxx(n))] log s(xxx(n); θs) . (2)

Substituting s(x; θ̂s) for f in (1) finally gives us a tractable
objective:

1For the sake of clarity, we will initially assume a binary classi-
fication. Multi-class classification is dealt with below, and regres-
sion is discussed in the conclusion

2Or at least, we cannot assume we have access to the gradients
of f .

θ̂g = argmin
θg

{
−

N∑
n=1

(
1− 1[f(xxx(n))]

)
log s

(
xxx(n)

+ g(xxx(n); θg); θ̂s

)
+ λ|g(xxx(n); θg)|2

}
.

(3)
Note that 1[f(xxx(n))] remains unchanged, as it does not de-
pend on θg , and we have assumed we know f(xxx(n)) for all
xxx(n) in our data.

In practice, training is carried out in two stages; firstly we
train s(xxx; θs) on the original inputs and original labels to ap-
proximate the black box model f . Secondly, we freeze the
weights of s and train g(xxx; θg) on the original inputs and
flipped labels; the perturbations ppp(n) output by g(xxx(n); θg)
are added to the original inputs and passed through the sur-
rogate s. As s is a differentiable model, back-propagation
provides the gradients of the loss with respect to the pertur-
bations, and hence with respect to θg . We can therefore train
g directly using the original dataset.

Discrete Input Features
For many applications, however, some or all of the input
features of f will be discrete, rather than continuous. For
some categorical feature xi, which takes values {1, ...,K}
outputting a continuous value pi from our perturbation gen-
erator g is unhelpful. We first consider the case in which all
input features are categorical.

One approach, if we have access to a meaningful embed-
ding, would be to perturb the real-valued representations of
each categorical feature within the embedding space. How-
ever, whilst this would provide us with an indication of the
direction in embedding space each input feature should be
moved to force the underlying model f to miss-classify, we
would have to provide further post-hoc analysis to explain to
the user what a move in an abstract embedding space means
in terms of the real categorical feature.

We take the general approach that perturbing a categori-
cal feature means sampling from a corresponding categori-
cal distribution and assigning the feature the sampled value.
For each categorical xi, our mapping g from data space to
perturbation space contains the corresponding sub-mapping
gi(x

(n)
i , θg) : RK → RK , assuming a 1-hot encoding, where

each of the K real valued outputs is treated as the log class
probability log πk of the kth value of the categorical feature.

To train to find adversarial samples, we can use the soft-
max function as a continuous differentiable approximation
to argmax, which allows us to use the Gumbel-Softmax
trick to generate K-dimensional sample vectors y where the
kth element is given by:

yk =
exp((log πk + gk)/τ)∑K
j=1 exp((log πj + gj)/τ)

, (4)

where τ is a hyperparameter governing the temperature
of the distribution; as it approaches 0, the Gumbel-Softmax
distribution approaches the Categorical distribution. gk ∼
− log(− log(U)), where U ∼ UNIFORM(0, 1). This path
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derivative estimator allows us to backpropagate through the
parameters of the sample for each categorical variable and
thus train the perturbation model g (see Jang, Gu, and Poole
for more details).

When training g, these samples are then concatenated into
a perturbed instance, ppp(n), which is passed through the pre-
trained surrogate model s(ppp(n); θ̂s) as before.

The only other difference to the training procedure is that
the term in the objective intended to minimise the size of
the adversarial perturbations in (3), λ|g(xxx(n); θg)|2, must be
changed to account for the fact we are no longer perturbing
by adding small vectors to an input in Rd. We make the sim-
plest assumption that if perturbed feature p(n)i takes on the
same value as the original feature x(n)i , it has a perturbation
cost of 0, and otherwise has a cost proportional to a hyper-
parameter η. This yields the following regularisation term:

reg(xxx(n)) = η
D∑
i

1

2

∣∣∣x(n)i − p(n)i

∣∣∣ (5)

Where x(n)i and p(n)i are 1-hot vectors of lengthK (which
may be different for different i), and D is the number of
categorical variables in xxx.

Our approach also supports a hybrid of both categorical
and continuous variables, by combining the two objectives
outlined above, where each affects the appropriate variables.
The main challenge here is the relative magnitudes of λ
and η. We found (see discussion in Results, below), that for
simple datasets setting λ to around an order of magnitude
smaller than η yielded good results.

Connecting Counterfactual Explanations and
Feature Importance

Counterfactual explanations can be seen as adversarial ex-
amples with feasibility and plausibility constraints. Recent
works has explored the intersection between adversarial ro-
bustness, counterfactual explanations, and feature impor-
tance (Yeh et al. 2019; Etmann et al. 2019; Singla et al. 2019;
Ghorbani, Abid, and Zou 2019; Dombrowski et al. 2019).

Here, we take the minimum adversarial perturbation to be
a feature importance explanation. To encourage robustness,
Singla et al. solve an objective that maximises the log like-
lihood subject to minimising the top k feature importance
score of the data, x.

This objective is similar to the counterfactual explanation
objective except the latter would contain an additional con-
straint to flip the predicted class label ~fθ(~̃x) 6= ~fθ(~x) and
may not include the `0 norm to limit the number of features
that changed; though, Su, Vargas, and Sakurai successfully
perform an adversarial attack by perturbing only one feature,
k = 1. This connection indicates that feature importance
can be cast as a specific case of a counterfactual explanation
without plausibility, feasibility, or class constraints (Sharma,
Henderson, and Ghosh 2019).

How does this align with our model? Consider Equa-
tion (3) if s(x; θ̂s) were a simple linear model such as lo-
gistic regression, where s(x; θ̂s) = 1/(1 + exp (−xT θ̂s)),

Figure 1: A pictorial representation of the intuition that the
minimal adversarial perturbation should recover the feature
importance of a local linear approximation to the decision
boundary. The magnitudes of P (the output of g(x)) and W
(in text, θ̂s) may not be the same.

and the data were such that a linear model could achieve
good accuracy. The trained model would describe a decision
plane through data space where θ̂s would be a vector per-
pendicular to this plane, pointing in the direction for which
1[f(xxx(n))] = 1. It should be clear that in this case a success-
ful adversarial training process will learn an output vector
g(x; θ̂g) which may differ in magnitude from θ̂s but will be
anti-parallel to it 3.

LIME relies on the assumption that locally data are al-
ways such that a linear model could achieve good accu-
racy. If the data we were training on above was local to a
point of interest, our linear s(x) and g(x) would recover the
negative relative feature importance a la LIME (potentially
with a different magnitude). In the general case, where s(x)
and g(x) are much more expressive, the regularisation term
λ|g(xxx(n); θg)|2 constrains the outputs of g(x) to be effec-
tively local. By minimising the magnitude of the perturba-
tion, we force it to be perpendicular to the tangent to the de-
cision boundary at the point closest to the point of interest.
If the decision boundary can be reasonably approximated as
piece-wise linear, then the perturbation will recover the fea-
ture importance naturally (see Figure 1).

Experimental Setup
For all experiments below, expect otherwise stated, the neu-
ral network parameterising g(xxx; θg) consists of four fully
connected layers of size 100 with ReLU nonlinearities and
a ’partial gumbel layer’ that combines standard additive
perturbations for continuous variables with a collection of

3To visualise this, consider the case where g(x) is a single layer
neural network (linear regression). For each dimension d, training
on the reverse labels will learn a straight line the gradient and inter-
sect of which will be determined by the relative distribution (in that
dimension) of 1[f(xxx(n))] = 1 versus 1[f(xxx(n))] = 0. The com-
bination of these regression values will be a vector in data space
which will point towards the inferred decision boundary.
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Figure 2: Performance of instance-wise explainers on half moons data. Note that for the vast majority of points, LIME (orange)
and FIMAP (blue) provide near identical explanations (indicated by the direction of the arrows). Axis are arbitrary features x1
and x2. (Left): LIME x1, x2 coefficients plotted as vectors starting at the location of the point to be explained. (Right): FIMAP
negative perturbations plotted as vectors starting at the location of the point to be explained. Smallest 10% of FIMAP vectors
indicated in red.

Gumbel-Softmax outputs for categorical variables, as dis-
cussed in the ’Model’ section, above. We used a dropout
percentage of 20 for every layer.

The neural network parameterising the surrogate s(xxx; θs)
consists of three fully connected layers of size 200, with the
first two nonlinearities being ReLU, and the final Softmax.
We used a cross-entropy loss, as is standard for classifica-
tion, and trained both models using Adam (Kingma and Ba
2014), with a learning rate of 1e-3. On simple synthetic dat-
sets, both networks converge in under 15 epochs.

Network architecture and hyperparameters were chosen
to be simple whilst providing reasonable results on a vari-
ety of datasets. Our intention was to showcase the generality
and robustness of our model, so we avoided hyperparameter
tuning or intensive model selection. Several similar archi-
tectures (more layers, wider fully connected layers) worked
equally well, and an analysis of their relative merits is not
pertinent to this initial presentation of the model.

For simple synthetic data we used 10000 samples from
the half moons dataset, available on scikit-learn (Pedregosa
et al. 2011), with Gaussian noise with standard deviation 0.2
added to the data. Our second synthetic dataset was hand-
crafted, and is described in the Results section, below. A
more realistic continuous dataset was MNIST (LeCun et al.
1998), which we converted to a binary classification task by
using only the digits 8 and 3, which gave a train/test split
of 11982/1984, and training a classifier to predict between
them. This approach was followed by both Lundberg and
Lee and Chen et al..

Finally, to test the performance of our method on a mix
of categorical data and continuous data, we used a dataset
available from the UCI machine learning repository (Dua
and Graff 2017). This was a subset of the Adult dataset,
where in a similar fashion to White and Garcez, uninfor-
mative or highly skewed features (‘fnlwgt’, ‘education’, ‘re-
lationship’, ‘native-country’, ‘capital-gain’, ‘capital-loss’)
were removed, along with instances with missing values.

The two classes were then balanced by undersampling the
larger class, yielding a 17133/5711 train/test split. This left
3 continuous features, which were normalised to have zero
mean and unit variance, and 5 categorical features (see Table
1 for example instances).

Results
We first demonstrate that in simple continuous input spaces,
FIMAP closely approximates LIME on standard a synthetic
dataset, and succeeds in highlighting regions of interest in a
manner unavailable to LIME.

We trained a Random Forest with 200 trees to classify
the half-moons dataset (with a train/test split of 8000/2000)
provided as standard with the scikit-learn toolset (Pedregosa
et al. 2011). The classifier had an f-score of 0.97 on the test
set. We then generated explanation coefficients for the clas-
sification 2000 randomly sampled points in the dataset using
the off-the-shelf LIME toolkit (Ribeiro, Singh, and Guestrin
2016). Figure 2 (left) shows 750 of these coefficients plotted
as vectors starting at the location of the point to be explained.

Next, we trained our surrogate on the input/output pairs of
the Random Forest classifier, again with a 8000/2000 split.
A surrogate achieved a recovery accuracy of 0.981 on the
test set4. We then trained our perturbation network on the
opposite class labels, and it achieved an adversarial accuracy
of 0.977 on the test set. Figure 2 (right) shows the negative
minimal perturbations returned by the perturbation network
for the same 750 points explained by LIME.

We present the negative perturbations for ease of com-
parison - by construction, minimal perturbations will point
towards the nearest decision boundary whilst the weights of
LIME’s fitted logistic regression will point away from the
nearest decision boundary. If presenting FIMAP’s outputs
as explanations of the actual classification a la LIME, this

4It recovered the Random Forest’s classification 98% of the
time.
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Figure 3: FIMAP perturbations to MNIST digits at the pixel level. Left column is the original digit, middle denotes the FIMAP
perturbation, and the right column shows the perturbed digit. (Top): minimal perturbation to flip the Random Forest’s classifi-
cation from ‘8’ to ‘3’, and surrogate softmax output from [0.9902, 0.0098] to [0.000, 1.000]. (Bottom): minimal perturbation
to flip Random Forest’s classification from ‘3’ to ‘8’, and surrogate softmax output from [0.000,1.000] to [0.8910, 0.1090]. For
the central images, blue indicates pixels which are substantially reduced in value, red pixels substantially increased in value.
(Substantially means an increase or decrease of > 0.2, where MNIST pixel values have been scaled to lie in [0,1]).

negation is necessary. If presenting FIMAP’s outputs as the
perturbations required to cause a misclassification, the out-
puts of the perturbation network can be directly reported.

In this simple continuous space, the explanations output
by FIMAP correspond closely with those output by LIME.
The mean cosine similarity between the 2000 LIME expla-
nations and the 2000 FIMAP explanations is 0.936. FIMAP
has two clear advantages over LIME on this sort of data; it is
faster, and it indicates how close an instance is to a decision
boundary, which can be treated as a proxy to how confident
we should be in the black box classifier’s prediction. In terms
of speed, the time for LIME to generate the 2000 explana-
tions above was 214 seconds. FIMAP took 53.5 seconds to
train once, and subsequently generated 2000 explanations in
1.32e-2 seconds.

As a consequence of regularising to return the minimal
perturbation, instances which have perturbations with small
magnitude relative to the average for the dataset, are in-
stances close to a decision boundary. This might be an indi-
cation that these instances are worth further examination; ei-
ther by a preferred but slower explanation model, or directly
by a user attempting to diagnose the behaviour of the black
box model. In Figure 2 (right), the smallest 10% of per-
turbation vectors have been highlighted in red, and clearly
track the decision boundary. Removing them from the cosine
comparison improves mean cosine similarity with LIME’s
explanations to 0.964. The appendix contains an extended
investigation of FIMAP’s ability to highlight regions of in-

terest, in comparison to LIME.

Continuous Features - MNIST Pixel Perturbation
To demonstrate FIMAP’s performance on more complex
data with much larger feature spaces, we trained a 200
tree Random Forest classifier on a two-class subset of the
MNIST dataset, where the classes were ‘8’ and ‘3’. The
Random Forest achieved an f-score of 0.98. We then trained
FIMAP on the label provided by the Random Forest. The
structure of both surrogate and perturbation networks was
identical to that in the simple synthetic cases detailed above
(see Data and Methods section for an overview). The surro-
gate model achieved a recovery accuracy of 0.983 on the test
set, and the perturbation network an adversarial accuracy of
0.975 on the test set.

Figure 3 shows examples of the minimal perturbation re-
quired to change the surrogate’s classification to the incor-
rect label. Both instances shown also flip the classification
of the unseen Random Forest. As can be seen, FIMAP has
learned to either remove part of the left hand strokes of 8s,
or partly fill the gaps for 3s. That it does not do so fully is
due to its remit to recover minimal perturbations - it does not
need to fully remove or redraw the relevant part of the letter
to flip the classifier’s decision.

Categorical Features
Lastly, we show how FIMAP handles a mixture of con-
tinuous and categorical variables. On a subset of the UCI
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Age Education
Years

Weekly
Hours

Work Class
Type

Marital
Status Occupation Race Sex Model

Class
Example 1:
True Features 36.0 9.0 40.0 Private Married Craft/

Repair Black Male <=$50K

Perturbation 40.5 9.0 42.7 Private Married Craft/
Repair White Male >$50K

Example 2:
True Features 32.0 9.0 40.0 Private Married Sales White Female <=$50K

Perturbation 39.8 5.0 42.0 Private Married Sales White Male >$50K
Example 3:
True Features 31.0 11.0 40.0 Private Married Exec/

Managerial White Male >$50K

Perturbation 39.7 5.3 41.8 Private Married Sales White Male <=$50K

Table 1: Example instances (True Features) and their perturbations generated by FIMAP on a subset of the UCI Adult dataset.
Model Class indicates the classification assigned by the underlying Random Forest classifier.

Adult Dataset (Dua and Graff 2017), our Random Forest
achieved an f-score of 0.81, and FIMAP a surrogate accu-
racy of 0.882, and an adversarial accuracy of 0.853.

Table 1 shows three example perturbations produced by
FIMAP. In each, we penalised flipping more than one cat-
egorical variable at a time, to encourage the minimal per-
turbations to highlight particular categories that contribute
most substantially to the classification (in the UCI Adult
dataset, classification is between individuals predicted to
earn >$50K and those predicted to earn <=$50K).

Example 1 in Table 1 shows an instance where FIMAP de-
duced that changing the race of the individual from ‘Black’
to ‘White’ was sufficient to flip the classification. Example
2 shows an instance where changing sex from ‘Female’ to
‘Male’ similarly increased predicted earning potential. Ex-
ample 3 shows an instance where changing an individual’s
occupation from ‘Managerial’ to ‘Sales’ is sufficient to push
them below the boundary. Note that for Examples 2 and 3,
Education years are also changed substantially. We hypoth-
esise that this is due to correlations in the decision boundary
of the classifier between variables; further work would be
required to pull apart the exact mechanism at work here.

An open question when dealing with data with a mixture
of variables is: to what extent are perturbations compara-
ble? In Example 1 of Table 1, FIMAP increases the age of
the individual by around 4 years, and, as discussed, changes
their race from ‘Black’ to ‘White’. Which is a more sub-
stantial change? When searching for a minimal perturbation,
the model’s relative weighting of age (a continuous vari-
able) and marital status (a discrete variable) is dependant
on the value ascribed to the relative magnitudes of λ and η,
the hyperparameters weighting the minimsing regularisation
terms for continuous and discrete variables, respectively (see
Equation (5)).

In practice, we found that it was necessary to set η to
around an order of magnitude larger than λ (the values for
the above perturbations were η = 2.0, λ = 0.1), to prevent
the model from making such substantial changes to the cate-
gorical variables of each instance so as to be uninformative.
With this setting, we found that changes to marital status and
occupation dominated the minimal perturbations for those
individuals who were already close to the boundary. Both

Example 1 and Example 2 in Table 1, for instance, remain
white and male. However, Example 3 requires substantial
changes to almost every variable to convince the classifier to
change its decision.

Conclusion
Whilst we have compared ourselves to the literature on
model-agnostic instance-wise explanation, we are not nec-
essarily in competition with it. FIMAP can be thought of
an additional tool in the model development toolbox. It
possesses a substantial speed advantage over comparative
sampling-based methods, and it provides novel functionality
in its ability to indicate regions of data space where further
investigation of the behaviour of the underlying classifier is
warranted.

FIMAP can be thought of as a novel approach in that it
proposes minimal adversarial perturbations as a useful ex-
planatory tool. This also aligns it with the literature on coun-
terfactuals as explanations (Wachter, Mittelstadt, and Rus-
sell 2017), as the minimal adversarial perturbation can also
be thought of as the minimal counterfactual direction - the
direction in which one could perturb an instance to cause a
classifier to change its classification.

Finally, as we have shown in continuous feature spaces,
FIMAP also produces results comparable (under a change
of sign) to the output of additive feature attribution methods,
such as LIME and SHAP. Though FIMAP is not itself an ad-
ditive attribution method, we can think of FIMAP as demon-
strating the relationship between two distinct paradigms of
explanation; that the vector of feature contributions to the
output of some model f for some instance xxx(n) is the nega-
tive of the direction of perturbation to that instance required
to recover its nearest counterfactual ppp(n).
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