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Abstract

The existing multi-agent reinforcement learning methods
(MARL) for determining the coordination between agents
focus on either global-level or neighborhood-level coordina-
tion between agents. However the problem of coordination
between individual agents is remain to be solved. It is cru-
cial for learning an optimal coordinated policy in unknown
multi-agent environments to analyze the agent’s roles and
the correlation between individual agents. To this end, in this
paper we propose an agent-level coordination based MARL
method. Specifically, it includes two parts in our method. The
first is correlation analysis between individual agents based
on the Pearson, Spearman, and Kendall correlation coeffi-
cients; And the second is an agent-level coordinated train-
ing framework where the communication message between
weakly correlated agents is dropped out, and a correlation
based reward function is built. The proposed method is ver-
ified in four mixed cooperative-competitive environments.
The experimental results show that the proposed method out-
performs the state-of-the-art MARL methods and can mea-
sure the correlation between individual agents accurately.

Introduction
In recent years, the Multi-Agent Reinforcement Learning
(MARL) has gained more and more attention with the de-
velopment of single-agent reinforcement learning (Sutton
and Barto 2018), deep learning (LeCun, Bengio, and Hinton
2015), and multi-agent systems (Wooldridge 2009). Many
successful single-agent reinforcement learning methods, in-
cluding the DQN (Mnih et al. 2015) and DDPG (Lillicrap
et al. 2015), have been extended to the multi-agent sys-
tems. However, simple extending of the single-agent re-
inforcement learning methods to the multi-agents environ-
ment has faced big challenges, i.e., the coordination between
agents (Hernandez-Leal, Kartal, and Taylor 2019).

Based on the coordination structure between agents, ex-
isting studies on the MARL coordination algorithms can
be divided into two groups: global-level coordination based
methods (Sunehag et al. 2018; Rashid et al. 2018; Son et al.
2019; Wen et al. 2020), and neighborhood-level coordina-
tion based methods (Yang et al. 2018; Ganapathi Subra-
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manian et al. 2020). In the global-level coordination based
methods, all agents share observations and actions with
each other and a virtual agent is integrated to learn a cen-
tralized value function for all agents. In contrast, in the
neighborhood-level coordination based methods, the coor-
dination exists only in the neighborhood of agents, meaning
that agents share their actions and observations only with
their neighbors. In the training process, agents in the same
neighborhood are integrated into a virtual agent.

Both global-level and neighborhood-level methods at-
tempt to solve the problem of coordination between agents
as a whole, while the coordination between individual agents
is ignored. In many real scenarios, different agents play dif-
ferent roles in the environment, and they cannot be simply
integrated into a virtual agent. For example, in soccer game,
a forward player is in a cooperative relationship with his
teammates, and they all have the same aim to kick the ball
into the other team’s goal; In addition, the forward player
is in a competitive relationship with the opponent players
who try to prevent him from the goal. The two teams of
players cannot be analyzed as an agent because the aim of
them are completely opposite. In the same team, the forward
player also has different correlations with others. Namely, he
has a stronger cooperative relationship with players who are
mainly involved in the offense, such as centers, but a weaker
cooperative relationship with others who are mainly respon-
sible for defense, such as guards. Thus, it is important to
analyze the correlation between individual agents for learn-
ing a coordinated strategy. The three coordination structures
of MARL methods (global-level, neighborhood-level, and
agent-level based methods) are illustrated in Figure 1.

Unfortunately, in unknown environments, the correlation
between individual agents is usually not given. During the
interaction with the environment, the information an agent
obtains directly are the state of environment, joint action,
and received rewards. Based on the change in the reward of
different agents, we can analyze the correlation between in-
dividual agents preliminarily. If the rewards of two agents in-
crease or decrease simultaneously, the two agents are much
more likely in a cooperative relationship. Conversely, if the
reward of one agent increases while the reward of other
agent decreases, the two agents are much more likely in a
competitive relationship. However, this method is too sim-
ple to identify the correlation between agents accurately.
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Figure 1: Three coordination structures of MARL methods.
Left: The global-level based methods which integrate all
agents as a virtual agent. Middle: The neighborhood-level
based methods which integrate neighbors of one agent as a
virtual agent. Right: The agent-level based methods which
studies the coordination between each individual agent.

To tackle with above issues, we introduce the idea
of correlation coefficient to measure the correlation be-
tween agents, and further present an agent-level coordinated
(ALC) training framework. Extending ALC training frame-
work with MADDPG (Lowe et al. 2017), we propose an
agent-level coordination based MADDPG method (ALC-
MADDPG) to learn optimal coordinated policy for agents.
Specifically, our contribution is summarized as follows.

1) Three types of correlation coefficients, including Pear-
son (Benesty et al. 2009), Spearman (Myers and Sirois 2004)
and Kendall correlation coefficient (Abdi 2007) are intro-
duced in the MARL to measure the correlation between
agents accurately. Based on different agents’ reward trajec-
tories, the correlation coefficient of each pair of agents is cal-
culated. Next, the negative, positive, strong, and weak cor-
relations between agents are defined.

2) Based on the correlation coefficient between agents,
ALC training framework is presented. In ALC training
framework, strong correlated agents learn a coordinated pol-
icy by exchanging their individual information when learn-
ing, and weak correlated agents does not communicate with
each other. By discarding the communication information
between agents who are weakly correlated with each other,
the presented training framework solves the problem of the
high dimensionality of input space of the state-action value
network. In addition, a correlation based reward function is
presented to overcome the problem of inefficiency of the in-
dividual reward function in learning coordinated policy.

3) Finally, the effectiveness of proposed method is ver-
ified in four mixed cooperative-competitive environments,
and results show that the proposed method can achieve bet-
ter performance than the state-of-the-arts MARL methods.

Related Work
Based on the framework of centralized training and decen-
tralized execution (CTDE) (Foerster et al. 2017, 2018), the
existing MARL studies about the coordination of agents can
be categorized into two categories.

The first category considers the coordination problem
from a global perspective and mainly studies the relation-
ship between the virtual agent who integrates all agents and
each individual agent. The mainstream methods of this cate-
gory include the VDN (Sunehag et al. 2018), QMIX (Rashid
et al. 2018), QTRAN (Son et al. 2019) and SMIX(λ) (Wen

et al. 2020). Based on the structural constraint of different
size of the hypothesis space, the VDN, QMIX, QTRAN, and
SMIX(λ) methods all assume that the optimal joint action
represents the set of optimal action of each of the agents.
Unfortunately, the structural constraints lead to the limited
scalability of these four algorithms.

The second category considers the coordination problem
from a perspective of neighborhood (Yang et al. 2018; Sub-
ramanian and Mahajan 2019; Ganapathi Subramanian et al.
2020; Wang, Yang, and Wang 2020). For each agent in the
multi-agent environment, his neighboring agents are inte-
grated into an virtual agent. Based on the theory of mean
field approximation, the coordination between agent and his
neighboring agents is equivalent to the mean coordination
between agent and his neighboring virtual agent.

Unlike global-level or neighborhood-level coordination
based MARL methods, this paper aims to explore the cor-
relation of individual agents and proposes an agent-level co-
ordination based method. Our method mainly contains two
parts: analysis of the correlation between individual agents
and an agent-level coordinated training framework.

The ideas of the study presented in (Kim, Cho, and Sung
2019) and (Kim et al. 2019) are similar to ours, we all ad-
dress the problem of increased input dimensionality of state-
action network by discarding some agents’ communication
information in policy training. In (Kim, Cho, and Sung
2019), the communication message was randomly dropout.
By contrast, the communication information is dropped
based on the correlation type between individual agents in
our work, thus the method proposed in this paper enhances
the coordination of different agents in a multi-agent environ-
ment. In the proposed centralized communication schedule
mechanism of (Kim et al. 2019), the message that different
agents receive are same, thus the roles of different agents
cannot be differentiated. In this paper, a message schedule
such that each agent receives a communication message only
from his own strongly correlated agents. And the correlation
analysis between each agents provides a new perspective to
identify the roles of agents in multi-agent environment.

Preliminaries
Partially Observable Markov Game
This paper considers a mixed cooperative-competitive multi-
agent system that can be described as a partially observable
Markov Game (POMG). The POMG is defined as G =<
N ,S,A,O,P, r, γ >, where N = {1, 2, . . . , N} denotes
a set of agents, s ∈ S represents the state of the environ-
ment. Each agent i ∈ N , at each time slot first observes
the environment and draws partial observation oi from the
observation space Oi, and the joint observation of agents
is o = {o1, o2, . . . , oN}. Then, agent i ∈ N executes the
action ai from the action space Ai, and the joint action
space is A =

∏n
i=1A

i. With the joint action of agents a =
{a1, a2, . . . , aN}, the environment goes to the next state s′
and the state transition function is P : S × A × S → [0, 1].
Each agent i ∈ N receives a reward ri based on the reward
function S×A → R and joint reward r = {r1, r2, . . . , rN}.
In an episode containing T time slots, the objective of each
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agent i is to develop an optimal action policy πi∗ to maxi-
mizes the cumulative discounted reward Ri =

∑T
t=1 γ

t−1rit
where γ ∈ [0, 1) is a discounted factor.

MADDPG
Under the framework of centralized training and decen-
tralized execution (CTDE), MADDPG extends DDPG into
multi-agent environment. During the execution of policy,
each actor i has the knowledge only about his own obser-
vation and executes the decentralized action based on the
action policy network µi. During the training, each critic
i shares the information on observation and action taken
with other critics and learns a centralized joint state-action
value Qi(s, a) with parameters θQ

i

. The state-action value
Qi(s, a) of agent i is updated such that to minimize the loss
function given by:

Li = Es,a,s′∼D

[
yi −Qi

(
s, a; θQ

i
)]

(1)

yi = ri + γQi
′
(
s′, a′; θQ

i′
)
|ai′=µi′(oi′) (2)

where D denotes the experience replay memory where tran-
sition tuples {(s, a, r, s′)} are stored; µi′ represents the tar-
get action policy with parameters θµ

i′
, Qi′ is the value of

target critic network of agent i with parameters θQ
i′

.
In order to maximize the cumulative reward, the action

policy network µi is updated using the following gradient:

∇J = Es,a∼D
[
∇θµiµi

(
oi
)
∇aiQi (s, a) |ai=µi(oi)

]
(3)

The target networks are updated by tracking learned net-
works slowly as follows:

θµ
i′

= τθµ
i

+ (1− τ) θµ
i′

(4)

θQ
i′

= τθQ
i

+ (1− τ) θQ
i′

(5)
where τ denotes the soft updating parameter, and τ � 1.

Method
In this section, the proposed ALC-MADDPG method is pre-
sented in detail. First, the Pearson, Spearman, and Kendall
correlation coefficients are introduced in the MARL to mea-
sure the correlation between agents accurately. Then, an
agent-level coordinated (ALC) training framework is devel-
oped to train the joint policy for agents.

Correlation Between Individual Agents
In an unknown competitive-cooperative environment, ini-
tially, the agent has no knowledge about other agents and
does not know which of the agents are his teammates and
which are competitors. Further, in a team, the agent does not
know which agents have a closer cooperative relationship
with him and which have a weaker cooperative relationship
with him. The unknown roles of other agents makes it very
difficult for agent to learn the coordinated policy.

Based on the reward trajectory, there is a simple infer-
ence technique to analyze the correlation between agents.

In a training episode of the interaction between agents and
environment, a reward trajectory ri = {ri1, ri2, . . . , riT } for
each agent i is obtained. The changes in the received rewards
of agents reflect the correlation between agents to a certain
extent. A simple inference is that if the rewards of two agents
increase or decrease simultaneously, the two agents are more
likely to be teammates with cooperative relationship. Con-
versely, if the reward of one agent increases while the re-
ward of other agent decreases, the two agents are more likely
in a competitive relationship. Obviously, this inference tech-
nique is too simple to identify the correlation between agents
accurately. To solve this problem, in this work, we attempt to
obtain the correlation between agents based on the Pearson,
Spearman’s, and Kendall correlation coefficients.

The Pearson correlation coefficient is the most commonly
used statistical estimator to measure the correlation between
variables. For two sampled data arrays X = {xi, 1 ≤ i ≤
n} and Y = {yi, 1 ≤ i ≤ n}, the Pearson correlation coef-
ficient rp is given by:

rp =

N∑
i=1

(xi − x̄) (yi − ȳ)√
n∑
i=1

(xi − x̄)
2

√
n∑
i=1

(yi − ȳ)
2

(6)

where x̄ and ȳ denote the means of X and Y , respectively.
Although the Pearson correlation coefficient has great ro-

bustness, it can be used to measure only linear correlation
between variables. The Spearman’s rank order correlation
coefficient rs is used to measure more complex nonlinear
correlation between two variables. For arrays X and Y ,
X ′ = {x′i, 1 ≤ i ≤ n} and Y ′ = {y′i, 1 ≤ i ≤ n} are
ranked arrays where x′i and y′i denote the ranks of data in
the array X and Y , respectively, the Spearman’s correlation
coefficient is calculated by:

rs =

N∑
i=1

(x′i − x̄′) (y′i − ȳ′)√
n∑
i=1

(xi′ − x̄′)2
√

n∑
i=1

(yi′ − ȳ′)2
(7)

where x̄′ and ȳ′ denote the mean ranks of sampled data.
For the scenario where some values of variables are the

same, spearman correlation coefficient cannot work well. To
address this problem, we retort to kendall correlation coeffi-
cient τb. For any pair (xi, yi) and (xj , yj), there are three
cases: 1) concordant pair: if (xi > xj and yi > yj) or
(xi < xj and yi < yj); 2) discordant pair: if (xi > xj and
yi < yj) or (xi < xj and yi > yj); 3) neither concordant
nor discordant pair. We denote nc as the number of concor-
dant pairs, nd as the number of discordant pairs and n0 as
the number of unordered pairs where n0 = 0.5n(n − 1).
Besides, n1 denotes the number of variable with the same
values in X , for instance, xi = xj . Similarly, n2 denotes the
number of variable with the same values in Y . The Kendall
correlation coefficient is calculated as follows:

τb =
nc − nd√

(n0 − n1)
√

(n0 − n2)
(8)
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The value ranges of the Pearson, Spearman’s, and Kendall
correlation coefficients are all [−1, 1]. The positive value of
correlation coefficient suggests that two variables X and Y
have a positive correlation, i.e., when the value of X in-
creases, the value of Y also increases; And the negative
value suggests that two variables have a negative correla-
tion, i.e., the value of X increases, the value of Y decreases.
Further, the higher the absolute value of the correlation coef-
ficient is, the stronger correlation between the two variables.

In the following, the Kendall correlation coefficient is
used as an example, and the difference of the results with
three correlation coefficients is shown in the experiment. For
any pairwise agent (i, j), the correlation coefficient ci,j be-
tween agents i and j is defined as follows:

ci,j =
nc − nd√

(n0 − n1)
√

(n0 − n2)
(9)

where nc, nd, n0, n1, and n2 denote the relevant values
introduced in the Kendall correlation coefficient when the
sampled data X and Y are replaced with the correspond-
ing reward trajectories ri = {ri1, ri2, . . . , riT } and rj =

{rj1, rj2, . . . , rjT }, respectively.
Based on the calculated correlation between each pair of

agents, positive, negative, strong, and weak correlations be-
tween agents are defined as follows.

Definition 1: Positive correlation between agents: For
any pair of agents i and j, if the correlation coefficient ci,j
is greater than zero, then the two agents are in a positive
correlation with each other.

Definition 2: Negative correlation between agents: For
any pair of agents i and j, if the correlation coefficient ci,j
is smaller than zero, then the two agents are in a negative
correlation with each other.

Definition 3: Strong correlation between agents: For
any pair of agents i and j, if the absolute value of correlation
coefficient ci,j is greater than a threshold G, then the two
agents are in a strong correlation with each other.

Definition 4: Weak correlation between agents: For any
pair of agents i and j, if the absolute value of correlation
coefficient ci,j is smaller than a threshold G, then the two
agents are in a weak correlation with each other.

The threshold G is set as 0.5, and the performance of dif-
ferent values of threshold G is analyzed in the experiment.

By using the proposed method, agents can identify which
of the agents are their teammates and which are opponents.
Further, agents can identify which agents are their strong
correlated teammates, which agents are their weak corre-
lated teammates. In the following, based on the identified
correlation between individual agents, we propose an agent-
level coordinated training framework to learn optimal coor-
dinated policy for agents.

ALC Training Framework
In the existing coordinated MARL methods, such as MAD-
DPG, VDN, Qmix, the input space of the state-action value
network increases exponentially with the number of agents.
The increased input greatly increases communication cost
between agents and reduces the speed of policy learning.

Algorithm 1 ALC-MADDPG algorithm

1: Initialize correlation coefficient ci,j , replay memory D,
actor network µi and critic network Qi for each agent i

2: for episode = 1, 2, . . . , E do
3: for t ≤ T and not terminal do
4: Each agent i observes oit
5: Each agent i executes action ait = µi

(
oit
)

with
noise Nt

6: Receive the full state of environment st, action at,
reward rt, and the next state st+1

7: Each agent i sends the communication message to
his strongly correlated agents

8: Store transition (st, at, rt, st+1) in D
9: Each agent i calculates the correlated reward func-

tion r̃i using Eq. (12)
10: Update networks by Eq. (13-15)
11: end for
12: Each pair of agents (i, j) calculates ci,j using Eq. (9)
13: for Each pair of agents (i, j) do
14: if |ci,j | > G then
15: agent i and j are strongly correlated, wi,j = 1
16: else
17: agent i and j are weakly correlated, wi,j = 0
18: end if
19: if ci,j < 0 then
20: agent i is negative correlated with agent j
21: else
22: agent i is positive correlated with agent j
23: end if
24: end for
25: end for

To address this problem, Kim et al. proposed a message
dropout method (Kim, Cho, and Sung 2019). They drop out
the communication message (e.g., observation and action
taken) between agents randomly to reduce the dimension
of the input space of the state-action network. However, the
randomness of message dropping out may cause the lost of
useful communication information between agents, further
makes agents unable to learn optimal policy. In order to ad-
dress this problem, ALC training framework is developed in
this paper. In the policy learning of agents, the communica-
tion information of agents who are weakly correlated to the
agent is dropped out. And the communication information
of strongly correlated agents is used to develop the reward
function and then to learn the optimal coordinated policy.

For each agent i, the critic network is denoted as
Qi (o, a) = Qi

(
o1, o2, . . . , on, a1, a2, . . . an

)
in the origi-

nal MARL method. And the message that agent i receives
from all other agents is given by:

mi = (o−i, a−i) (10)

where o−i is the observation of all agents excepts for agent
i and a−i is the action of all agents excepts for agent i

In multi-agent environment, for any agent i, some agents
are weakly correlated with him and the messages of these
agents are not important for agent i to learn the policy.

11390



Therefore, the information of these agents can be discarded
to reduce the communication cost and improve the learn-
ing speed of joint policy. The definition of weakly cor-
related agents has been introduced in Definition 4. For
each agent i, we define a strong-weak correlation array
wi = {wi,1, . . . , wi,i−1, wi,i+1, . . . , wi,N} where wi,j = 0
if agent j is weakly correlated with agent i, and wi,j = 1
if agent j is strongly correlated with agent i. Thus, the new
message m̃i of agent i is expressed as:

m̃i = (wi � o−i, wi � a−i) (11)

where � denotes the element-wise product of two arrays.
Further, the new state-action value is expressed as

Q̃i (s, a) = Qi
(
m̃i, o

i, ai
)
.

In the multi-agent environment, another problem is the
inefficiency of the individual reward function. As presented
in the previous studies (Foerster et al. 2018), the individual
reward function often fails to encourage agents to make sac-
rifices for a greater benefit of the group. This problem often
makes the existing MARL method to learn the sub-optimal
joint policy. In order to address this problem, a correlation
based reward function is proposed.

Our aim is to make strongly correlated agents in a team
learn coordinated policy in the direction of maximizing the
mutual benefits and minimizing their opponents’ benefits.
For each pair of agent i and j, we set w̃i,j = 1 if agent i
and j are strongly and positively correlated with each other;
w̃i,j = −1 if agent i and j are strongly but negatively cor-
related with each other, and w̃i,j = 0 if agent i and j are
weakly correlated with each other. The correlation based re-
ward function is defined as follows:

r̃i = ri + w̃i ∗ r−i (12)
where r−i is the reward of all agents except for agent i and
w̃i = {w̃i,1, . . . , w̃i,i−1, w̃i,i+1, . . . , w̃i,N}.

With the correlation based reward function, the aim of
each agent is not only to maximize his own cumulative re-
ward but also to maximize the reward of strongly correlated
agents in a team and minimize the reward of opponents.
Each agent may slightly sacrifice his individual benefit if the
benefit of the team will be increased. In order to reduce the
communication cost and improve the speed of policy learn-
ing, the correlation based reward function incorporates only
the individual rewards of strongly correlated agents.

Under the proposed ALC training framework, the actor
network µi is updated as following gradient:

∇J
(
µi
)

= Eo,a,m̃∼D[∇θµiµi
(
oi
)

∇aiQi
(
m̃i, oi, ai

)
|ai=µi(oi)

(13)

The critic network Qi is trained to minimize the loss:

Li = Eo,a,m̃,m̃′∼D

[
yi −Qi

(
m̃i, oi, ai; θQ

i
)]

(14)

yi = ri + γQi
′
(
m̃i
′
, oi
′
, ai
′
; θQ

i′
)
|ai′=µi′(oi′) (15)

where Qi′ and µi′ are the value of target critic network, tar-
get actor network, respectively. Both target networks are soft
updated according to Eq. (4-5).

Extending the presented ALC training framework with
MADDPG method, we refer our proposed method as ALC-
MADDPG, which is summarized in Algorithm 1.

Experiments
In this section, the experimental environment and implemen-
tation details are presented. Then the experimental results
and ablation studies are given.

Evaluation Methodology
The experiments were performed in four mixed competitive-
cooperative environments, which can be found in (Lowe
et al. 2017; Mordatch and Abbeel 2018).

Physical Deception: This environment consists of two
good agents, one adversary and two landmarks. Both agents
and adversary desire to approach the landmark. The closer
the agent and the landmark are, the more reward that the
agent receives. Besides, if the adversary is closer to the land-
mark, agents will receive a negative reward.

Covert Communication: This environment consists of
two good agents (Alice and Bob) and one adversary. Both
agents have a random private key and learn how to use the
private key to encrypt messages. Alice sends an encrypted
message to Bob, and the two agents are rewarded based on
how well Bob can reconstruct the received message. Be-
sides, the two agents will receive a negative reward if the
adversary reconstructs the message.

Keep-away: This environment consists of three good
agents, one adversary and two landmarks. The environment
setup is similar to physical deception where agents are re-
warded based on the distance between agents and landmark.
Differently, the adversary has the ability to physically push
agents to keep away from landmarks. The adversary does not
have the knowledge about the locations of landmarks and
can infer this information from the movements of agents.

Complex Predator-prey: This environment consists of
two good agents, four adversaries and one landmark. The en-
vironment setup is similar to physical deception. Differently,
adversaries with a slow movement speed can hit agents,
and agents must learn to avoid being hit. Besides, there are
’forests’ where agents can hide from being seen in the en-
vironment. For the adversaries, there is a leader that can see
all agents’ locations which are sent to other adversaries.

The mean received reward of agents in an episode was
used as the evaluation metric. Besides, the same network
structure as MADDPG was used. In each actor and critic
network, there were two fully-connected layers, and both of
them consisted of 64 neurons. The parameters τ , γ, learning
rate, and the size of replay memory were set as 0.1, 0.95,
0.01 and 10, 0000, respectively.

Comparison Results
The proposed ALC-MADDPG method was compared with
four state-of-the-art MARL algorithm: MFRL (Yang et al.
2018), MADDPG (Lowe et al. 2017), M3DDPG (Li et al.
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Figure 2: The mean received reward of agents obtained by the proposed ALC-MADDPG method and benchmarks. The solid
and dashed lines show the mean and standard deviation of results over ten runs, respectively. In the complex predator-prey
environment, the observation dimension is different for agents, and MFRL method cannot be applied to this environment.
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(d) Complex predator-prey

Figure 3: Sensitivity of the ALC-MADDPG to selected correlation coefficient in four environments.

2019) and MADDPG-MD (Kim, Cho, and Sung 2019).
MFRL is a popular neighborhood-level MARL method, and
MADDPG is one of the most popular MARL methods.
M3DDPG and MADDPG-MD are two MADDPG based al-
gorithms that introduce the minimax theory and message
dropout technique in the MADDPG, respectively.

The comparison results were shown in Figure 2. As shown
in Figure 2, our proposed ALC-MADDPG method per-
formed better than other algorithms in four experiments.
Specifically, in the environment of physical deception,
the proposed ALC-MADDPG, MADDPG, and M3DDPG
methods performed similarly and achieved nearly 5 rewards,
while other two methods achieved almost 0 rewards. In
the environment of convert communication, the proposed
method performed the best among all methods and gained
nearly 50 rewards, while the second-best method was MAD-
DPG method that gained nearly 15 rewards. In the environ-
ment of keep-away, MFRL method achieved the worst per-
formance among all methods, and it gained −35 rewards.
In the environment of complex predator-prey, the ALC-
MADDPG achieved the best performance among all meth-
ods and gained more than 100 rewards, while the second-
best methods were MADDPG and M3DDPG methods that
gained nearly 30 rewards. The comparison results show that
the proposed method achieved the best performance in four
complex competitive-cooperative environments.

It is worth mentioning that compared to the benchmark
of MADDPG and two other MADDPG-based methods, the
proposed ALC-MADDPG has different training framework.
Namely, the proposed method focuses on the coordination

between individual agents and adds the strongly correlated
agents’ individual reward in the reward function. The results
in Figure 2 show that the proposed method achieved better
performance than the MADDPG, M3DDPG that combines
the minimax theory with the MADDPG, and MADDPG-
MD that combines the message dropout technique with the
MADDPG. Consequently, we can conclude that the agent-
level coordination is more important than other techniques
for MARL methods to improve performance in complex
competitive-cooperative environments.

Ablation Studies
We investigated the performance of the proposed method
with the Pearson, Spearman, and Kendall correlation coef-
ficient. The results of the method with different correlation
coefficients in four environments were shown in Figure 3. As
presented in Figure 3, the proposed ALC-MADDPG with
the Pearson correlation coefficient performed best in dif-
ferent environments. Though the Pearson correlation coef-
ficient is the first proposed and the simplest among the three
correlation coefficients, it has the best robustness and can be
applied in most environments. By adopting the Pearson cor-
relation coefficient, the proposed method can learn an opti-
mal coordinated policy for agents. Besides, the method with
the Spearman’s rank achieved the worst performance in all
four different environments. This may because the Spear-
man correlation coefficient is based on the rank order, which
shows only the relative size of source data, but not absolute
size, and the rank order cannot accurately reflect the real dif-
ference in the correlation between different agents.
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Figure 4: Sensitivity of the ALC-MADDPG for different threshold G values in four environments.
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Figure 5: The correlation between each pair of agents in the complex predator-prey environment at training episode 0, 10000,
20000, 30000, 40000, and 50000. Each integer point on the x-axis and y-axis represents an agent. The grid color shows the
correlation between a pair of agents: the red grid shows two agents have a positive correlation, and the blue grid shows two
agents have a negative correlation. The darker the grid color is, the stronger correlation between this pair of agents have.

To investigate the performance of the proposed method
at different values of threshold G, the ALC-MADDPG with
the threshold of G = 0.3, 0.4, 0.5, 0.6, and 0.7, were tested.
The results were presented in Figure 4, where it can be seen
that ALC-MADDPG with G = 0.3 achieved the best per-
formance in the experiments of physical deception and com-
plex predator-prey environments, and the proposed method
with G = 0.6 or 0.7 performed the worst in the two en-
vironments. According to the definition of hyperparameter
G, it holds that when G is smaller, more agents are likely
to be judged to be strongly correlated with each other, and
there will be more communication messages that agents can
receive from more agents. Therefore, the proposed method
gained higher reward when the value of G was 0.3 than that
when the value G was 0.6 or 0.7. However, more communi-
cation message leads to more communication cost. And the
ALC-MADDPG with a smaller value of G did not perform
better than that with higher value of G in all the environ-
ments. In the covert communication and keep-away environ-
ments, the performances of the ALC-MADDPG with differ-
ent values of G were similar. In practice, a given bandwidth
of a communication line can limit the volume of communi-
cation messages, and the ALC-MADDPG with a big value
of G can be applied in more scenarios.

Correlation Between Agents
In this section, the correlation between agents studied in this
paper was shown by the heat map. We randomly chose a
training episode in the complex predator-prey environment
as an example and the results were presented in Figure 5.

It can be seen that at the beginning of the training, i.e.,
episode = 0, agent 0 had a negative correlation with all
other agents, and agents 1–5 had a positive correlation with
each other. At the end of the training, i.e., episode = 50000,
agents 4 and 5 both had a negative correlation with agents
0–3. Also, agent 4 had a positive correlation with agent 5.
Besides, we can observe that as the training process con-
tinued, the grid color became darker and darker, indicat-
ing that the correlation between agents became stronger
and stronger. The experiment results are consistent with the
setup of the environment where there are four adversaries
(agent 0, 1, 2 and 3) and two good agents (agent 4 and 5).
These results show that ALC-MADDPG can measure the
correlation between agents accurately.

Conclusion
In this paper, we propose an agent-level coordination based
MARL method to address the problem of coordination in
multi-agent environment. Specifically, we introduce three
correlation coefficients to measure the correlation of agents.
Then, based on the correlation of agents, we present an
agent-level coordinated training framework. The communi-
cation information of agents who are weakly correlated with
each other is dropped out to reduce the communication cost,
and a correlation based reward function is designed to learn
the optimal coordinated policy. The experiment results show
that our proposed method achieves superior performance
than the state-of-the-art MARL methods. Last but not least,
the results also show our method has the ability to measure
the correlation between agents accurately.
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