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Abstract

Exploration-exploitation is a powerful and practical tool in
multi-agent learning (MAL), however, its effects are far from
understood. To make progress in this direction, we study a
smooth analogue of Q-learning. We start by showing that our
learning model has strong theoretical justification as an opti-
mal model for studying exploration-exploitation. Specifically,
we prove that smooth Q-learning has bounded regret in ar-
bitrary games for a cost model that explicitly captures the
balance between game and exploration costs and that it always
converges to the set of quantal-response equilibria (QRE), the
standard solution concept for games under bounded rational-
ity, in weighted potential games with heterogeneous learning
agents. In our main task, we then turn to measure the effect of
exploration in collective system performance. We characterize
the geometry of the QRE surface in low-dimensional MAL
systems and link our findings with catastrophe (bifurcation)
theory. In particular, as the exploration hyperparameter evolves
over-time, the system undergoes phase transitions where the
number and stability of equilibria can change radically given
an infinitesimal change to the exploration parameter. Based on
this, we provide a formal theoretical treatment of how tuning
the exploration parameter can provably lead to equilibrium
selection with both positive as well as negative (and potentially
unbounded) effects to system performance.

Introduction
The problem of optimally balancing exploration and exploita-
tion in multi-agent systems (MAS) has been a fundamental
motivating driver of online learning, optimization theory and
evolutionary game theory (Claus and Boutilier 1998; Panait
and Luke 2005). From a behavioral perspective, it involves
the design of realistic models to capture complex human
behavior, such as the standard Experienced Weighted Attrac-
tion model (Ho and Camerer 1999; Ho, Camerer, and Chong
2007). Learning agents use time varying parameters to ex-
plore suboptimal, boundedly rational decisions, while at the
same time, they try to coordinate with other interacting agent
and maximize their profits (Ho and Camerer 1998; Bowling
and Veloso 2002; Kaisers et al. 2009).
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From an AI perspective, the exploration-exploitation
dilemma is related to the optimization of adaptive systems.
For example, neural networks are trained to parameterize
policies ranging from very exploratory to purely exploita-
tive, whereas meta-controllers decide which policy to prior-
itize (Puigdomènech Badia et al. 2020). Similar techniques
have been applied to rank agents in tournaments according to
performance for preferential evolvability (Lanctot et al. 2017;
Omidshafiei et al. 2019; Rowland et al. 2019) and to design
multi-agent learning (MAL) algorithms that prevent collec-
tive learning from getting trapped in local optima (Kaisers
and Tuyls 2010, 2011).

Despite these notable advances both on the behavioral
modelling and AI fronts, the theoretical foundations of learn-
ing in MAS are still largely incomplete even in simple set-
tings (Wunder, Littman, and Babes 2010; Bloembergen et al.
2015). While there is still no theory to formally explain the
performance of MAL algorithms, and in particular, the effects
of exploration in MAS (Klos, Van Ahee, and Tuyls 2010), ex-
isting research suggests that many pathologies of exploration
already emerge at stateless matrix games at which naturally
emerging collective learning dynamics exhibit a diverse set
of outcomes (Sato and Crutchfield 2003; Sato, Akiyama, and
Crutchfield 2005; Tuyls and Weiss 2012).

The reasons for the lack of a formal theory are manifold.
First, even without exploration, MAL in games can result in
complex behavior that is hard to analyze (Balduzzi et al.
2020; Mertikopoulos, Papadimitriou, and Piliouras 2018;
Mazumdar, Ratliff, and Shankar Sastry 2018). Once explicit
exploration is enforced, the behavior of online learning be-
comes even more intractable as Nash Equilibria (NE) are no
longer fixed points of agents’ behavior. Finally, if parameters
are changed enough, then we get bifurcations and possibly
chaos (Wolpert et al. 2012; Palaiopanos, Panageas, and Pil-
iouras 2017; Sanders, Farmer, and Galla 2018).

Our approach & results. Motivated by the above, we study
a smooth variant of stateless Q-learning, with softmax or
Boltzmann exploration (one of the most fundamental mod-
els of exploration-exploitation in MAS), termed Boltzmann
Q-learning or smooth Q-learning (SQL), which has recently
received a lot of attention due to its connection to evolu-
tionary game theory (Tuyls, Verbeeck, and Lenaerts 2003;
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Kianercy and Galstyan 2012). Informally (see the Preliminar-
ies Section for the rigorous definition), each agent k updates
her choice distribution x = (xi) according to the rule

ẋi/xi = βk (ui − ū)− αk
(

lnxi −
∑
j xj lnxj

)
where ui, ū denote agent k’s utility from action i and average
utility, respectively, given all other agents’ actions and αk/βk
is agent k’s exploration rate.1 Agents tune the exploration
parameter to increase/decrease exploration during the learn-
ing process. We analyze the performance of SQL dynamics
along the following axes.

Regret and Equilibration. First, we benchmark their per-
formance against the optimal choice distribution in a cost
model that internalizes agents’ utilities from exploring the
space (Lemma 1), and show that in this context, the SQL
dynamics enjoy a constant total regret bound in arbitrary
games that depends logarithmically in the number of actions
(Theorem 2). Second, we show that they converge to Quantal
Response Equilibria (QRE)2 in weighted potential games
with heterogeneous agents of arbitrary size (Theorem 3).3
The underpinning intuition is that agents’ deviations from
pure exploitation are not a result of their bounded rationality
but rather a perfectly rational action in the quest for more
information about unexplored choices which creates value
on its own. This is explicitly captured by a correspondingly
modified Lyapunov function (potential) which combines the
original potential with the entropy of each agent’s choice
distribution (Lemma 4).

While previously not formally known, these properties
mirror results of strong regret guarantees for online algo-
rithms (see e.g., Cesa-Bianchi and Lugosi (2006); Kwoon
and Mertikopoulos (2017); Mertikopoulos, Papadimitriou,
and Piliouras (2018); convergence results for SQL in more
restricted settings (Leslie and Collins (2005); Coucheney,
Gaujal, and Mertikopoulos (2015)).4 However, whereas in
previous works such results corresponded to main theorems,
in our case they are only our starting point as they clearly not
suffice to explain the disparity between the regularity of the
SQL dynamics in theory and their unpredictable performance
in practice.

We are faced with two major unresolved complications.
First, the outcome of the SQL algorithm in MAS is highly
sensitive on the exploration parameters (Tuyls, Hoen, and
Vanschoenwinkel 2006). The set of QRE ranges from the

1This variant of Q-learning has been also extensively studied in
the economics and reinforcement learning literature under various
names, see e.g., (Alós-Ferrer and Netzer 2010; Sanders, Farmer, and
Galla 2018) and (Kaelbling, Littman, and Moore 1996; Mertikopou-
los and Sandholm 2016), respectively.

2The prototypical extension of NE for games with bounded
rationality (McKelvey and Palfrey 1995).

3Apart from their standard applications, see (Panageas and Pil-
iouras 2016; Swenson, Murray, and Kar 2018; Perolat et al. 2020)
and references therein, weighted potential games naturally emerge
in distributed settings such as recommendation systems (Ben-Porat
and Tennenholtz 2018).

4They are also of independent interest in the limited literature
on the properties of the softmax function (Gao and Pavel 2017).

Figure 1: Single saddle-node bifurcation curve (left) vs two
branches of saddle-node bifurcation curves meeting which
is consistent with the emergence of a co-dimension 2 cusp
bifurcation (right) on the QRE manifold of two player, two
action games as function of the exploration rates, δx, δy (see
also Figures 3,4). The possible learning paths before, during
and after exploration depend on the geometry of the QRE
surface (Theorems 5,6).

NE of the underlying game when there is no exploration to
uniform randomization when exploration is constantly high
(agents never learn). Second, the collective system evolution
is path dependent, i.e., in the case of time-evolving parame-
ters, the equilibrium selection process cannot be understood
by only examining the final exploration parameter but rather
depends on its whole history of play (Göcke 2002; Romero
2015; Yang, Piliouras, and Basanta 2017).

Catastrophe theory and equilibrium selection. We ex-
plain the fundamentally different outcomes of exploration-
exploitation with SQL in games via catastrophe theory. The
link between these two distinct fields lies on the properties of
the underlying game which, in turn, shape the geometry of
the QRE surface. As agents’ exploration parameters change,
the QRE surface also changes. This prompts dramatic phase
transitions in the exploration path that ultimately dictate the
outcome of the learning process. Catastrophe theory reveals
that such transitions tend to occur as part of well-defined
qualitative geometric structures.

In particular, the SQL dynamics may induce a specific type
of catastrophes, known as saddle-node bifurcations (Strogatz
2000). At such bifurcation points, small changes in the ex-
ploration parameters change the stability of QRE and cause
QRE to merge and/or disappear. However, as we prove, this
is not always sufficient to stabilize desired states; the decisive
feature is whether the QRE surface is connected or not (see
Theorem 6 and Figure 2) which in turn, determines the possi-
ble types of bifurcations, i.e., whether there are one or two
branches of saddle-node bifurcation curves, that may occur
as exploration parameters change (Figure 1).

In terms of performance, this is formalized in Theorem 5
which states that even in the simplest of MAS, exploration
can lead under different circumstances both to unbounded
gain as well as unbounded loss. While existential in nature,
Theorem 5 does not merely say that anything goes when
exploration is performed. When coupled with the charac-
terization of the geometric locus of QRE in Theorem 6, it
suggests that we can identify cases where exploration can be
provably beneficial or damaging. This provides a formal geo-
metric argument why exploration is both extremely powerful
but also intrinsically unpredictable.
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The above findings are visualized in systematic experi-
ments in both low and large dimensional games along two
representative exploration-exploitation policies, explore-then-
exploit and cyclical learning rates (Experiments Section).
We also visualize the modified potential (and how it changes
during exploration) in weighted potential games of arbitrary
size by properly adapting the technique of Li et al. (2018) for
visualizing high dimensional loss functions in deep learning
(Figure 5). Omitted materials, all proofs, and more experi-
ments are included in Appendices A-D.

Preliminaries: Game Theory and SQL
We consider a finite set N of interacting agents indexed
by k = 1, 2, . . . , N . Each agent k ∈ N can take an ac-
tion from a finite set Ak = {1, 2, . . . , nk}. Accordingly, let
A :=

∏N
k=1Ak denote the set of joint actions or pure ac-

tion profiles, with generic element a = (a1, a2, . . . , aN ).
To track the evolution of the agents’ choices, let Xk =
{xk ∈ Rnk :

∑nk

i=1 xki = 1, xki ≥ 0} denote the set of
all possible choice distributions xk := (xki)i∈Ak

of agent
k ∈ N .5 We consider the dynamics in the collective state
space X :=

∏N
k=1Xk, i.e., the space of all joint choice

distributions x = (xk)k∈N . Using conventional notation,
we will write (ak; a−k) to denote the pure action profile at
which agent k ∈ N chooses action ak ∈ Ak and all other
agents in N choose actions a−k ∈ A−k :=

∏
l 6=k Al. Simi-

larly, for choice distribution profiles, we will write (xk, x−k)
with x−k ∈ X−k :=

∏
l 6=kXl. When time is relevant,

we will use the index t for agent k’s choice distribution
xk (t) := (xki (t))i∈Ak

at time t ≥ 0.
When selecting an action i ∈ Ak, agent k ∈ N receives a

reward uk (i; a−k) which depends on the choices a−k ∈ A−k
of all other agents. Accordingly, the expected reward of agent
k ∈ N for a choice distribution profile x = (xk, x−k) ∈ X
is equal to uk (x) =

∑
a∈A

(
xkiuk (i; a−k)

∏
l 6=k xlal

)
.

We will also write rki (x) := uk (i;x−k) or equivalently
rki (x−k) for the reward of pure action i ∈ Ak at the
joint choice distribution profile x = (xk;x−k) ∈ X and
rk (x) := (rki (x))i∈Ak

for the resulting reward vector of all
pure actions of agent k. Using this notation, we have that
uk (x) = 〈xk, rk (x)〉, where 〈·, ·〉 denotes the usual inner
product in Rnk , i.e., 〈xk, rk (x)〉 =

∑
j∈Ak

xkjrkj (x). In
particular, ∂uk (x) /∂xki = rki (x). To sum up, the above
setting can be represented in compact form with the notation
Γ =

(
N , (Ak, uk)k∈N

)
.

We assume that the updates in the choice distribution xk
of agent k ∈ N are governed by the dynamics

ẋki/xki = βk[rki (x)−
∑
j∈Ak

xkjrkj (x)]−
− αk[lnxki −

∑
j∈Ak

xkj lnxkj ] (1a)

= βk[rki (x)− 〈xk, rk (x)〉]
− αk[lnxki − 〈xk, lnxk〉] (1b)

5Depending on the context, we will use either the indices i, j ∈
Ak or the symbol ak ∈ Ak to denote the pure actions of agent k.

where βk ∈ [0,+∞) and αk ∈ [0, 1) are positive con-
stants that control the rate of choice adaptation and mem-
ory loss, respectively of the learning agent k ∈ N and
lnxk := (lnxki)i∈Ak

for xk ∈ Xk. The first term, rki (x)−∑n
j∈Ak

xkjrkj (x), corresponds to the vector field of the
replicator dynamics and captures the adaptation of the agents’
choices towards the best performing strategy (exploitation).
The second term, lnxki −

∑
j∈Ak

xkj lnxkj , corresponds
to the memory of the agent and the exploration of alterna-
tive choices. Due to their mathematical connection with Q-
learning, we will refer to the dynamics in (1) as smooth Q-
learning (SQL) dynamics.6 The interior fixed points xQ ∈ X
of the dynamics in equations (1) are the Quantal Response
Equilibria (QRE) of Γ. In particular, each xQk ∈ Xk for
k = 1, 2, . . . , N satisfies

xQki = exp (rki(x
Q
−k)/δk)/

∑
i∈Ak

exp (rkj(x
Q
−k)/δk),

(2)
for i ∈ Ak, where δk := αk/βk denotes the exploration rate
for each agent k ∈ N .

Bounded Regret in All Games and
Convergence in Weighted Potential Games

Our first observation is that the SQL dynamics in (1) can be
considered as replicator dynamics in a modified game with
the same sets of agents and possible actions for each agent
but with modified utilities.

Lemma 1. Given Γ =
(
N , (Ak, uk)k∈N

)
, consider

the modified utilities
(
uHk
)
k∈N defined by uHk (x) :=

βk〈xk, rk (x)〉 − αk〈xk, lnxk〉, for x ∈ X . Then, the dy-
namics described by the differential equation ẋik/xik in (1)
can be written as

ẋki/xki = rHki (x)− 〈xk, rHk (x)〉 (3)

where rHki (x) := ∂
∂xki

uHk (x) = βkrki (x)−αk (lnxki + 1).
In particular, the dynamics in (1) describe the replicator
dynamics in the modified setting ΓH =

(
N ,
(
Ak, u

H
k

)
k∈N

)
.

The superscript H refers to the regularizing term,
H (xk) := −〈xk, lnxk〉 = −

∑
j∈Ak

xkj lnxkj which de-
notes the Shannon entropy of choice distribution xk ∈ Xk.

Bounded regret. To measure the performance of the SQL
dynamics in (1), we will use the standard notion of (accumu-
lated) regret (Mertikopoulos, Papadimitriou, and Piliouras
2018). The regret Rk (T ) at time T > 0 for agent k is

Rk (T ) := max
x′
k∈Xk

∫ T

0

[uk (x′k;x−k (t))−

− uk (xk (t) , x−k (t))] dt, (4)

6An explicit derivation due to (Tuyls, Verbeeck, and Lenaerts
2003; Sato, Akiyama, and Crutchfield 2005; Wolpert et al. 2012;
Kianercy and Galstyan 2012) (among others) of the connection
between Q-learning (Watkins and Dayan 1992) and the above dy-
namics (including their resting points) is given in Appendix A.
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i.e., Rk (T ) is the difference in agent k’s rewards between
the sequence of play xk (t) generated by the SQL dynamics
and the best possible choice up to time T in hindsight. Agent
k has bounded regret if for every initial condition xk (t) the
generated sequence xk (t) satisfies lim supRk (T ) ≤ 0 as
T →∞. Our main result in this respect is a constant upper
bound on the regret of the SQL dynamics.

Theorem 2. Consider the modified setting ΓH =(
N ,
(
Ak, u

H
k

)
k∈N

)
. Then, every agent k ∈ N who updates

their choice distribution xk ∈ Xk according to the dynam-
ics in equation (3) has bounded regret, i.e., there exists a
constant C > 0 such that lim supT→∞RHk (T ) ≤ C.

From the proof of Theorem 2, it follows that the constant
C is logarithmic in the number of actions given a uniformly
random initial condition as is the standard. This yields an
optimal bound which is powerful in general MAL settings.
In particular, regret minimization by the SQL dynamics at
an optimal O(1/T ) rate implies that their time-average con-
verges fast to coarse correlated equilibria (CCE). These are
CCE of the perturbed game, ΓH , but if exploration parameter
is low, they are approximate CCE of the original game as
well. Even ε-CCE are ( λ(1+ε)

1−µ(1+ε) )-optimal for λ− µ smooth
games, see e.g., (Roughgarden 2015). However, for games
that are not smooth (e.g., games with NE that have widely
different performance and hence, a large Price of Anarchy),
we need more specialized tools (Section on Performance).

Convergence to QRE in weighted potential games with
heterogeneous agents. If Γ =

(
N , (Ak, uk)k∈N

)
de-

scribes a potential game, then more can be said about the
limiting behavior of the SQL dynamics. Formally, Γ is
called a weighted potential game if there exists a function
φ : A→ R and a vector of positive weights w = (wk)k∈N
such that for each player k ∈ N , uk (i, a−k)−uk (j, a−k) =
wk (φ (i, a−k)− φ (j, a−k)), for all i 6= j ∈ Ak, and
a−k ∈ A−k. If wk = 1 for all k ∈ N , then Γ is called an
exact potential game. Let Φ : X → R denote the multilinear
extension of φ defined by Φ (x) =

∑
a∈A φ (a)

∏
k∈N xkak ,

for x ∈ X. We will refer to Φ as the potential function of Γ.
Using this notation, we have the following.

Theorem 3. If Γ =
(
N , (Ak, uk)k∈N

)
admits a potential

function, Φ : X → R, then the sequence of play generated by
the SQL dynamics in (1) converges to a compact connected
set of QRE of Γ.

Intuitively, the first term, βk (rki (x)− 〈xk, rk (x)〉), in
equation (1) corresponds to agent k’s replicator dynam-
ics in the underlying game (with utilities rescaled by
βk that can also absorb agent k’s weight) and thus, it
is governed by the potential function. The second term,
−αk (lnxki − 〈xk, lnxk〉), is an idiosyncratic term which
is independent from the environment, i.e., the other agents’
choice distributions. Hence, the potential game structure is
preserved — up to a multiplicative constant for each player
which represents that players’ exploration rate δk — and The-
orem 3 can be established by extending the techniques of
(Kleinberg, Piliouras, and Tardos 2009; Coucheney, Gaujal,

and Mertikopoulos 2015) to the case of weighted potential
games. This is the statement of Lemma 4 (which is also useful
for the numerical experiments).

Lemma 4. Let Φ : X → R denote a potential function for
Γ =

(
N , (Ak, uk)k∈N

)
, and consider the modified utilities

uHk (x) := βk〈xk, rk (x)〉−αk〈xk, lnxk〉, for x ∈ X . Then,
the function ΦH (x) defined by

ΦH (x) := Φ (x) +
∑
k∈N δkH (xk) , for x ∈ X, (5)

is a potential function for the modified game ΓH =(
N ,
(
Ak, u

H
k

)
k∈N

)
. The time derivative Φ̇H (x) of the po-

tential function is positive along any sequence of choice dis-
tributions generated by the dynamics of equation (3) except
for fixed points at which it is 0.

From Topology to Performance
While the above establish some desirable topological proper-
ties of the SQL dynamics, the effects of exploration are still
unclear in practice both in terms of equilibrium selection and
agents’ individual performance (utility). As we formalize in
Theorem 5 and visualize in the Experiments Section, explo-
ration – exploitation may lead to (unbounded) improvement,
but also to (unbounded) performance loss even in simple
settings.

To compare agents’ utility for different exploration-
exploitation policies, it will be convenient to denote the se-
quence of utilities of agent k ∈ N by uexploit

k (t) , t ≥ 0 if
there exist thresholds δk > 0 (that may depend on the initial
condition xk (0) of agent k) such that δk (t) < δk for all
k ∈ N , i.e., if exploration remains low for all agents, and by
uexplore
k (t) , t ≥ 0 otherwise. Then we have the following.

Theorem 5 (Catastrophes in Exploration-Exploitation).
For any number M > 0, there exist potential games ΓMu =
{N , (Xk, uk)k∈N } and ΓMv = {N , (Xk, vk)k∈N }, positive-
measure sets of initial conditions Iu, Iv ⊂ X , and explo-
ration rates δk > 0, so that

lim
t→∞

(
uexploit
k (t) /uexplore

k (t)
)
≥M, and

lim
t→∞

(
vexploit
k (t) /vexplore

k (t)
)
≤ 1/M

for all k ∈ N , whenever lim supt→∞ δk (t) = 0 for all
k ∈ N , i.e., whenever, after some point, exploration stops for
all agents. In particular, for all agents k ∈ N , the individual
— and hence, also the aggregate — performance loss (gain)
in terms of utility due to exploration can be unbounded, even
if exploration is only performed by a single agent.

The proof of Theorem 5 is constructive and relies on Theo-
rem 6 discussed next. Theorem 6 characterizes the geometry
of the QRE surface (connected or disconnected) which deter-
mines the bifurcation type that takes place during exploration.
In turn, this dictates the possible outcomes — and hence, the
individual and collective performance — after the exploration
process, as formalized by Theorem 5.
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Classification of 2 × 2 coordination games and geome-
try of the QRE surface. First, we introduce some min-
imal additional notation and terminology regarding coor-
dination games.7 Two player, N = {1, 2}, two action,
Ak = (a1, a2) , k = 1, 2, coordination games are games
in which the payoffs satisfy u11 > u21, u22 > u12 and
v11 > v21, v22 > v12 where uij (vij) denotes the payoff of
agent 1 (2) when that agent selects action i and the other agent
action j. Such games admit three NE, two pure on the diago-
nal and one fully mixed (xmix, ymix), with xmix, ymix ∈ (0, 1)
(see Appendix C for details). The equilibrium (a2, a2) is
called risk-dominant if

(u22 − u12) (v22 − v12) > (u11 − u21) (v11 − v21) . (6)

In particular, a NE is risk dominant if it has the largest basin
of attraction (is less risky) (Harsanyi and Selten 1988). For
symmetric games, inequality (6) has an intuitive interpre-
tation: the choice at the risk dominant NE is the one that
yields the highest expected payoff under complete ignorance,
modelled by assigning (1/2, 1/2) probabilities to the other
agent’s choices. If u22 ≥ u11 and v22 ≥ v11 with at least one
inequality strict, then (a2, a2) is called payoff-dominant.

Depending on whether the interests of both agents are per-
fectly aligned — in the sense that (u11 − u22) (v11 − v22) >
0 — or not, the QRE surface can be disconnected or con-
nected. A formal characterization is provided in Theorem 6.

Theorem 6 (Geometric locus of the QRE equilibria in co-
ordination games). Consider a two-player, N = {1, 2},
two-action, A1 = A2 = {a1, a2}, coordination game
Γ =

(
N , (Ak, uk)k∈N

)
with payoff functions (u1, u2). If

xmix + ymix > 1, then, for any exploration-exploitation rates
αx, βx, αy, βy > 0 it holds that

(i) If xmix, ymix > 1/2, then any QRE (xQ, yQ) satisfies ei-
ther xQ > xmix, yQ > ymix or xQ, yQ < 1/2.

(ii) If xmix > 1/2, ymix ≤ 1/2, then any QRE (xQ, yQ)
satisfies one of: xQ < 1/2, yQ < ymix, 1/2 < xQ <
xmix, ymix < yQ < 1/2 and xQ > xmix, yQ > ymix.

In particular, if Γ is symmetric, i.e., if u2 = uT1 , then there
exist no symmetric QRE, (xQ, xQ), with 1/2 < xQ < xmix.

The statement of Theorem 6 is visualized in Figure 2. In the
first case, disconnected QRE surface, the dynamics select the
risk-dominant equilibrium after a saddle-node bifurcation in
the exploration phase, regardless of whether it coincides with
the payoff dominant equilibrium or not. In the second case,
the QRE surface is connected via two branches of saddle-
node bifurcations which is consistent with the emergence of a
cusp bifurcation point. Hence, after exploration the learning
process may rest to either of the two boundary equilibria. In
short, the collective outcome of the SQL dynamics depends
on the geometry of the QRE surface which is illustrated next.

Experiments: Phase Transitions in Games
To visualize the above, we start with 2×2 coordination games
and then proceed to potential games with action spaces of
arbitrary size. In all cases, we consider two representative

7A more general description is in Appendix C.

0 1/2 xmix 1
0

1/2

ymix

1

x+ y = xmix + ymix →

Location
of QRE

Location
of QRE

xQ

y Q

0 1/2 xmix 1
0

1/2

ymix

1

x+ y = xmix + ymix →
Location
of QRE

Location
of QRE

Location
of QRE

xQ

Figure 2: Geometric locus of QRE in 2 × 2 coordination
games for all possible exploration rates in the two cases (i)
xmix, ymix ≥ 1/2 (upper panel) and (ii) xmix ≥ 1/2, ymix <
1/2 (bottom panel) of Theorem 6. The blue dots are the NE
of the underlying game Γ (when exploration is zero). In both
panels, the risk-dominant equilibrium is (0, 0).

exploration-exploitation policies: an Explore-Then-Exploit
(ETE) policy (Bai and Jin 2020), which starts with (relatively)
high exploration that reduces linearly to zero and a Cyclical
Learning Rate with one cycle (CLR-1) policy (Smith and
Topin 2017), which starts with low exploration, increases to
high exploration around the middle of the cycle and decays
to (ultimately) zero exploration (i.e., pure exploitation).8

Coordination Games 2 × 2. As long as agents’ interests
are aligned, sufficient exploration even by a single agent leads
the learning process (after exploration is reduced back to
zero) to the risk dominant equilibrium regardless of whether
this equilibrium coincides with the payoff dominant equilib-
rium or not. Typical realizations of these cases are the Pareto
Coordination and Stag Hunt games (Table 1).

In Pareto Coordination, (a2, a2) is both the risk- and
payoff-dominant equilibrum whereas in Stag Hunt, the pay-

8The findings are qualitatively equivalent for non-linear, e.g.,
quadratic, changes in the exploration rates in both policies and
for more that one learning cycle in the CLR policy. Moreover, in
the numerical experiments, we have the used the transformation in
Lemma A.1 in Appendix A which leads to a robust discretization of
the ODEs in the theoretical analysis.
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Pareto Coordination
a1 a2

a1 1, 1 0, 0

a2 0, 0 1.5, 1.8

Battle of the Sexes
a1 a2

a1 1.5, 1 0, 0

a2 0, 0 1, 2

Stag Hunt
a1 a2

a1 3, 3 0, 2

a2 2, 0 1.5, 1.5

Table 1: Payoffs of the games in the Experiments Section.

Figure 3: SQL in Stag Hunt. The upper panel shows the
QRE surface and the exploration path of agent 1 (light to
dark line). The bottom panels show the CLR-1 exploration
rates (left) and the probability of action 1 during the learning
process for both agents (right). As agents increase explo-
ration, their choice distributions undergo a saddle-node bi-
furcation (disconnected surface). This prompts a permanent
transition from the vicinity of the payoff dominant action
profile, (x, y) = (1, 1), in the upper component of the QRE
surface to the (0,0) equilibrium when exploration reduces
back to zero (right corner of the lower component).

off dominant equilibrium is (a1, a1). However, in both games
xmix, ymix > 1/2 (due to the aligned interests of the players)
which implies that the location of the QRE is described by
the upper panel in Figure 2. Accordingly, the QRE surface

Figure 4: Exploration-Exploitation in Battle of the Sexes. In
contrast to Stag Hunt, the QRE manifold has two branches
of saddle-node bifurcation curves (consistent with the emer-
gence of a co-dimension 2 cusp point) and the phase tran-
sition to the lower part of the QRE surface may not be per-
manent as illustrated here via the CLR-1 vs CLR-1 policies.
(Examples with the CLR-1 vs ETE policies with permanent
transitions are given in the full version).

is disconnected and if any agent sufficiently increases their
exploration rate, the SQL dynamics converge to the risk-
dominant equilibrium independently of the starting point and
the exploration policy of the other agent. This is illustrated
in Figure 3 (similarly, in Figure 8 in Appendix D). Note that
in both theses cases, the risk-dominant equilibrium is the
global maximizer of the potential function, see Lemma C.1
and (Alós-Ferrer and Netzer 2010; Schmidt et al. 2003).

By contrast, if agents’ interests are not perfectly aligned,
then the outcome of the exploration process is not unam-
biguous (even if the game remains a coordination game). A
representative game of this class, in which no payoff domi-
nant equilibrium exists, is the Battle of the Sexes in Table 1.
The most preferable outcome is now different for the two
agents which implies that there is no payoff dominant equi-
librium. However, the pure joint profile (a2, a2) remains the
risk-dominant equilibrium.9 In this class of games, the loca-

9Although well defined, risk-dominance seems to be now less
appealing: if agent 1 is completely ignorant about the equilibrium
selection of agent 2 (and assigns a uniform distribution to agent 2’s
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Figure 5: Snapshots of the modified potential ΦH for differ-
ent exploration rates in a symmetric 2-player potential game
with random payoffs in [0, 1]. Unlike Figures 3 and 4, we now
visualize the potential function instead of the QRE surface.
Hence, we cannot reason about the bifurcation types. How-
ever, we see that without exploration, δ = 0, the potential
(equal to the potential, Φ, of the original game) has various
local maxima, whereas as exploration increases, a unique
remaining attractor (maximum) forms at the vicinity of the
uniform distribution, (0, 0) in the transformed coordinates.

tion of the QRE is described by the bottom panel in Figure 2.
The QRE surface is connected and the collective output of
the exploration process depends on the exploration policies
(timing and intensity) of the two agents. This is illustrated
in Figure 4. In Appendix D (see also full version), we pro-
vide an exhaustive treatment of the possible outcomes under
combinations of the ETE and CLR-1 exploration policies.

Potential games in larger dimensions To visualize the
modified potential in equation (5) of Lemma 4, we adapt

actions), then agent 1 is better off to select action a1, despite the
fact that (a2, a2) is the risk-dominant equilibrium.

Figure 6: Exploration-Exploitation with the SQL dynamics
in a potential game with n = 10 actions. The upper panels
show the (log) choice distributions (with the optimal action in
different color). The lower left panel shows the average poten-
tial over a set of 10×10 different trajectories (starting points)
and one standard deviation (shaded region that disappears
after all trajectories converge to the same choice distribution).
The bottom right panel shows the selected CLR-1 policies.

the two-dimensional projection technique of Li et al. (2018).
Given a potential game with potential Φ and n,m actions
for agents 1 and 2, we first embed their choice distribu-
tions into Rn+m−2 and remove the Simplex restrictions.
This is done via the transformation yi := log xi/xn from
Rn → Rn−1 (with

∑n
i=1 xi = 1) for the first agent and

similarly for the second agent. Then, we choose two arbitrary
directions in Rn+m−2 along which we plot the modified po-
tential ΦH (x) = Φ (x) +

∑
k∈N δkH (xk) , for x ∈ X ,

cf. equation (5). For simplicity, we keep the exploration ratio
δk := βk/αk equal to a common δ for both players.10

A visualization of a randomly generated 2-player potential
game is given in Figure 5. As players modify their explo-
ration rates, the SQL dynamics converge to different QRE
(local maxima) of these changing surfaces. However, when
exploration is large, a single attracting QRE remains (similar
to the low dimensional case).

In Figure 6, we plot the SQL dynamics (1e− 20 Q-value
updates for each of 1e− 03 choice distribution updates) in a
2-player potential game with n = 10 actions and potential,
Φ, with random values in [0, 10]. Both agents use CLR-1
policies. Starting from a grid of initial conditions, one close
to each pure action pair, the SQL dynamics rest at different
local optima before the exploration, converge to the uniform
distribution when exploration rates reach their peak and then
converge to the same (in this case, global) optimum when
exploration is gradually reduced back to zero (horizontal line
and vanishing shaded region).

10A detailed description of the routine is in Appendix D. This
method produces similar visualizations for any number of players.

11269



Acknowledgements
Stefanos Leonardos gratefully acknowledges NRF 2018 Fel-
lowship NRF-NRFF2018-07. Georgios Piliouras gratefully
acknowledges grant PIE-SGP-AI-2020-01, NRF2019-NRF-
ANR095 ALIAS grant and NRF 2018 Fellowship NRF-
NRFF2018-07.

References
Alós-Ferrer, C.; and Netzer, N. 2010. The logit-response
dynamics. Games and Economic Behavior 68(2): 413–427.
doi:10.1016/j.geb.2009.08.004.

Bai, Y.; and Jin, C. 2020. Provable Self-Play Algorithms
for Competitive Reinforcement Learning. In Proceedings
of the 37th International Conference on Machine Learning,
ICML’20. Madison, WI, USA: Omnipress.

Balduzzi, D.; Czarnecki, W. M.; Anthony, T.; Gemp, I.;
Hughes, E.; Leibo, J.; Piliouras, G.; and Graepel, T. 2020.
Smooth markets: A basic mechanism for organizing gradient-
based learners. In International Conference on Learning
Representations.

Ben-Porat, O.; and Tennenholtz, M. 2018. A Game-Theoretic
Approach to Recommendation Systems with Strategic Con-
tent Providers. In et. al, S. B., ed., Advances in Neural
Information Processing Systems 31, 1110–1120. Curran As-
sociates, Inc.

Bloembergen, D.; Tuyls, K.; Hennes, D.; and Kaisers, M.
2015. Evolutionary Dynamics of Multi-Agent Learning: A
Survey. J. Artif. Int. Res. 53(1): 659–697.

Bowling, M.; and Veloso, M. 2002. Multiagent learning
using a variable learning rate. Artificial Intelligence 136(2):
215–250. doi:10.1016/S0004-3702(02)00121-2.

Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, learning,
and games. Cambridge university press.

Claus, C.; and Boutilier, C. 1998. The Dynamics of Re-
inforcement Learning in Cooperative Multiagent Systems.
AAAI ’98/IAAI ’98, 746–752.

Coucheney, P.; Gaujal, B.; and Mertikopoulos, P. 2015.
Penalty-Regulated Dynamics and Robust Learning Proce-
dures in Games. Mathematics of Operations Research 40(3):
611–633. doi:10.1287/moor.2014.0687.

Gao, B.; and Pavel, L. 2017. On the Properties of the Softmax
Function with Application in Game Theory and Reinforce-
ment Learning. arXiv e-prints arXiv:1704.00805.
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