
Learning to Resolve Conflicts for Multi-Agent Path Finding
with Conflict-Based Search

Taoan Huang, Sven Koenig, Bistra Dilkina
University of Southern California

{taoanhua, skoenig, dilkina}@usc.edu

Abstract

Conflict-Based Search (CBS) is a state-of-the-art algorithm
for multi-agent path finding. On the high level, CBS repeat-
edly detects conflicts and resolves one of them by splitting
the current problem into two subproblems. Previous work
chooses the conflict to resolve by categorizing conflicts into
three classes and always picking one from the highest-priority
class. In this work, we propose an oracle for conflict selec-
tion that results in smaller search tree sizes than the one used
in previous work. However, the computation of the oracle is
slow. Thus, we propose a machine-learning (ML) framework
for conflict selection that observes the decisions made by the
oracle and learns a conflict-selection strategy represented by
a linear ranking function that imitates the oracle’s decisions
accurately and quickly. Experiments on benchmark maps in-
dicate that our approach, ML-guided CBS, significantly im-
proves the success rates, search tree sizes and runtimes of the
current state-of-the-art CBS solver.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of finding
a set of conflict-free (that is, collision-free) paths for a given
number of agents on a given graph that minimize the sum
of costs or the makespan. Although MAPF is NP-hard to
solve optimally (Yu and LaValle 2013), significant research
effort has been devoted to MAPF to support its application
in distribution centers (Ma et al. 2017a; Hönig et al. 2019),
traffic management (Dresner and Stone 2008), airplane taxi-
ing (Morris et al. 2015; Balakrishnan and Jung 2007) and
computer games (Ma et al. 2017b).

Conflict-Based Search (CBS) (Sharon et al. 2015) is one
of the leading algorithms for solving MAPF optimally, and a
number of enhancements to CBS have been developed (Bo-
yarski et al. 2015; Li et al. 2019a; Felner et al. 2018; Barer
et al. 2014). The key idea behind CBS is to use a bi-level
search that resolves conflicts by adding constraints at the
high level and replans paths for agents respecting these con-
straints at the low level. The high level of CBS preforms
a best-first search on a binary search tree called constraint
tree (CT). To expand a CT node (that consists of a set of
paths and a set of constraints on these paths), CBS chooses

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a conflict between two current paths to resolve and adds con-
straints that prevent this conflict in the child CT nodes. Pick-
ing good conflicts is important, and a good strategy for con-
flict selection could have a big impact on the efficiency of
CBS by reducing both the size of CT and its runtime. Bo-
yarski et al. (2015) propose to prioritize conflicts by catego-
rizing them into three classes and always picking one from
the highest-priority class. This strategy has been proven to
be efficient (Boyarski et al. 2015) and is commonly used for
conflict selection in recent research (Li et al. 2019a; Felner
et al. 2018; Li et al. 2019c). In this paper, we propose a new
conflict-selection oracle that results in smaller CT sizes than
the one used in previous work but is much more computa-
tionally expensive since it has to compute 1-step lookahead
heuristics for each conflict.

To overcome the high computational cost of the ora-
cle, we leverage insights from studies on variable selec-
tion for branching in Mixed Integer Linear Programming
(MILP) solving and propose to use machine learning (ML)
approaches for designing conflict-selection strategies that
imitate the oracle’s decisions to speed up CBS. Variable se-
lection for branching in MILP solving is analogous to con-
flict selection in CBS. As part of the branch-and-bound al-
gorithm for MILP solving (Wolsey and Nemhauser 1999),
non-leaf nodes in the CT must be expanded into two child
nodes by selecting one of the unassigned variables and split-
ting its domain by adding new constraints, while CBS se-
lects and splits on conflicts. Recent studies (Khalil et al.
2016, 2017; He, Daume III, and Eisner 2014) have shown
that data-driven ML approaches for MILP solving are com-
petitive with and can even outperform state-of-the-art com-
mercial solvers.

We borrow such ML approaches from MILP solving
(Khalil et al. 2016) and propose a data-driven framework
for designing conflict-selection strategies for CBS. In the
first phase of our approach, we observe and record deci-
sions made by the oracle on a set of instances and collect
data on features that characterize the conflicts at each CT
node. In the second phase, we learn a ranking function for
conflicts in a supervised fashion that imitates the oracle but
is faster to calculate. In the last phase, we use the learned
ranking function to replace the oracle and select conflicts in
CBS to solve unseen instances. Compared to previous work
on conflict selection for CBS, our ML-guided CBS is able

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11246

to discover more efficient rules for conflict selection that
significantly improve the success rate and reduce the both
the runtime of the search and the CT size. Our approach is
flexible since we are able to customize the conflict-selection
strategy easily for different environments and do not need
to hard-code different rules for different scenarios. Differ-
ent from recent work on ML-guided MILP solving, we uti-
lize problem-specific features which contain essential infor-
mation about the conflicts, while previous work only takes
MILP-level features (e.g., counts and statistics of variables)
into account (Khalil et al. 2016, 2017). Another advantage
of our offline learning approach over training an instance-
specific model on-the-fly is that our learned ranking function
is able to generalize to instances and graphs unseen during
training.

MAPF
Given an undirected unweighted underlying graph G =
(V,E), the Multi-Agent Path Finding (MAPF) problem is
to find a set of conflict-free paths for a set of agents
{a1, . . . , ak}. Each agent ai is assigned a start vertex si ∈ V
and a goal vertex ti ∈ V . Time is discretized into time steps,
and, at each time step, every agent can either move to an
adjacent vertex or wait at the same vertex in the graph. The
cost of an agent is the number of time steps until it reaches its
goal vertex and no longer moves. We consider two types of
conflicts: i) a vertex conflict 〈ai, aj , v, t〉 occurs when agents
ai and aj are at the same vertex v at time step t; and ii) an
edge conflict 〈ai, aj , u, v, t〉 occurs when agents ai and aj
traverse the same edge (u, v) ∈ E in opposite directions be-
tween time steps t and t + 1. Our objective is to find a set
of conflict-free paths that move all agents from their start
vertices to their goal vertices (called a solution) with the op-
timal cost, that is, the minimum sum of all agents’ costs.

Background and Related Work
In this section, we first provide a brief introduction to CBS
and its variants. Then, we summarize other related work on
using ML in MAPF and MILP solving.

Conflict-Based Search (CBS)
CBS is a bi-level tree search algorithm. It records the fol-
lowing information for each CT node N :

1. NCon: The set of constraints imposed so far in the search.
There are two types of constraints: i) a vertex constraint
〈ai, v, t〉, corresponding to a vertex conflict, prohibits
agent ai from being at vertex v at time step t; and ii)
an edge constraint 〈ai, u, v, t〉, corresponding to an edge
conflict, prohibits agent ai from moving from vertex u to
vertex v between time steps t and t + 1.

2. NSol: A solution of N consists of a set of individu-
ally cost-minimal paths for all agents respecting the con-
straints in NCon. An individually cost-minimal path for an
agent is a cost-minimal path between its start and goal
vertices under the assumption that it is the only agent in
the graph.

3. NCost: The cost of N is the sum of costs of the paths in
NSol.

4. NConf : The set of conflicts between any two paths in NSol.

On the high level, CBS starts with a CT with only one node
whose set of constraints is empty and then expands the CT
in a best-first manner by always expanding a CT node with
the lowest NCost. After choosing a CT node to expand, CBS
identifies the set of conflicts NConf in NSol. If there are none,
CBS terminates and returns NSol. Otherwise, CBS randomly
(by default) selects one of the conflicts to resolve and adds
two child nodes of N by imposing, depending on the type
of conflict, an edge or vertex constraint on one of the two
conflicting agents and adding it to the NCon of one of the
child nodes and similarly for the other conflicting agent and
NCon of the other child node. On the low level, it replans
the paths in NSol to accommodate the newly-added con-
straints, if necessary. CBS guarantees completeness by ex-
ploring both ways of resolving each conflict and optimality
by performing best-first searches on both of its high and low
levels.

Variants of CBS
CBS chooses conflicts randomly, but this conflict-selection
strategy can be improved. Improved CBS (ICBS) (Boyarski
et al. 2015) categorizes conflicts into three types to prioritize
them. A conflict is cardinal iff, when CBS uses the conflict
to split CT node N , the costs of both resulting child nodes
are strictly larger than NCost. A conflict is semi-cardinal
iff the cost of one of the child nodes is strictly larger than
NCost and the cost of the other child node is the same as
NCost. A conflict is non-cardinal otherwise. By first resolv-
ing cardinal conflicts, then semi-cardinal conflicts and fi-
nally non-cardinal conflicts, CBS is able to improve its effi-
ciency since it increases the lower bound on the optimal cost
more quickly by generating child nodes with larger costs.
ICBS uses Multi-Valued Decision Diagrams (MDD) to clas-
sify conflicts. An MDD for agent ai is a directed acyclic
graph consisting of all cost-minimal paths from si to ti on G
that respect the current constraints NCon. The nodes at depth
t of the MDD are exactly the vertices that agent ai could
be at at time step t when following one of its cost-minimal
paths. A vertex (edge) conflict 〈ai, aj , v, t〉 (〈ai, aj , u, v, t〉)
is cardinal iff vertex v (edge (u, v)) is the only vertex at
depth t (the only edge from depth t to depth t + 1) in the
MDDs of agents ai and aj . Li et al. (2019b) propose to add
disjoint constraints to both child nodes when expanding a
CT node in CBS and prioritize conflicts based on the num-
ber of singletons in or the widths of the MDDs of both con-
flicting agents.

Another line of research focuses on speeding up CBS
by calculating a tighter lower bound on the optimal cost
to guide the high-level search. When expanding a CT node
N , CBSH (Felner et al. 2018) uses the CG heuristic, which
builds a conflict graph (CG), whose vertices represent agents
and whose edges represent cardinal conflicts in NSol. Then,
the lower bound on the optimal cost within the subtree
rooted at N is guaranteed to increase at least by the size
of the minimum vertex cover of this CG. We refer to this

11247

The Random Map The Game Map
Runtime CT Size Oracle Time Search Time Runtime CT Size Oracle Time Search Time

CBSH2+O0 9.95s 2,362 nodes 0.00s 9.95s 2.3min 952 nodes 0.0min 2.3min
CBSH2+O1 24.89s 746 nodes 21.34s 3.55s 19.8min 565 nodes 19.0min 0.8min
CBSH2+O2 12.13s 632 nodes 9.52s 2.61s 27.4min 2,252 nodes 23.4min 4.0min

ML-S 6.19s 998 nodes 0.88s 5.31s 1.6min 754 nodes 0.2min 1.4min

Table 1: Performance of CBSH2 with different oracles and our solver. Oracle time is the runtime of the oracle. Search time is
the runtime minus the oracle time. All entries are averaged over the instances that are solved by all solvers.

increment as the h-value of the CT node. Based on CBSH,
CBSH2 (Li et al. 2019a) uses the DG and WDG heuristics
that generalize CG and compute h-values for CT nodes us-
ing (weighted) pairwise dependency graphs ((W)DG) that
take into account semi-cardinal and non-cardinal conflicts
besides cardinal ones. CBSH2 with the WDG heuristic is
the current state-of-the-art CBS solver for MAPF (Li et al.
2019a).

To the best of our knowledge, other than prioritizing con-
flicts using MDDs, conflict prioritization has not yet been
explored. Barer et al. (2014) propose a number of heuris-
tics to prioritize CT nodes for the high-level search, includ-
ing those using the number of conflicts, the number of con-
flicting agents and the number of conflicting pairs of agents.
However, their work uses conflict-related metrics to select
CT nodes, while we learn to select conflicts.

Other Related Work
ML techniques are not often applied to MAPF. Sartoretti
et al. (2019) propose a reinforcement-learning framework
for learning decentralized policies for agents offline to avoid
the cost of planning online. Our work is different from their
work since we focus on search algorithms and use ML
to find efficient and flexible conflict-selection strategies to
speed up them. Furthermore, our ML model is simple and
easy to implement, without the need to train and fine-tune a
deep neural network.

Using ML to speed up search has been explored in the
context of MILP solving. Khalil et al. (2016) use ML to
learn strategies for branching that mimic strong branching.
Our framework is similar to the one in (Khalil et al. 2016)
but different in several aspects. Instead of collecting train-
ing data and learning a model online, we collect training
data and learn a model offline. We leverage insights from ex-
isting heuristics for computing h-values to design problem-
specific labels and features for learning. Finally, once our
model is learned, it performs well on unseen instances while
Khalil et al. (2016) learn instance-specific models. This line
of work also includes learning when to run primal heuris-
tics to find incumbents in a tree search (Khalil et al. 2017)
and learning how to order nodes adaptively for branch-and-
bound algorithms (He, Daume III, and Eisner 2014).

Oracles for Conflict Selection
Given a MAPF instance, an oracle for conflict selection at
a particular CT node N is a ranking function that takes the
set of conflicts NConf as input, calculates a real-valued score
per conflict and outputs the ranks determined by the scores.

We say that CBS follows an oracle for conflict selection iff
CBS builds the CT by always resolving the conflict with the
highest rank. We define oracle O0 to be the one proposed by
(Boyarski et al. 2015), that uses MDDs to rank conflicts.
Definition 4.1. Given a CT node N , oracle O0 ranks the
conflicts in NConf in the order of cardinal conflicts, semi-
cardinal conflicts and non-cardinal conflicts, breaking ties
in favor of conflicts at the smallest time step and remaining
ties randomly.

Next, we define oracles O1 and O2, that both calculate
1-step lookahead scores by using, for each conflict, the two
child nodes of N that would result if the conflict were re-
solved at N .
Definition 4.2. Given a CT node N , oracle O1 computes
the score vc = min{glc + hl

c, g
r
c + hr

c} for each conflict
c ∈ NConf , where glc and grc would be the costs of the two
child nodes of N and hl

c and hr
c would be the h-values given

by the WDG heuristic of the two child nodes of N if conflict
c were resolved at N . Then, it outputs the ranks determined
by the descending order of the scores (i.e., the highest rank
for the highest score).

Oracle O1 selects the conflict that results in the tightest
lower bound on the optimal cost in the child nodes. We use
the WDG heuristic to compute the h-values since it is the
state of the art. The intuition behind using this oracle is that
the sum of the cost and the h-value of a node is a lower
bound on the cost of any solution found in the subtree rooted
in the node, and, thus, we want CBS to increase the lower
bound as much as possible to find a solution quickly.
Definition 4.3. Given a CT node N , oracle O2 computes
the score vc = min{ml

c,m
r
c} for each conflict c ∈ NConf ,

where ml
c and mr

c would be the number of conflicts in the
two child nodes of N if conflict c were resolved at N . Then,
it outputs the ranks determined by the increasing order of the
scores (i.e., the highest rank for the lowest score).

Oracle O2 selects the conflict that results in the least num-
ber of conflicts in the child nodes.

We use CBSH2 with the WDG heuristic as our search al-
gorithm and run it with oracles O0, O1 and O2 on (1) the ran-
dom map, which is a 20 × 20 four-neighbor grid map with
25% randomly generated blocked cells, and (2) the game
map “lak503d” (Sturtevant 2012), which is a 192 × 192
four-neighbor grid map with 51% blocked cells from the
video game Dragon Age: Origins. The maps are shown in
Table 4. The experiments are conducted on 2.4 GHz Intel
Core i7 CPUs with 16 GB RAM. We set the runtime limit
to 20 minutes for the random map and 1 hour for the game

11248

map. We set the number of agents to k = 18 for the random
map and k = 100 for the game map and run the solvers on
50 instances for each map. Following Stern et al. (2019), the
start and goal vertices of each instance are randomly paired
among all vertices in each map’s largest connected compo-
nent throughout the paper. In Table 1, we present the perfor-
mance of the three oracles as well as our solver. All entries
are averaged over the instances that are solved by all solvers.
We evaluate the oracles according to the resulting CT sizes
since they determine the runtime when the calculation of the
oracles is not taken into account (and everything else being
equal) and first look at the CT sizes of CBSH2 with each of
the three oracles. Oracle O2 is best for the random map, fol-
lowed closely by oracle O1. Oracle O1 is best for the game
map. Overall, oracle O1 is best. Therefore, in the rest of the
paper, we mainly focus on learning a ranking function that
imitates oracle O1. Table 1 shows that, by learning to imitate
oracle O1, our solver ML-S achieves the best runtime, even
though it induces a larger CT than CBSH2+O1. We intro-
duce our machine ML methodology and show experimental
results in the next two sections.

Machine Learning Methodology
We now introduce our framework for learning which conflict
to resolve in CBS. The key idea is that, by observing and
recording the features and ranks of conflicts determined by
the scores given by the oracle, we learn a ranking function
that ranks the conflicts as similarly as possible to the oracle
without actually probing the oracle. Our framework consists
of three phases:

1. Data collection. We obtain two sets of instances, a training
dataset ITrain and a test dataset ITest. For each instance
I ∈ ITrain ∪ ITest, we obtain an instance dataset DI by
running the oracle.

2. Model learning. The training dataset is fed into a machine
learning algorithm to learn a ranking function that maxi-
mizes the prediction accuracy.

3. ML-guided search. We replace the oracle with the learned
ranking function to rank conflicts in the CBSH2 solver.
We run the new solver on randomly generated instances
on either the same graphs seen during training or unseen
graphs.

Data Collection
The first task in our pipeline is to construct a training dataset
from which we can learn a model that imitates the oracle’s
output. We first fix the graph underlying the instances that
we want to solve and the number of agents. The number of
agents is only fixed during the data collection and model
learning phases. We obtain two sets of instances, ITrain for
training and ITest for testing. An instance dataset DI is
obtained for each instance I ∈ ITrain (ITest), and the fi-
nal training (test) dataset is obtained by concatenating these
datasets. To obtain dataset DI , we run CBSH2 on I and or-
acle O1 is run for each CT node N to produce the ranking
for NConf . The data consists of: (i) a set of CT nodes N ;
(ii) a set of conflicts NConf for all N ∈ N ; (iii) binary la-
bels yN ∈ {0, 1}|NConf | for all N ∈ N transformed from

the oracle’s ranking of the conflicts; and (iv) a feature map
ΦN : NConf → [0, 1]p for all N ∈ N that describes conflict
c ∈ NConf at CT node N with p features. The test dataset
is used to evaluate the prediction accuracy of the learned
model.

Features We collect a p-dimensional feature vector ΦN (c)
that describes a conflict c ∈ NConf in CT node N . The
p = 67 features of a conflict 〈ai, aj , v, t〉 (〈ai, aj , u, v, t〉) in
our implementation are summarized in Table 2. They consist
of (1) the properties of the conflict, (2) statistics of CT node
N , the conflicting agents ai and aj and the contested vertex
or edge w.r.t. NSol, (3) the frequency of a conflict being re-
solved for a vertex or an agent, and (4) features of the MDD
and the WDG. For each feature, we normalize its value to
the range [0, 1] across all conflicts in NConf . All features of a
given conflict c ∈ NConf can be computed in O(|NConf |+k)
time.

Labels We label each conflict in NConf such that conflicts
with higher ranks determined by the oracle have larger la-
bels. Instead of using the full ranking provided by oracle O1,
we use a binary labeling scheme similar to the one proposed
by (Khalil et al. 2016). We assign label 1 to a conflict if no
more than 20% of the conflicts in NConf have the same or a
higher score; otherwise, we assign label 0 to it, with one ex-
ception. When more than 20% of the conflicts have the same
highest O1 score, we assign label 1 to those conflicts and la-
bel 0 to the rest. By doing so, we ensure that at least one
conflict is labeled 1 and conflicts with the same score have
the same label. This labeling scheme relaxes the definition
of “top” conflicts that allow the learning algorithm to focus
on only high-ranking conflicts and avoid the irrelevant task
of learning the correct ranking of conflicts with low scores.

Model Learning
We learn a linear ranking function with parameters w ∈ Rp

f : Rp → R : f(ΦN (c)) = wTΦN (c)

that minimizes the loss function

L(w) =
∑
N∈N

l(yN , ŷN) +
C

2
||w||22,

where yN is the ground-truth label vector, ŷN is the vector
of predicted scores resulting from applying f to the feature
vectors of every conflict in NConf , l(·, ·) is a loss function
measuring the difference between the ground truth labels
and the predicted scores, and C > 0 is a regularization pa-
rameter. The loss function l(·, ·) is based on a pairwise loss
that has been used in the literature (Joachims 2002). Specif-
ically, we consider the set of pairs PN = {(ci, cj) : ci, cj ∈
NConf ∧ yN (ci) > yN (cj))}, where yN (c) is the ground-
truth label of conflict c in label vector yN . The loss function
l(·, ·) is the fraction of swapped pairs, defined as

l(yN , ŷN) =
1

|PN |
|{(ci, cj) ∈ PN : ŷN (ci) ≤ ŷN (cj)}|.

We use an open-source software package (Joachims 2006)
that implements a Support Vector Machine (SVM) approach
(Joachims 2002) that minimizes an upper bound on the loss,
which is NP-hard to minimize.

11249

Feature Descriptions Count
Types of the conflict: binary indicators for edge conflicts, vertex conflicts, cardinal conflicts, semi-cardinal conflicts
and non-cardinal conflicts.

5

Number of conflicts involving agent ai (aj) that have been selected and resolved so far during the search: their
min., max. and sum.

3

Number of conflicts that have been selected and resolved so far during the search at vertex u (v): their min., max.
and sum.

3

Number of conflicts that agent ai (aj) is involved in: their min., max. and sum. 3
Time step t of the conflict. 1
Ratio of t and the makespan of NSol. 1
Cost of the path of agent ai (aj): their min., max., sum, absolute difference and ratio of their max. and min. 5
Difference of the costs of the path of agent ai (aj) and its individually cost-minimal path: their min. and max. 2
Ratio of the costs of the path of agent ai (aj) and its individually cost-minimal path: their min. and max. 2
Difference of the cost of the path of agent ai (aj) and t: their min. and max. 2
Ratio of the cost of the path of agent ai (aj) and t: their min. and max. 2
Ratio of the cost of the path of agent ai (aj) and NCost: their min. and max. 2
Binary indicator whether none (at least one) of agents ai and aj has reached its goal vertex by time step t. 2
Number of conflicts c′ ∈ NConf such that min{dq,q′ : q ∈ V T

c , q′ ∈ V T
c′ } = w (0 ≤ w ≤ 5). 6

Number of agents a such that there exists q′ ∈ Va and q ∈ V T
c such that dq,q′ = w (0 ≤ w ≤ 5). 6

Number of conflicts c′ ∈ NConf such that min{dq,q′ : q ∈ Vc, q
′ ∈ Vc′} = w (0 ≤ w ≤ 5). 6

Width of level w (|w − t| ≤ 2) of the MDD for agent ai(aj): their min. and max. (Li et al. 2019b). 10
Weight of the edge between agents ai and aj in the weighted dependency graph (Li et al. 2019a). 1
Number of vertices q′ in graph G such that min{dq′,q : q ∈ Vc} = w (1 ≤ w ≤ 5). 5

Table 2: Features of a conflict c = 〈ai, aj , u, t〉 (〈ai, aj , u, v, t〉) of a CT node N . Given the underlying graph G = (V,E),
let VT = {(v, t) : v ∈ V, t ∈ Z≥0}, ET = {((u, t), (v, t + 1)) : t ∈ Z≥0 ∧ (u = v ∨ (u, v) ∈ E)} and define the
time-expanded graph as an unweighted graph GT = (VT , ET). Let du,v be the cost of the cost-minimal path between vertices
u and v in G and d(u′,t′),(u,t) be the distance from (u′, t′) to (u, t) in GT if t′ ≤ t or from (u, t) to (u′, t′), otherwise.
For a conflict c′ = 〈a′i, a′j , u′, t′〉 (〈a′i, a′j , u′, v′, t′〉) in NConf , define Vc′ = {u′} (Vc′ = {u′, v′}) and V T

c′ = {(u′, t′)}
(V T

c′ = {(u′, t′), (v′, t′)}). For an agent a, define Va = {(u, t) : agent a is at vertex u at time step t following its path}. The
counts are the numbers of features contributed by the corresponding entries, which add up to p = 67.

Warehouse Room Maze Random City Game
Number of agents in instances in ITrain and ITest 30 22 30 18 180 100
Training on
the same map

Swapped pairs (%) 5.78 12.58 4.5 10.89 2.89 4.40
Top pick accuracy (%) 84.93 67.56 87.69 69.03 83.05 60.16

Training on
the other maps

Swapped pairs (%) 6.08 15.24 21.98 19.64 7.66 7.45
Top pick accuracy (%) 86.85 66.80 49.90 50.44 78.57 53.13

Table 3: Numbers of agents in instances in ITrain and ITest, test losses and accuracies. The swapped pairs are the percentages of
swapped pairs averaged over all test CT nodes, and the top pick accuracy is the accuracy of the ranking function selecting one
of the conflicts labled as 1 in the test dataset.

ML-Guided Search

After offline data collection and ranking function f(·) learn-
ing, we replace oracle O1 for conflict selection in CBS
with the learned function. At each CT node N , we first
compute the feature vector ΦN (c) for each conflict c ∈
NConf and pick the conflict with the maximum score c∗ =
arg maxc∈NConf

f(ΦN (c)). The time complexity of conflict
selection at node N is O(|NConf |(|NConf |+k)). Even though
the complexity of conflict selection with oracle O0 is only
O(|NConf |), we will show in our experiments that we are
able to outperform CBSH2+O0 in terms of both the CT size
and the runtime.

Experimental Results
In this section, we demonstrate the efficiency and effective-
ness of our solver, ML-guided CBS, through extensive ex-
periments. We use the C++ code for CBSH2 with the WDG
heuristic made available by Li et al. (2019a) as our CBS
version. We compare against CBSH2+O0 as baseline since
O0 is the most commonly used conflict-selection oracle. The
reason why we choose CBSH2 with the WDG heuristic over
CBS, ICBS and CBSH2 with the CG or DG heuristics is that
it performs best, as demonstrated in (Li et al. 2019a). All
reported results are averaged over 100 randomly generated
instances.

Our experiments provide answers to the following ques-

11250

Map k
Success Rate (%) Runtime (min) CT Size (nodes) PAR10 Score (min)

CBSH2 ML-S ML-O CBSH2 ML-S ML-O CBSH2 ML-S ML-O CBSH2 ML-S ML-O

Warehouse

30 93 96 (93) 96 (93) 0.20 0.06 0.07 1,154 294 378 7.18 4.14 4.25
36 72 86 (71) 88 (71) 0.54 0.24 0.19 3110 980 977 28.46 14.56 12.81
42 55 68 (55) 70 (55) 1.27 0.65 0.38 6,834 2,874 1,781 45.70 32.61 30.56
48 17 32 (17) 32 (17) 1.99 1.12 0.56 9,646 5,357 2,221 83.34 68.64 68.48
54 6 16 (6) 15 (6) 2.82 1.70 1.23 12,816 8,886 6,427 94.17 84.42 85.36

Improvement over CBSH2 0 49.8% 64.4% 0 56.6% 68.2% 0 22.9% 22.7%

Room
22 83 91 (83) 91 (83) 0.61 0.49 0.51 7,851 5,648 5,888 17.51 9.76 9.83
26 47 57 (47) 55 (46) 1.32 1.01 1.14 15,791 11,087 12,108 53.68 43.97 45.91
30 28 36 (28) 34 (28) 2.08 1.21 1.45 21,279 10,284 12,117 73.22 65.32 67.28
32 17 24 (17) 24 (17) 1.88 1.39 1.70 22,152 13,943 16,327 83.77 77.02 77.14
34 9 14 (9) 14 (9) 3.99 2.70 3.24 39,447 22,611 28,392 91.36 86.56 86.63

Improvement over CBSH2 0 26.6% 21.3% 0 35.2% 32.0% 0 14.0% 11.6%

Maze
30 90 91 (90) 90 (90) 0.54 0.47 0.42 500 373 289 10.49 9.51 10.38
32 84 87 (84) 87 (84) 0.49 0.39 0.42 519 427 397 16.42 13.59 13.60
36 80 81 (80) 82 (79) 0.73 0.65 0.57 1,200 1,067 910 20.66 19.68 18.68
40 56 60 (56) 62 (56) 0.85 0.80 0.75 1,194 1,099 1,026 44.47 40.79 38.85
44 45 49 (45) 50 (45) 1.08 1.06 0.87 1,389 1,343 1,055 54.49 50.82 49.75

Improvement over CBSH2 0 10.3% 18.3% 0 13.0% 24.4% 0 6.3% 8.2%

Random
18 95 95 (95) 94 (94) 0.32 0.23 0.31 5032 3,105 4,148 5.32 5.27 6.29
20 88 91 (88) 91 (88) 0.43 0.30 0.36 7,834 3,829 4,595 12.38 9.37 9.48
23 74 80 (74) 80 (74) 0.96 0.56 0.78 17,952 8,118 11,555 26.71 20.60 20.81
26 39 48 (39) 45 (39) 1.27 0.87 1.24 19,236 8,053 13,301 61.50 52.75 55.82
29 17 27 (17) 24 (17) 4.04 2.74 3.39 63,661 35,485 44,179 83.69 74.07 77.02

Improvement over CBSH2 0 33.4% 17.6% 0 49.3% 35.8% 0 15.1% 10.3%

City
180 78 85 (76) 84 (75) 3.53 2.43 2.46 859 468 476 134.99 93.04 99.87
200 76 82 (75) 83 (75) 4.78 5.08 4.13 849 702 490 147.96 113.53 106.78
230 57 68 (56) 64 (54) 4.86 4.26 4.24 835 444 449 261.36 196.99 220.50
260 44 54 (44) 54 (43) 11.69 9.75 9.55 1,883 1,178 1,219 341.37 282.00 282.58
290 18 27 (16) 28 (17) 11.65 8.45 8.75 1,966 1,372 1,429 494.10 441.87 436.70

Improvement over CBSH2 0 24.0% 25.2% 0 47.3% 46.4% 0 19.3% 20.2%

Game
100 68 77 (68) 75 (68) 6.76 5.49 5.94 4,100 3,114 3,341 196.66 145.09 156.74
110 59 67 (59) 67 (59) 6.58 6.03 5.92 3,978 3,652 3,596 249.89 202.61 202.39
120 35 44 (35) 44 (34) 9.59 8.76 8.80 5,351 4,643 4,691 393.27 341.63 341.82
125 34 41 (34) 42 (34) 9.32 7.77 7.58 5,145 4,153 4,054 399.18 358.91 353.32
130 19 26 (19) 25 (18) 4.83 5.00 4.85 2,486 2,498 2,338 487.01 447.22 453.05

Improvement over CBSH2 0 16.6% 17.3% 0 22.7% 23.3% 0 16.1% 16.4%

Table 4: Success rates, average runtimes and CT sizes of instances solved by all solvers and PAR10 scores for different numbers
of agents k on 6 maps. For the success rates of ML-S and ML-O, the percentages of instances solved by both our solvers and
CBSH2 are given in parentheses (bolded if they solve all instances that CBSH2 solves). For each map, we report the percentages
of our improvement over CBSH2 on the runtime and CT size on instances solved by all solvers and the PAR10 score.

Figure 1: Success rates within the runtime limit.

11251

tions: i) If the graph underlying the instances is known in
advance, can we learn a model that performs well on un-
seen instances on the same graph with different numbers of
agents? ii) If the graph underlying the instances is unknown
in advance, can we learn a model from other graphs that per-
forms well on instances on that graph?

We use a set of six four-neighbor grid maps M of dif-
ferent sizes and structures as the graphs underlying the in-
stances and evaluate our algorithms on them. M includes
(1) a warehouse map (Li et al. 2020), which is a 79×31 grid
map with 100 6× 2 rectangular obstacles; (2) the room map
“room-32-32-4” (Stern et al. 2019), which is a 32× 32 grid
map with 64 3 × 3 rooms connected by single-cell doors;
(3) the maze map “maze-128-128-2” (Stern et al. 2019), a
128 × 128 grid map with two-cell-wide corridors; (4) the
random map; (5) the city map “Paris 1 256” (Stern et al.
2019), which is a 256× 256 grid map of Paris; (6) the game
map. The figures of the maps are shown in Table 4. For
each map M ∈ M, we collect data from randomly gen-
erated training instances I(M)

Train and test instances I(M)
Test on

M with a fixed number of agents, where |I(M)
Train| = 30 and

|I(M)
Test | = 20. We learn two ranking functions for map M :

one ranking function that is trained using 5,000 CT nodes
i.i.d. sampled from the training dataset collected by solv-
ing instances I(M)

Train on the same map and another one that
is trained using 5,000 CT nodes sampled from the training
dataset collected by solving instances ∪M ′∈MI(M

′)
Train \ I

(M)
Train

on the other maps, namely 1,000 i.i.d. CT nodes sampled
from each of the five other maps. For each map M ∈ M,
we denote our solver that uses the ranking function trained
on the same map by ML-S and the solver that uses the
one trained on the other maps by ML-O. We set the reg-
ularization parameter C = 1/100 to train an SVMrank

(Joachims 2002) with a linear kernel to obtain each of the
ranking functions. We varied C ∈ {1/10, 1/100, 1/1000}
and achieved similar results. We test the learned ranking
functions on the test dataset collected by solving I(M)

Test . The
numbers of agents in the instances used for data collection,
the test losses and the test accuracies of selecting one of the
conflicts labeled as 1 are reported in Table 3. We varied the
numbers of agents for data collection and found that they led
to similar performance. In general, the losses of the ranking
functions for ML-O are larger and their accuracies of select-
ing “good” conflicts are lower than those for ML-S.

We run CBSH2, ML-S and ML-O on randomly gener-
ated instances on each of the six maps and vary the number
of agents. The runtime limits are set to 60 minutes for the
two largest maps (the city and game maps) and 10 minutes
for the other maps. In Table 4, we report the success rates,
the average runtimes and the average CT sizes of instances
solved by all solvers and the PAR10 scores (a commonly
used metric to score solvers where we count the runs that ex-
ceed the given runtime limit as 10 times the limit when com-
puting the average runtimes) (Bischl et al. 2016) for some
numbers of agents on each map. We plot the success rates on
the warehouse, room, city and game maps in Figure 1. ML-
S and ML-O dominate CBSH2 in all metrics on all maps

for almost all cases. Overall, CBSH2, ML-S and ML-O
solve 3,326 (55.43%), 3,779 (62.98%) and 3,758 (62.63%)
instances out of 6,000 we tested, respectively. The improve-
ment of ML-S and ML-O over CBSH2 on instances com-
monly solved by all solvers is 10.3% to 64.4% for the run-
time and 13.0% to 68.2% for the CT sizes across different
maps. For ML-S, even though we learn the ranking func-
tion from data collected on instances with a fixed number of
agents (listed in Table 3), the learned function generalizes to
instances with larger numbers of agents on the same map and
outperforms CBSH2. ML-O, without seeing the actual map
being tested on during training, is competitive with ML-S
and even outperforms ML-S sometimes on the warehouse,
city, maze and game maps. The results suggest that our ap-
proach, when focusing on solving instances on a particular
map, can outperform CBSH2 significantly and, when faced
with new maps, still has an advantage.

Next, we look at the feature importance of the learned
ranking functions. For ML-O, the six ranking functions
have nine features in common among their eleven features
with the largest absolute weights. Thus, they are similar
when looking at the important features. We take the average
of each weight and sort them in decreasing order of their ab-
solute values. The top eight features are (1) the weight of the
edge between agents ai and aj in the weighted dependency
graph (WDG); (2) the binary indicator for non-cardinal con-
flicts; (3) the maximum of the differences of the cost of the
path of agent ai (aj) and t; (4) the binary indicator for car-
dinal conflicts; (5) the minimum of the numbers of conflicts
that agent ai (aj) is involved in; and (6-8) the minimum, the
maximum and the sum of the numbers of conflicts involving
agent ai (aj) that have been selected and resolved. Those
features mainly belong to three categories: features related
to the conflict type, the WDG and the number of conflicts
having been resolved for agents, where the first one is com-
monly used in previous work on CBS and the third one is
an analogue of the branching variable pseudocosts (Achter-
berg, Koch, and Martin 2005) in MILP solving. For more
experimental results, we refer readers to the full version of
the paper1.

Conclusions and Future Directions
In this paper, we proposed the first ML framework for con-
flict selection in CBS. Our extensive experimental results
showed that our learned ranking function can generalize
across different numbers of agents on both a fixed graph
and unseen graphs. Our objective was to imitate the deci-
sions made by the oracle that picks the conflict that pro-
duces the tightest lower bound on the optimal cost in its
child nodes. We are also interested in discovering a better
oracle for conflict selection from which we can learn. We
expect our method to work well with other newly-developed
techniques, such as symmetry breaking techniques (Li et al.
2020), and it remains future work to incorporate these tech-
niques into the framework of CBSH2 to work with our ML-
guided conflict selection.

1The full version of the paper can be found at
https://arxiv.org/abs/2012.06005.

11252

Acknowledgments
We thank Jiaoyang Li, Peter J. Stuckey and Danial Hara-
bor for helpful discussions. The research at the University of
Southern California was supported by the National Science
Foundation (NSF) under grant numbers 1409987, 1724392,
1817189, 1837779 and 1935712, the U.S. Department of
Homeland Security under Grant Award No. 2015-ST-061-
CIRC01 as well as a gift from Amazon. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the U.S De-
partment of Homeland Security.

References
Achterberg, T.; Koch, T.; and Martin, A. 2005. Branching
rules revisited. Operations Research Letters 33(1): 42–54.
Balakrishnan, H.; and Jung, Y. 2007. A framework for coordi-
nated surface operations planning at Dallas-Fort Worth Inter-
national Airport. In AIAA Guidance, Navigation and Control
Conference and Exhibit, 6553.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Subop-
timal variants of the conflict-based search algorithm for the
multi-agent pathfinding problem. In Annual Symposium on
Combinatorial Search, 19–27.
Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malit-
sky, Y.; Fréchette, A.; Hoos, H.; Hutter, F.; Leyton-Brown,
K.; Tierney, K.; et al. 2016. Aslib: A benchmark library for
algorithm selection. Artificial Intelligence 237: 41–58.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, E. 2015. ICBS: Improved conflict-
based search algorithm for multi-agent pathfinding. In Inter-
national Joint Conference on Artificial Intelligence, 442–449.
Dresner, K.; and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research 31: 591–656.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. S.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent path finding. In International
Conference on Automated Planning and Scheduling, 83–87.
He, H.; Daume III, H.; and Eisner, J. M. 2014. Learning to
search in branch and bound algorithms. In Advances in Neu-
ral Information Processing Systems, 3293–3301.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Ayanian,
N. 2019. Persistent and robust execution of MAPF schedules
in warehouses. IEEE Robotics and Automation Letters 4(2):
1125–1131.
Joachims, T. 2002. Optimizing search engines using click-
through data. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 133–142.
Joachims, T. 2006. Training linear SVMs in linear time. In
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 217–226.
Khalil, E. B.; Dilkina, B.; Nemhauser, G. L.; Ahmed, S.; and
Shao, Y. 2017. Learning to run heuristics in tree search. In In-
ternational Joint Conference on Artificial Intelligence, 659–
666.

Khalil, E. B.; Le Bodic, P.; Song, L.; Nemhauser, G. L.; and
Dilkina, B. 2016. Learning to branch in mixed integer pro-
gramming. In AAAI Conference on Artificial Intelligence,
724–731.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved heuristics for multi-agent path finding with
conflict-based search. In International Joint Conference on
Artificial Intelligence, 442–449.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New techniques for pairwise symmetry
breaking in multi-agent path finding. In Proceedings of the In-
ternational Conference on Automated Planning and Schedul-
ing, 193–201.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019b. Disjoint splitting for multi-agent path finding with
conflict-based search. In International Conference on Auto-
mated Planning and Scheduling, 279–283.

Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. S.; and
Koenig, S. 2019c. Multi-agent path finding for large agents.
In AAAI Conference on Artificial Intelligence, 7627–7634.

Ma, H.; Li, J.; Kumar, T. S.; and Koenig, S. 2017a. Life-
long multi-agent path finding for online pickup and delivery
tasks. In International Conference on Autonomous Agents
and Multi-Agent Systems, 837–845.

Ma, H.; Yang, J.; Cohen, L.; Kumar, T. S.; and Koenig, S.
2017b. Feasibility study: Moving non-homogeneous teams in
congested video game environments. In Artificial Intelligence
and Interactive Digital Entertainment Conference, 270–272.

Morris, R.; Chang, M. L.; Archer, R.; Cross, E. V.; Thomp-
son, S.; Franke, J.; Garrett, R.; Malik, W.; McGuire, K.; and
Hemann, G. 2015. Self-driving aircraft towing vehicles: A
preliminary report. In AI for Transportation Workshop at the
AAAI Conference on Artificial Intelligence.

Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. PRIMAL: Pathfinding
via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters 4(3): 2378–2385.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219: 40–66.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; Bo-
yarski, E.; and Bartak, R. 2019. Multi-agent pathfinding: Def-
initions, variants, and benchmarks 151–158.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games 4(2): 144–148.

Wolsey, L. A.; and Nemhauser, G. L. 1999. Integer and com-
binatorial optimization, volume 55. John Wiley & Sons.

Yu, J.; and LaValle, S. M. 2013. Planning optimal paths for
multiple robots on graphs. In IEEE International Conference
on Robotics and Automation, 3612–3617.

11253

