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Abstract

In machine learning, training data often capture the behaviour
of multiple subgroups of some underlying human population.
When the amounts of training data for the subgroups are not
controlled carefully, under-representation bias arises. We in-
troduce two natural notions of subgroup fairness and instan-
taneous fairness to address such under-representation bias in
time-series forecasting problems. In particular, we consider the
subgroup-fair and instant-fair learning of a linear dynamical
system (LDS) from multiple trajectories of varying lengths and
the associated forecasting problems. We provide globally con-
vergent methods for the learning problems using hierarchies of
convexifications of non-commutative polynomial optimisation
problems. Our empirical results on a biased data set motivated
by insurance applications and the well-known COMPAS data
set demonstrate both the beneficial impact of fairness consid-
erations on statistical performance and the encouraging effects
of exploiting sparsity on run time.

Introduction
The identification of vector autoregressive processes with hid-
den components from time series of observations is a central
problem across Machine Learning, Statistics, and Forecasting
(West and Harrison 1997). This problem is also known as
proper learning of linear dynamical systems (LDS) in System
Identification (Ljung 1998). As a rather general approach to
time-series analysis, it has applications ranging from learning
population-growth models in actuarial science and mathemat-
ical biology to functional analysis in neuroscience. Indeed,
one encounters either partially observable processes (Åström
1965) or questions of causality (Pearl 2009) that can be tied
to proper learning of LDS (Geiger et al. 2015) in almost any
application domain.

A discrete-time model of a linear dynamical system L =
(G,F, V,W ) (West and Harrison 1997) suggests that the
random variable Yt ∈ Rm capturing the observed component
(output, observations, measurements) evolves over time t ≥ 1
according to:

φt = Gφt−1 + wt, (1)

Yt = F ′φt + vt, (2)

Copyright © 2021, Association for the Advancement of Artificial
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where φt ∈ Rn is the hidden component (state) and
G ∈ Rn×n and F ∈ Rn×m are compatible system matri-
ces. Random variables wt, vt capture normally-distributed
process noise and observation noise, with zero means and
covariance matrices W ∈ Rn×n and V ∈ Rm×m, respec-
tively. In this setting, proper learning refers to identifying
the quadruple (G,F, V,W ) given the observations {Yt}t∈N
of L. This also allows for the estimation of subsequent ob-
servations, in the so-called “prediction-error” approach to
improper learning (Ljung 1998).

We consider a generalisation of the proper learning of LDS,
where:

• There are a number of individuals p ∈ P within a pop-
ulation. The population P is partitioned into subgroups
indexed by S .

• For each subgroup s ∈ S , there is a set I(s) of trajectories
of observations available and each trajectory i ∈ I(s)
has observations for periods T (i,s), possibly of varying
cardinality |T (i,s)|.

• Each subgroup s ∈ S is associated with a LDS, L(s). For
all i ∈ I(s), s ∈ S , the trajectory {Yt}(i,s), for t ∈ T (i,s),
is hence generated by precisely one LDS L(s).

Note that in our notation, the superscripts distinguish the
trajectories and subgroups, while subscripts indicate the pe-
riods. In this setting, under-representation bias (Blum and
Stangl 2019, cf. Section 2.2), where the trajectories of ob-
servations from one (“disadvantaged”) subgroup are under-
represented in the training data, harms both accuracy of the
classifier overall and fairness in the sense of varying accuracy
across the subgroups. This is particularly important if the
problem is constrained to be subgroup-blind, i.e., constrained
to consider only a single LDS as a model. This is the case
when the use of attributes distinguishing each subgroup can
be regarded as discriminatory (e.g., gender, race, cf. (Gajane
and Pechenizkiy 2018)). Notice that such anti-discrimination
measures are increasingly stipulated by legal systems, e.g.,
within product or insurance pricing, where the sex of the
applicant cannot be used, despite being known.

A natural notion of fairness in subgroup-blind learning of
LDS involves estimating the system matrices or forecasting
the next output of a single LDS that captures the overall
behaviour across all subgroups, while taking into account the
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varying amounts of training data for the individual subgroups.
To formalise this, suppose that we learn one LDS L from
the multiple trajectories and we define a loss function that
measures the loss of accuracy for a certain observation Y (i,s)

t ,
for t ∈ T (i,s), i ∈ I(s), s ∈ S when adopting the forecast
ft for the overall population. For t ∈ T (i,s), i ∈ I(s), s ∈ S ,
we have

(i,s)

loss(ft) := ||Y (i,s)
t − ft||. (3)

Let T + = ∪i∈I(s),s∈ST (i,s). We know that ft is feasible
only when t ∈ T +. Note that since each trajectory is of
varying length, it is possible that for a certain triple (t, i, s),
there is no observation Y (i,s)

t .
We propose two objectives to address the under-

representation bias, which extend group fairness (Feldman
et al. 2015) to time series:

1. Subgroup Fairness. The objective seeks to equalise,
across all subgroups, the sum of losses for the subgroup.
Considering the number of trajectories in each subgroup
and the number of observations across the trajectories may
differ, we include |I(s)|, |T (i,s)| as weights:

min
ft,t∈T +

max
s∈S

 1

|I(s)|
∑

i∈I(s)

1

|T (i,s)|
∑

t∈T (i,s)

(i,s)

loss(ft)


(4)

2. Instantaneous Fairness. The objective seeks to equalise
the instantaneous loss, by minimising the maximum of the
losses across all subgroups and all times:

min
ft,t∈T +

{
max

t∈T (i,s),i∈I(s),s∈S

{
(i,s)

loss(ft)

}}
(5)

Following (Zhou and Marecek 2020), we also cast the
proper and improper learning of a linear dynamical system
with such fairness considerations as a non-commutative poly-
nomial optimisation problem (NCPOP), which can be solved
efficiently using a globally-convergent hierarchy of semidefi-
nite programming (SDP) relaxations.

Related Work
This presents an algorithmic approach to addressing the
under-representation bias studied by (Blum and Stangl 2019)
and within the imbalanced learning literature (He and Ma
2013; Brabec et al. 2020, e.g.) and presents a step forward
within the fairness in forecasting studied recently by (Gajane
and Pechenizkiy 2018; Chouldechova 2017; Locatello et al.
2019), as outlined in the excellent survey of (Chouldechova
and Roth 2020; Barocas, Hardt, and Narayanan 2019). It fol-
lows much work on fairness in classification, e.g., (Zliobaite
2015; Hardt, Price, and Srebro 2016; Kilbertus et al. 2017;
Kusner et al. 2017; Chouldechova and Roth 2020; Aghaei,
Azizi, and Vayanos 2019). It is complemented by several
recent studies involving dynamics and fairness (Mouzannar,
Ohannessian, and Srebro 2019; Paaßen et al. 2019; Jung et al.
2020), albeit not involving learning of dynamics. It relies

crucially on tools developed in non-commutative polynomial
optimisation (Pironio, Navascués, and Acín 2010; Wang, Ma-
gron, and Lasserre 2019, 2020) and non-commutative algebra
(Gelfand and Neumark 1943; Segal 1947; McCullough 2001;
Helton 2002), which have not seen much use in Statistics and
Machine Learning, yet.

Fairness in Machine Learning
The last two years have seen an unprecedented explosion in
attention of fairness in the field of artificial intelligence and
machine learning (Chouldechova and Roth 2020). The widely
used criminal risk assessment tool, Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS)
was found to favour white defendants over black defendants
by under-predicting recidivism for white and over-predicting
recidivism for black defendants (Angwin et al. 2016; Dressel
and Farid 2018).

There have been several candidate definitions of fairness.
At the first stage, a naive notion “fairness under unawareness”
is used. The shortcoming is that there are some features, used
to predict but related to protected attributes. Therefore, the
predictor from unawareness could still be related to protected
attributes even though protected attributes are not given. “De-
mographic parity”, proposed by (Calder, Malthouse, and
Schaedel 2009), requires the proportion of each segment
of a protected class (e.g. gender) should receive the positive
outcome at equal rates. But it might be unfair in the case of
unbalanced distributions of features between advantaged and
disadvantaged subgroups even in the absent of biases. The
notions of “equal opportunity” in (Hardt, Price, and Srebro
2016) and “counterfactual fairness ” of (Kusner et al. 2017)
require the predictor to be unrelated to protected attributes.
In other words, they focus more on accurate prediction of the
unbalanced distribution without discrimination as a predictor
is very unlikely to be discriminatory if it only reflects the real
outcomes.

Group fairness only provides an average guarantee for the
individuals in a protected group (Awasthi et al. 2020) and is
insufficient by itself. Sometimes even the notions of group
fairness is maintained, from the view of an individual, the
outcome is unfair. The individual definition asks for con-
straints that bind on specific pairs of individuals, rather than
on a quantity that is averaged over groups (Chouldechova and
Roth 2020), or in other words, it requires “similar individuals
should be treated similarly” (Dwork et al. 2012). However,
this notion requires a similarity metric capturing the ground
truth, which requires general and task-specific assumption on
its definition (Sharifi-Malvajerdi, Kearns, and Roth 2019).

As the increasingly many notions of model fairness arise,
it is necessary to build up a comprehensive framework of
multiple fairness criteria. For instance, the fairness resoultion
model, proposed in (Awasthi et al. 2020), is guided by the
unfairness complaints received by the system and it could be
a more practical way to maintain both group and individual
fairness.

Motivation
Insurance Pricing Let us consider two motivating exam-
ples. One important application arises in Actuarial Science.
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In the European Union, a directive (implementing the princi-
ple of equal treatment between men and women in the access
to and supply of goods and services), bars insurers from using
gender as a factor in justifying differences in individuals’ pre-
miums. In contrast, insurers in many other territories classify
insureds by gender, because females and males have different
behavior patterns, which affects insurance payments. Take the
annuity-benefit scheme for example. It is a well-known fact
that females have a longer life expectancy than males (Huang
and Salm 2020). The insurer will hence pay more to a fe-
male insured during her lifetime, compared to a male insured,
on averag (Thiery and Van Schoubroeck 2006). Because of
the directive, a unisex mortality table needs to be used. As
a result, male insureds receive less benefits, while paying
the same premium in total as the female subgroup (Thiery
and Van Schoubroeck 2006). Consequently, male insureds
might leave the annuity-benefit scheme (known as adverse
selection), which makes the unisex mortality table more chal-
lenging to use in the estimation of the life expectancy of
the “unisex” population, where female insureds become the
advantaged subgroup.

Consider a simple actuarial pricing model of annuity insur-
ance. Insureds enter an annuity-benefit scheme at time 0 and
each insured can receive 1 euro at the end of each year for
at most 10 years on the condition that it is still alive. Let pt
denotes how many insureds left in the scheme in the end of
the tth year. Suppose there are p0 insureds in the beginning
and the pricing interest rate is i (i ≤ 1). The formula of
calculating the pure premium is in (6), thus summing up the
present values of payment in each year and then divided by
the number of insureds in the beginning.

premium :=

∑10
t=1 pt × (1 + i)−t

p0
(6)

The most important quality pt is derived from estimating
insureds’ life expectancy. Suppose the insureds can be di-
vided into female and male subgroups. Each subgroup has
one trajectory: {Yt}( · ,f) for female subgroup, {Yt}( · ,m)

for male subgroup for 1 ≤ t ≤ 10, where the superscript i is
dropped. The two trajectories indicate how many female and
male insureds are alive at the end of the tth year, respectively.
Both trajectories can be regarded as linear dynamic systems.
We have

Y
( · ,f)
t = G(f)Y

( · ,f)
t−1 + ω

(f)
t , 2 ≤ t ≤ 10, (7)

Y
( · ,m)
t = G(m)Y

( · ,m)
t−1 + ω

(m)
t , 2 ≤ t ≤ 10, (8)

pt = Y
( · ,f)
t + Y

( · ,m)
t , 1 ≤ t ≤ 10, (9)

where ω(f)
t and ω(m)

t are measurement noises while G(f)

and G(m) are system matrices for female LDS L(f) and male
LDS L(m) respectively. Note that these are state processes,
without any observation process: the number of survivals can
be precisely observed. To satisfy the directive, one needs to
consider a unisex model:

ft = Gft−1 + ωt, 2 ≤ t ≤ 10, (10)
where 2 ≤ t ≤ 10 and ωt and G pertain to the unisex

insureds LDS L. Subsequently, the loss functions for female
(f) and male (m) subgroups are:

( · ,f)
loss (ft) := ||Y ( · ,f)

t − ft|| , 1 ≤ t ≤ 10, (11)
( · ,m)

loss (ft) := ||Y ( · ,m)
t − ft|| , 1 ≤ t ≤ 10, (12)

Since the trajectories {Yt}( · ,f) and {Yt}( · ,m) have the
same length and there is only one trajectory in each subgroup,
the two objective (4)-(5) has the form:

min
ft,1≤t≤10

max

{
10∑
t=1

( · ,f)
loss (ft),

10∑
t=1

( · ,m)

loss (ft)

}
(13)

min
ft,1≤t≤10

{
max

1≤t≤10,s∈{f,m}

{
( · ,s)
loss (ft)

}}
(14)

Personalised Pricing Another application arises in person-
alised pricing (PP). For example, Amazon has been found
(OECD 2018) to sell certain products to regular consumers
at higher prices. This is legal, albeit questionable. In contrast,
gender-based price discrimination (Abdou 2019) violates
(OECD 2018) anti-discrimination laws in many jurisdictions.

Let us consider an idealised example of PP: Consider a
soap retailer, whose customers contain female and male sub-
groups. Each gender has a specific dynamic system modelling
its willing to pay (“demand price” of each subgroup), while
the retailer should set a “unisex” price. As in the discussion
of insurance pricing, we consider subgroups S = {female,
male} and use superscripts (f), (m) to distinguish the related
quantities. Unlike in insurance pricing, the demand price of
each customer is regarded as a single trajectory. More impor-
tantly, since customers might start buying soap, quit buying
the soap, or move to other substitutes at different time points,
those trajectories of demand prices are assumed to be of vary-
ing lengths. For example, a customer starts to buy the soap at
time 3 but decides to buy hand wash instead from time 7.

Let us assume there are |I(f)| female customers and |I(m)|
customers in the overall time window T +. Let Y (i,s)

t denote
the estimated demand price at time t of the ith customer in
subgroup s. These evolve as:

φft = G(f)φ
(f)
t−1 + ω

(f)
t , t ∈ T +, (15)

Y
(i,f)
t = F (f)′φ

(f)
t + ν

(i,f)
t , t ∈ T (i,f), i ∈ I(f),(16)

φmt = G(m)φ
(m)
t−1 + ω

(m)
t , t ∈ T +, (17)

Y
(i,m)
t = F (m)′φ

(m)
t + ν

(i,m)
t , t ∈ T (i,m), i ∈ I(m).(18)

The unisex model for demand price considers the unisex
state mt, the unisex system matrices G,F , and unisex noises
ωt, νt:

mt = Gmt−1 + ωt , t ∈ T +, (19)

ft = F ′mt + νt , t ∈ T +. (20)

For loss(i,f)(ft) := ||Y (i,f)
t − ft||, t ∈ T (i,f), i ∈ I(f) and

loss(i,m)(ft) := ||Y (i,m)
t − ft||, t ∈ T (i,m), i ∈ I(m), the

two objectives (4)-(5) have the form:
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min
ft,t∈T +

max
s∈S

 1

|I(s)|

I(s)∑
i=1

1

|T (i,s)|
∑

t∈T (i,s)

(i,s)

loss(ft)

 (21)

min
ft,t∈T +

{
max

t∈T (i,s),i∈Is,s∈S

{
(i,s)

loss(ft)

}}
(22)

Our Models

We assume that the underlying LDS L(s) =
(G(s), F (s), V (s),W (s)) of each subgroup s ∈ S all
have the form of (1)-(2), while only one subgroup-blind
LDS L can be learned and used for prediction. The
following model in (23)-(24) can be used to describe the
subgroup-blind state evolution directly.

mt = Gmt−1 + ωt, (23)

ft = F ′mt + νt. (24)

for t ∈ T +, where mt represents the estimated subgroup-
blind state and {ft}t∈T + is the trajectory predicted by the
subgroup-blind LDS L.

The objectives (4) and (5), subject to (23)-(24), yield
two operator-valued optimisation problems. Their inputs are
Y

(i,s)
t , t ∈ T (i,s), i ∈ I(s), s ∈ S, i.e., the observations

of multiple trajectories and the multiplier λ. The operator-
valued decision variables O include operators proper F,G,
vectors mt, ωt, and scalars ft, νt, and z. Notice that t ranges
over t ∈ T +, except for mt, where t ∈ T + ∪ {0}. The aux-
iliary scalar variable z is used to reformulate "max“ in the
objective (4) or (5). Since the observation noise is assumed
to be a sample of mean-zero normally-distributed random
variable, we add the sum of squares of νt to the objective
with a multiplier λ, seeking a solution with νt close to zero.
Overall, the subgroup-fair and instant-fair formulations read:

min
O

z + λ
∑
t≥1

ν2t Subgroup-Fair

s.t. z ≥ 1

|I(s)|
∑

i∈I(s)

1

|T (i,s)|
∑

t∈T (i,s)

(i,s)

loss(ft), s ∈ S,

mt = Gmt−1 + ωt , t ∈ T +,

ft = F ′mt + νt , t ∈ T +.
(25)

min
O

z + λ
∑
t≥1

ν2t Instant-Fair

s.t. z ≥
(i,s)

loss(ft) , t ∈ T (i,s), i ∈ I(s), s ∈ S,
mt = Gmt−1 + ωt, t ∈ T +,

ft = F ′mt + νt , t ∈ T +.
(26)

For comparison, we use a traditional formulation that fo-

cuses on minimising the overall loss:

min
O

∑
s∈S

∑
i∈I(s)

∑
t∈T (i,s)

(i,s)

loss(ft) + λ
∑
t≥1

ν2t Unfair

s.t. mt = Gmt−1 + ωt, t ∈ T +,

ft = F ′mt + νt , t ∈ T +.
(27)

To state our main result, we need a technical assumption
related to the stability of the LDS, which suggests that the
operator-valued decision variables (and hence estimates of
states and observations) remain bounded. Let us define the
quadratic module following (Pironio, Navascués, and Acín
2010). Let Q = {qi} be the set of polynomials determining
the constraints. The positivity domain SQ of Q are tuples
X = (X1, . . . , Xn) of bounded operators on a Hilbert space
H making all qi(X) positive semidefinite. The quadratic
module MQ is the set of

∑
i f
†
i fi +

∑
i

∑
j g
†
ijqigij where

fi and gij are polynomials from the same ring. As in (Pironio,
Navascués, and Acín 2010), we assume:
Assumption 1 (Archimedean). Quadratic module MQ of
(25) is Archimedean, i.e., there exists a real constant C such
that C2 − (X†1X1 + · · ·+X†2nX2n) ∈MQ.

Our main result shows that it is possible to recover the
quadruple (G,F, V,W ) of the subgroup-blind L with guar-
antees of global convergence:
Theorem 2. For any observable linear system L =
(G,F, V,W ), for any length T + of a time window, and any
error ε > 0, under Assumption 1, there is a convex optimi-
sation problem from whose solution one can extract the best
possible estimate of system matrices of a system L based on
the observations, with fairness subgroup-fair considerations
(25), up to an error of at most ε in Frobenius norm. Further-
more, with suitably modified assumptions, the result holds
also for the instant-fair considerations (26).

The proof is available in the full version of the paper on-
line (Zhou, Marecek, and Shorten 2020). It relies on the
work of (Pironio, Navascués, and Acín 2010), which shows
the existence of a sequence of convex optimisation prob-
lems, whose objective function approaches the optimum of
the non-commutative polynomial optimisation problem, and
on the work of Gelfand, Naimark, and Segal (Gelfand and
Neumark 1943; Segal 1947; Klep, Povh, and Volcic 2018),
which makes it possible to extract the minimiser of the non-
commutative polynomial optimisation problem from the so-
lution of the convex optimisation problem.

Numerical Illustrations
Generation of Biased Training Data
To illustrate the impact of our models on data with varying
degrees of under-representation bias, we consider a method
for generating data resembling the motivating applications in
Section , with varying degrees of the bias. Suppose there is
one advantaged subgroup and one disadvantaged subgroup,
S = {advantaged, disadvantaged} with trajectories I(a) and
I(d) in each subgroup. Under-representation bias can enter
the training set in the following steps:

11137



1. Observations Y (i,s)
t are sampled from corresponding LDS

L(s). Thus each Y (i,s)
t ∼ L(s).

2. Discard some trajectories in I(d), if necessary, such that
|I(a)| ≥ |I(d)|.

3. Let β(s), s ∈ S denote the probability that an observation
from subgroup s stays in the training data and 0 ≤ β(s) ≤
1. Discard more observations of I(d) than those of I(a)
so that β(a) ≥ β(d). If β(a) is fixed at 1, it can be seen as
the ratio of the number of observations in disadvantaged
subgroup to that of advantaged subgroup and the degree
of under-representation bias can be controlled by simply
adjusting β(d).

The last two steps discard more observations of the disad-
vantaged subgroup in the biased training data, so that the
advantaged subgroup becomes over-represented. Note that
for a small sample size, it is necessary to make sure there is
at least one observation in each subgroup at each period.

Consider that the LDS for both subgroups L(s), s ∈ S
have the same system matrices:

G(s) =

[
0.99 0
1.0 0.2

]
, F (s) =

[
1.1
0.8

]
,

while the covariance matrices V (s),W (s), s ∈ S are sampled
randomly from a uniform distribution over [0, 1) and [0, 0.1),
respectively. The initial states m(s)

0 of each subgroups are 5
and 7. We set the time window to be 20 across 3 trajectories
in the advantaged subgroup and 2 in disadvantaged one, i.e.,
|T +| = 20, |I(a)| = 3 and |I(d)| = 2. Then the bias is in-
troduced according to the biased training data generalisation
process described above, with random β(s), s ∈ S .

Figure 1 shows the forecasts in 10 experiments on this
example. For each experiment, the same set of observations
Y

(i,s)
t , t ∈ T (i,s), i ∈ I(s), s ∈ S is reused and the trajecto-

ries of advantaged and disadvantaged subgroups are denoted
by dotted lines and dashed lines, respectively. However, the
observations that are discarded vary across the experiments.
Thus, a new biased training set is generated in each experi-
ment, albeit based on the same “ground set” of observations.
The three models (25)-(27) are applied in each experiment
with λ of 1, 3, and 5, respectively, as chosen by iterating
over integers 1 to 10. The mean of forecast f and its standard
deviation are displayed as solid curves with error bands.

Effects of Under-Representation Bias on Accuracy
Figure 2 suggests how the degree of bias affects accuracy
with and without considering fairness. With the number of
trajectories in both subgroups set to 2, i.e., |Ia| = |Id| = 2
and β(a) = 1, we vary the degree of bias by adjusting β(d)

within the range of [0.5, 0.9]. To measure the effect of the
degree on accuracy, we introduce the normalised root mean
square error (nrmse) fitness value for each subgroup s ∈ S:

(s)
nrmse :=

√√√√√√
∑

i∈I(s)
∑

t∈T (i,s)

(
Y

(i,s)
t − ft

)2
∑

i∈I(s)
∑

t∈T (i,s)

(
Y

(i,s)
t −mean(s)

)2 ,
(28)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time

9
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11
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Subgroup-Fair
Instant-Fair
Unfair

Figure 1: Forecast obtained using (25)-(27): the solid lines in
primary colours with error bands display the mean and standard
deviation of the forecasts over 10 experiments. For reference,
dotted lines and dashed lines in grey denote the trajectories
of observations of advantaged and disadvantaged subgroups,
respectively, before discarding any observations.
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Figure 2: Accuracy as a function of the degree of under-
representation bias: The boxplot of nrmse(s), s ∈ S against
β(d), where β(d) = [0.5, 0.55, . . . , 0.9], with boxes for the
quartiles of nrmse(s) obtained from 5 experiments, using the
observations in Figure 1.

where mean(s) := 1
|I(s)|

∑
i∈I(s)

1
|T (i,s)|

∑
t∈T (i,s) Y

(i,s)
t .

Higher nrmse(s) indicates lower accuracy for subgroup s,
i.e., the predicted trajectory of subgroup-blind L is further
away from the subgroup.

For the training data, the same set of observations
Y

(i,s)
t , t ∈ T (i,s), i ∈ I(s), s ∈ S in Figure 1 is reused

but |Ia| = |Id| = 2. Thus, one trajectory in the advantaged
subgroup is discarded. Then, the biased training data gener-
alisation process (described above) is applied in each exper-
iment with β(a) = 1 and the values for β(d) selecting from
0.5 to 0.9 at the step of 0.05. For each value of β(d), three
models (25)-(27) are run with new biased training data and
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the experiment is repeated for 5 times. Hence, the quartiles of
nrmse(s) for each subgroup are shown as boxes in Figure 2.

One could expect that nrmse fitness values of the advan-
taged subgroup in Figure 2 to be generally lower than those of
the disadvantaged subgroup (nrmse(d) ≥ nrmse(a)), leaving
a gap. Those gaps narrow down as β(d) increases, simply be-
cause more observations of disadvantaged subgroup remain
in the training data. Compared the to “Unfair”, models with
fairness constraints, i.e., “Subgroup-Fair” and “Instant-Fair”,
show narrower gaps and higher fairness between two sub-
groups. More surprisingly, when nrmse(a) decreases as β(d)

gets close to 0.5, "Subgroup-Fair" model still can keep the
nrmse(d) at almost the same level, indicating a rise in overall
accuracy. This is in contrast with the results of (Zliobaite
2015; Dutta et al. 2020) in classification.

Run-Time
Notice that minimising multivariate operator-valued poly-
nomial optimization problems (25)-(27) is non-trivial, but
that there exists sparsity-exploiting variants (TSSOS) of the
globally convergent Navascués-Pironio-Acín (NPA) hierar-
chy used in the proof of Theorem 2. See (Klep, Magron, and
Povh 2019; Wang, Magron, and Lasserre 2019, 2020; Wang
and Magron 2020). The SDP of a given order in the respective
hierarchy can be constructed using ncpol2sdpa of (Wittek
2015) or the tools of (Wang and Magron 2020) and solved by
sdpa of (Yamashita, Fujisawa, and Kojima 2003). Our im-
plementation is available on-line at https://github.com/Quan-
Zhou/Fairness-in-Learning-of-LDS.

In Figure 4, we illustrate the run-time and size of the re-
laxations as a function of the length of the time window with
the same data set as above (i.e., Figure 1). The grey curve
displays the number of variables in the first-order SDP relax-
ation of "Subgroup-Fair" and "Instant-Fair" models against
the length of time window. The deep-pink and cornflower-
blue curves show the run-time of the first-order SDP re-
laxation of NPA and the second-order SDP relaxation of
TSSOS hierarchy, respectively, on a laptop equipped by Intel
Core i7 8550U at 1.80 Ghz. The results of "Subgroup-Fair"
and "Instant-Fair" models are presented by solid and dashed
curves, respectively. Since each experiment is repeated for
three times, the mean and mean ± 1 standard deviation of
run-time are presented by curves with shaded error bands. It
is clear that the run-time of TSSOS exhibits a modest growth
with the length of time window, while that of the plain-vanilla
NPA hierarchy grows much faster.

An Alternative Approach to COMPAS Dataset
Finally, we wish to suggest the broader applicability of the
two notions of subgroup fairness and instantaneous fairness.
We use the well-known dataset (Angwin et al. 2016) of es-
timates of the likelihood of recidivism made by the Correc-
tional Offender Management Profiling for Alternative Sanc-
tions (COMPAS), as used by courts in the United States. The
dataset comprises of defendants’ gender, race, age, charge
degree, COMPAS recidivism scores, two-year recidivism
label, as well as information on prior incidents. The two-
year recidivism label denotes whether a person got rearrested
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The sample of defendants’ scores are divided into 4 sub-
samples based on race and type of re-offending, distin-
guished by colours. Dots and curves with the same colour
denote the scores of one sub-sample and the trajectory ex-
tracted from the scores respectively. The cyan curve displays
the result of "Subgroup-Fair" model with 4 trajectories.
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Figure 4: The dimensions of relaxations and the run-time of
SDPA thereupon as a function of the length of time window.
Run-time of TSSOS and NPA is displayed in cornflower-
blue and deep-pink curves, respectively, while the grey curve
shows the number of variables in relaxations. Additionally,
the run-time of the COMPAS dataset of Figure 3 using
TSSOS is also displayed as coral-coloured curves. For run-
time, the mean and mean ± 1 standard deviations across 3
runs are presented by curves with shaded error bands.

within two years (label 1) or not (label 0). If the two-year
recidivism label is 1, there is also information concerning the
recharge degree and the number of days until the person gets
rearrested. The dataset also consists of information on ’Days
before Re-offending’, which is the date difference between
the defendant’s crime offend date and recharge offend date.
It could be negatively correlated to the defendant’s actual
risk level while the COMPAS recidivism scores would be the
estimated risk level.
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We choose 119 defendants with recidivism label 1, who
are either African-American or Caucasian, male, within the
age range of 25-45, and with prior crime counts less than
2, with charge degree M and recharge degree M1 or M2.
The defendants are partitioned into two subgroups by their
ethnicity and then partitioned by the type of their recharge
degree (M1 or M2). Hence, we obtain the 4 sub-samples.

In the days-to-reoffend-vs-score plot, such as Figure 3,
dots suggest COMPAS recidivism scores of the 4 sub-
samples against the days before rearrest. Each curve rep-
resents one model, either subgroup-dependent (plotted thin)
or Subgroup-Fair (plotted thick). The thick cyan curve is
the race-blind prediction from our Subgroup-Fair method,
which equalises scores across the two subgroups. Ideally, one
should like to see smooth, monotonically decreasing curves,
overlapping across all subgroup-dependent models. For each
sub-sample, the aggregate deviation from the Subgroup-Fair
curve would be similar to the aggregate deviations of other
sub-samples.

In Figure 3, the dots are far removed from the ideal
monotonically decreasing curve. Furthermore, the subgroup-
specific curves (plotted thin) are very different from each
other (“subgroup-specific models are unfair”). Specifically,
the red and yellow curves are above the sky blue and corn-
flower blue curves (“at the same risk level, white defen-
dants get lower COMPAS scores”). Notice that the subgroup-
dependent models are obtained as follows: we discretise time
to 20-day periods. For each subgroup, we check if anyone re-
offends within 20 days (the first period). If so, the (average)
COMPAS score (for all cases within the 20 days) is recorded
as the observation of the first period of the trajectory of the
sub-sample. If not, there is no observation of this period. We
repeat this for the subsequent periods and for the three other
sub-samples.

In Figure 4, the coral-coloured curve (for the COMPAS
dataset) suggests that the run-time remains modest, even as
the length of the time window grows to 30.

Conclusions

Overall, the two natural notions of fairness (subgroup fair-
ness and instantaneous fairness), which we have introduced,
may help establish the study of fairness in forecasting and
learning of linear dynamical systems. We have presented
globally convergent methods for estimation considering the
two notions of fairness using hierarchies of convexifications
of non-commutative polynomial optimisation problems. The
run-time of standard solvers for the convexifications is inde-
pendent of the dimension of the hidden state.

An interesting direction for further research extends the
two notions of fairness towards distributional robustness
(Hashimoto et al. 2018) and uses the notions of fairness
in constraints (Donini et al. 2018), as well as in the objective.
Following (Agarwal, Dudik, and Wu 2019; Calmon et al.
2017) one could also try to pre-process the observations or
augment the data to remove the under-representation bias,
although this may not be a realistic option in many applica-
tions.
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