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Abstract

Clustering ensemble generates a consensus clustering re-
sult by integrating multiple weak base clustering results. Al-
though it often provides more robust results compared with
single clustering methods, it still suffers from the robustness
problem if it does not treat the unreliability of base result-
s carefully. Conventional clustering ensemble methods often
use all data for ensemble, while ignoring the noises or outliers
on the data. Although some robust clustering ensemble meth-
ods are proposed, which extract the noises on the data, they
still characterize the robustness in a single level, and thus they
cannot comprehensively handle the complicated robustness
problem. In this paper, to address this problem, we propose a
novel Tri-level Robust Clustering Ensemble (TRCE) method
by transforming the clustering ensemble problem to a multi-
ple graph learning problem. Just as its name implies, the pro-
posed method tackles robustness problem in three levels: base
clustering level, graph level and instance level. By consider-
ing the robustness problem in a more comprehensive way, the
proposed TRCE can achieve a more robust consensus cluster-
ing result. Experimental results on benchmark datasets also
demonstrate it. Our method often outperforms other state-of-
the-art clustering ensemble methods. Even compared with the
robust ensemble methods, ours also performs better.

Introduction
Clustering ensemble provides an elegant framework to en-
semble multiple weak base clustering results to generate a
consensus one, and attracts much attention in unsupervised
learning (Strehl and Ghosh 2003; Li, Ding, and Jordan 2007;
Yu et al. 2015; Liu et al. 2015, 2018; Wang et al. 2019;
Li et al. 2019; Zhou et al. 2020; Kang et al. 2020b; Zhou,
Du, and Li 2020; Bai, Liang, and Cao 2020). For exam-
ple, (Li, Ding, and Jordan 2007) applied nonnegative ma-
trix factorization to learn a consensus clustering result; (Liu
et al. 2018) developed a de-noising auto-encoder for clus-
tering ensemble; (Li et al. 2019) used the base clusterings to
evaluate the stability of each instance and assigned all the in-
stances to some stable instances to form a cluster. Although
these clustering ensemble methods can alleviate the robust-
ness problem in single clustering methods to some extent,
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since they use all data for ensemble while ignoring the nois-
es on the data, they still suffer from the robustness problem.

To address this issue, some robust clustering ensemble
methods are proposed (Zhou et al. 2015a; Huang, Lai, and
Wang 2016; Tao et al. 2017, 2019). However, these meth-
ods just focus on one single level of robustness. For exam-
ple, (Zhou et al. 2015a; Tao et al. 2017, 2019) concentrat-
ed on the noises on the connective matrices; (Huang, Lai,
and Wang 2016) paid attention on the graph level of robust-
ness. Unfortunately, in clustering ensemble, the noises are
far more complicated. The noises may exist in the original
data, i.e., some instances are contaminated by noises or out-
liers. The noises may also be introduced when using inap-
propriate clustering methods. For example, we use k-means
to handle non-linear data, which may achieve poor base re-
sults. Therefore, it is not enough to characterize the robust-
ness in one single level. Another problem of these robust
methods is that they only focus on contaminated data, or in
other words, they completely trust the uncontaminated data.
However, even for the uncontaminated data, some data are
easy to handle and some are difficult which need to be han-
dled more carefully. For example, the data in the boundary
of two clusters, are difficult to assign to a cluster. If we deal
with these difficult data too early, the early model may have
not such ability to handle these difficult data and is easy to
be misled by them.

To tackle these two problems, in this paper, we pro-
pose a novel Tri-level Robust Clustering Ensemble (TRCE)
method. Since the clustering result reflects the relationship
between instances, we construct a graph for each base clus-
tering result to represent such relationship. In the graph, each
node represents an instance, and if two instances belong to
the same cluster, there exists an edge between the two corre-
sponding nodes. Then, we tackle the noises on these multi-
ple graphs. Just as its name implies, TRCE deals with noises
on three levels: base clustering level, graph level, and in-
stance level. Firstly, as introduced before, since inappropri-
ate clustering methods may introduce noises, the quality of
base clusterings are different. In the base clustering level of
robustness, we will evaluate the quality of each base clus-
tering, and aim to alleviate the side effects caused by the
bad base clusterings. Secondly, since the multiple graphs are
constructed by unreliable base clusterings, the graphs are al-
so contaminated by noises (Kang et al. 2020a). To handle
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these graph level noises, we explicitly extract noises from
graphs to recover a clean consensus graph. Last but not least,
the original instances may also be contaminated by noises
and outliers, we apply a self-paced learning (Kumar, Packer,
and Koller 2010) to achieve this instance level of robustness.
The self-paced learning automatically and incrementally use
data for learning, where easy data are used first and difficult
ones are then involved gradually (Jiang et al. 2014; Meng,
Zhao, and Jiang 2017; Zhang, Meng, and Han 2017). Thanks
to the self-paced learning, our TRCE can naturally tackle the
second problem introduced before. Note that, the noisy data
or outliers can be regarded as the most difficult data in the
learning, because they may contribute nothing for the learn-
ing. Besides, the uncontaminated data can also be handled
in order of their difficulty. Then, the difficult data, which
may mislead the model, will be involved in learning until the
model has the ability to handle them. Therefore, our TRCE
handles all data in a more sophisticated way.

To fulfil this tri-level robust ensemble method, we careful-
ly design a unified objective function to handle the three lev-
els of robustness simultaneously. Then, we provide an effec-
tive iterative algorithm to optimize the introduced objective
function. The algorithm decomposes the objective function
into several subproblems, and finds the global optima for
each subproblem. At last, we conduct extensive experiments
on benchmark datasets to compare TRCE with state-of-the-
art clustering ensemble methods. The experimental results
show that TRCE can outperform not only the convention-
al clustering ensemble methods but also the state-of-the-art
robust clustering ensemble methods.

It is worthy to highlight the main contributions of this pa-
per as follows:
• We propose a novel robust clustering ensemble method

which tackles the robustness problem in three levels. It
provides a more comprehensive way to deal with noises
than existing robust ensemble methods.

• Different from existing robust clustering ensemble meth-
ods, which only pay attention on the contaminated data,
we plug the robust clustering ensemble into a self-paced
multiple graph learning framework. Due to the self-paced
learning schema, the proposed method can appropriately
handle all contaminated and uncontaminated data.

• We integrate the tri-level robust clustering ensemble and
the self-paced multiple graph learning into a unified ob-
jective function, and designed an iterative algorithm to op-
timize it. In our optimization algorithm, each subproblem
can be solved by finding its global optima. We obtain the
final clustering result in an end-to-end way without any
uncertain postprocessing.

• The experimental results show that the proposed method
outperforms the state-of-the-art clustering ensemble
methods, including the robust ones.

Tri-level Robust Clustering Ensemble
Before introducing TRCE in detail, we introduce some no-
tations. Throughout the paper, the matrices and vectors are
denoted by boldface uppercase and lowercase letters, respec-
tively. For a matrix A, Ai. and A.i represents the i-th row

Figure 1: An illustration of constructing multiple graphs.

and column vector of A, respectively. The (i, j)-th element
of A is denoted as Aij .

Given m base clustering results, we construct m graphs
based on them. In the k-th graph, there is an edge between
the i-th and j-th node if the i-th instance and j-th instance
belongs to the same cluster in the k-th base clustering, and
there is no edge if otherwise. Figure 1 shows an example. In
this example, we have 5 instances (denoted as x1, · · · ,x5)
and 3 base clusterings (denoted as C1, · · · ,C3). In the first
base clustering result, x1, x2 and x3 belong to the first clus-
ter, and x4 and x5 belong to the second cluster. The 3 base
graphs constructed by the 3 base clustering results are shown
in the middle of Figure 1. The goal of our multiple graph
learning is to learn a consensus graph (shown in the right of
Figure 1) by ensembling the multiple base graphs.

More formally, we use S(1), · · · ,S(m) ∈ {0, 1}n×n to
denote the adjacent matrices of the m graphs, i.e., S(k)

ij = 1
if there exists an edge between the i-th and j-th instances in
the k-th graph, and S(k)

ij = 0 otherwise. Then we normal-
ize them by A(k) = (D(k))−1S(k) as probability transition
matrices, where D(k) is a diagonal matrix whose diagonal
elements are D(k)

ii =
∑n
j=1 S

(k)
ij . It is easy to verify that∑n

j=1 A
(k)
ij = 1, andA(k)

ij indicates the probability of jump-
ing in one step from the i-th instance to the j-th instance in a
Markov random walk in the k-th graph. To integrate the mul-
tiple graphs, we need to learn a consensus transition matrix
A ∈ Rn×n from A(1), · · · ,A(m). In the following subsec-
tions, we will introduce how to learn the consensus transition
matrix A by considering the three levels of robustness.

Base Clustering Level of Robustness
A natural way to learn A is to minimize the difference
between A and A(1), · · · ,A(m). Considering that the el-
ements in a row of transition matrix has a clear proba-
bilistic interpretation, we use the Kullback-Leibler diver-
gence to measure the differences. More formally, we min-
imize

∑m
k=1 αk

∑n
i=1 KL(A(k)

i. ,Ai.), where KL(·, ·) is the
Kullback-Leibler divergence. αk is the non-negative weight
of the k-th graph which controls the base clustering level
of robustness, i.e., the worse base clusterings, which are far
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away from the consensus one, will have smaller weights.
Moreover, to learn a consensus clustering result from

A without any postprocessing which may introduce uncer-
tainty and randomness, we wish there are just c connec-
tive components in A. To achieve this, according to (Nie,
Wang, and Huang 2014), we have that the number of con-
nective components in A is equal to the multiplicity of the
eigenvalue 0 of the Laplacian matrix L = D − A+AT

2 ,
where D is a diagonal matrix whose i-th diagonal element
is Dii =

∑n
j=1

Aij+Aji

2 . Thus, we need to impose the con-
straint rank(L) = n − c on A. To sum up, we take the
definition of Kullback-Leibler divergence into it, and obtain
the following objective function

min
A,α

∑m

k=1
αk
∑n

i=1

∑n

j=1
A

(k)
ij log

(
A

(k)
ij

Aij

)
(1)

s.t.
∑n

j=1
Aij = 1, 0 ≤ Aij ≤ 1,∑m

k=1
α−1k = 1, αk ≥ 0, rank(L) = n− c,

where the constraint
∑m
k=1 α

−1
k = 1 is to avoid the trivial

solution.

Graph Level of Robustness
From the robustness point of view, we observe that A
learned by Eq.(1) often contains some noises due to the
unreliability of the base graphs. For example, considering
the case that for the i-th and j-th instances, only one graph
shows that they should be linked by an edge, and the oth-
er m − 1 graphs agree that they should not have an edge.
Without loss of generality, we assume that A(1)

ij > 0 and

all other A(k)
ij = 0 (k = 2, · · · ,m). Obviously, in the con-

sensus graph A, the i-th and j-th instances are very likely
not to have a connection, i.e., Aij should be zero. However,
by minimizing Eq.(1), Aij should be non-zero. If not, con-

sidering the first term A
(1)
ij log

(
A

(1)
ij

Aij

)
, since A(1)

ij > 0, if

Aij = 0, the objective will be infinity large. Thus, this term
prevents Aij being zero, and A may be very dense.

To characterize the noises on A, we define a zero-mean
noise matrix E ∈ Rn×n and apply A + E to represent the
consensus transition matrix and thus A denotes the clean
and sparse consensus matrix. To this end, we extend Eq.(1)
to the following form:

min
A,E,α

m∑
k=1

αk

n∑
i=1

n∑
j=1

A
(k)
ij log

(
A

(k)
ij

Aij + Eij

)
+ λ‖E‖2F

s.t.
∑n

j=1
Aij = 1, 0 ≤ Aij ≤ 1,∑m

k=1
α−1k = 1, αk ≥ 0, rank(L) = n− c,∑n

j=1
Eij = 0, 0 ≤ Aij + Eij ≤ 1, (2)

where ‖E‖2F is the regularized term which imposes the prior
that noises should be as small as possible and λ is a hyper-
parameter to control the noises. The constraints on E makes

sure that A+ E is a legal probability transition matrix, i.e.,∑n
j=1Aij + Eij = 1 and 0 ≤ Aij + Eij ≤ 1.
By introducing the noise matrix E, we explicitly extract

the noises on the consensus graph, which achieves the graph
level of robustness.

Instance Level of Robustness
Besides the noises on the graph, the uncontaminated in-
stances should also be handled carefully. Some instances are
difficult for clustering and may mislead the model in begin-
ning of learning, because the early model may not have the
ability to handle them.

To address this issue, we seamlessly integrate the robust
multiple graph learning into a self-paced learning frame-
work, i.e., we gradually involve instances from easy ones to
difficult ones into ensemble learning. Intuitively, for an easy
instance xi, the m base graphs should agree with each oth-
er on its transition probability of jumping to other instances,
i.e.,

∑m
k=1 αkKL(A(k)

i. ,Ai.+Ei.) should be as small as pos-
sible. To characterize the difficulty of each instance, we in-
troduce a weight vector w ∈ [0, 1]n, i.e., the larger wi is, the
easier the i-th instance is. By introducing the self-paced reg-
ularized term −γ‖w‖1 as suggested in (Kumar, Packer, and
Koller 2010; Jiang et al. 2015; Ren et al. 2019), we obtain
the final objective function:

min
A,E,w,α

m∑
k=1

αk

n∑
i=1

w2
i

n∑
j=1

A
(k)
ij log

(
A

(k)
ij

Aij + Eij

)
+ λ‖E‖2F − γ‖w‖1

s.t.
∑n

j=1
Aij = 1, 0 ≤ Aij ≤ 1,∑m

k=1
α−1k = 1, αk ≥ 0, rank(L) = n− c,∑n

j=1
Eij = 0, 0 ≤ Aij + Eij ≤ 1,

0 ≤ wi ≤ 1, (3)

where γ is an age parameter and becomes increasingly larg-
er in the process of optimization. By minimizing Eq.(3), we
handle all instances (no matter contaminated ones or uncon-
taminated ones) carefully. The contaminated instances can
be regarded as the most difficult or unreliable data, which
may mislead the model, and will not be involved in learn-
ing at the beginning. Even for the uncontaminated instances,
they are used in learning in order of their difficulty. There-
fore, this self-paced learning framework provides a more so-
phisticated way to handle all instances than the conventional
robust methods.

Eq.(3) is our final objective function. It has two character-
s: 1) it is a unified objective function which simultaneously
controls the three levels of robustness; 2) it obtains the fi-
nal consensus clustering results in an end-to-end way, i.e., it
does not need any uncertain postprocessing such as k-means
or spectral clustering.

Optimization
Since Eq.(3) contains the constraint rank(L) = n−cwhich
is hard to deal with directly, we first rewrite this constraint.
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According to Ky Fan Theorem (Fan 1949), by introducing
an auxiliary orthogonal matrix F ∈ Rn×c and a large e-
nough parameter ρ, Eq.(3) can be equivalently rewritten as:

min
A,E,w,F,α

m∑
k=1

αk

n∑
i=1

w2
i

n∑
j=1

A
(k)
ij log

(
A

(k)
ij

Aij + Eij

)
+ λ‖E‖2F − γ‖w‖1 + 2ρtr(FTLF)

s.t.
∑n

j=1
Aij = 1, 0 ≤ Aij ≤ 1,∑m

k=1
α−1k = 1, αk ≥ 0,∑n

j=1
Eij = 0, 0 ≤ Aij + Eij ≤ 1

0 ≤ wi ≤ 1, FTF = I. (4)

Then we will optimize each variable in Eq.(4) while fixing
the other variables.

Optimizing w When optimizing w, we find that the ob-
jective function can be de-coupled into n independent sub-
problems. Considering the i-th one:

min
wi

w2
i bi − γwi

s.t. 0 ≤ wi ≤ 1. (5)

where bi =
∑m
k=1 αk

∑n
j=1A

(k)
ij log

(
A

(k)
ij

Aij+Eij

)
. By set-

ting the derivative w.r.twi to zero, we obtainwi = γ
2bi

. Since
bi ≥ 0, wi ≥ 0. If γ

2bi
> 1, Eq.(5) decreases monotonically

in the range [0, 1], and thus the optima is 1. Therefore, the
closed form solution of Eq.(5) is

wi = min

(
γ

2bi
, 1

)
(6)

Note that large bi means that the multiple graphs hardly
agree with each other on the distribution of the transition
probability of the i-th instance, i.e., the i-th instance is diffi-
cult. Sincewi is proportional to 1

bi
, large bi will lead to small

wi, which means difficult instances will hardly influence the
model. Moreover, γ plays a role as an age parameter. When
γ grows, wi also grows, i.e., more and more instances will
be involved in learning. This reflects the instance level of
robustness.

Optimizing A and E Since A and E are entangled in
both the objective function and the constraints, for simplici-
ty, we introduce an auxiliary variable B = A+E. Note that
2tr(FTLF) =

∑n
i,j=1 ‖Fi. − Fj.‖22Aij =

∑n
i,j=1 ‖Fi. −

Fj.‖22(Bij − Eij). Thus, we can decompose Eq.(4) into the
following two sub-problems w.r.t. B and E, respectively.

min
B

−
n∑
i=1

n∑
j=1

Hij log(Bij) + ρ
n∑
i=1

n∑
j=1

GijBij

s.t. 0 ≤ Bij ≤ 1,
∑n

j=1
Bij = 1. (7)

and

min
E

γ‖E‖2F − ρ
∑n

i=1

∑n

j=1
GijEij

s.t. Bij − 1 ≤ Eij ≤ Bij ,
∑n

j=1
Eij = 0. (8)

where Hij =
∑m
k=1 αkw

2
iA

(k)
ij and Gij = ‖Fi. − Fj.‖22.

Then we solve Eqs.(7) and (8) respectively.
When solving B, Eq.(7) can be de-coupled into n inde-

pendent sub-problems by rows. Considering the i-th one,
note that due to the constraints Bij ≥ 0 and

∑n
j=1Bij = 1,

the constraint Bij ≤ 1 can be dropped safely. Then, by in-
troducing the Lagrange multipliers θ and µj , we obatin its
Lagrange function:

L = −
∑n

j=1
Hij log(Bij) + ρ

∑n

j=1
GijBij

+ θ(
∑n

j=1
Bij − 1)−

∑n

j=1
µjBij (9)

Setting the partial derivative of L w.r.t. Bij to zero, we get:

∂L
∂Bij

= −Hij

Bij
+ ρGij + θ − µj = 0.

Since Eq.(7) is convex, and has a lower bound, a solution
which satisfies the Karush-Kuhn-Tucker (KKT) conditions
is the global optima of this sub-problem. Now, consider its
KKT conditions:

−Hij

Bij
+ ρGij + θ − µj = 0,∑n

j=1Bij = 1,
Bij ≥ 0,
µjBij = 0,
µj ≥ 0.

(10)

Firstly, we compute θ by solving the equation∑
j:Hij 6=0

Hij

ρGij+θ
= 1. Define f(θ) =

∑
j:Hij 6=0

Hij

ρGij+θ
.

Since Hii > 0 and Gii = 0, limθ→0+ f(θ) → +∞,
and limθ→+∞ f(θ) = 0. Moreover, f(θ) is a monotone
decreasing function in the range (0,+∞). Thus f(θ) = 1
has and only has one solution in the range (0,+∞). We
can find this solution by any root finding algorithms. After
obtaining the solution θ, for any j such that Hij 6= 0, we
set Bij =

Hij

ρGij+θ
≥ 0 and µj = 0. For any other j, we set

Bij = 0 and µj = ρGij + θ > 0. It is easy to verify that
all KKT conditions are satisfied, and thus such Bij is the
global optima of Eq.(7).

When solving E, we take E = B − A into Eq.(8) and
find that it can also be de-coupled into n independent sub-
problems. Consider the i-th one:

min
Ai.

n∑
j=1

(
Aij −

(
Bij −

ρGij
2γ

))2

(11)

s.t. 0 ≤ Aij ≤ 1,
∑n

j=1
Aij = 1.

Note that Eq.(11) is a Euclidean projection onto a simplex,
and thus its global optima can be obtained by a standard
method as in (Nie, Wang, and Huang 2014). After obtaining
B and A, we can extract the noises E by E = B − A to
achieve the graph level of robustness.
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Optimizing F When optimizing F, we need to solve the
following sub-problem:

min
F

tr(FTLF) (12)

s.t. FTF = I.

Eq.(12) can be solved by Ky Fan Theorem (Fan 1949), i.e.,
the closed-form solution is the c eigenvectors of L corre-
sponding to the c smallest eigenvalues.

Optimizing α When optimizing α, we obtain the follow-
ing sub-problem:

min
α

∑m

k=1
αkok, (13)

s.t. αk ≥ 0,
∑m

k=1
α−1k = 1.

where ok =
∑n
i=1 w

2
i

∑n
j=1A

(k)
ij log

(
A

(k)
ij

Aij+Eij

)
. Accord-

ing to the Cauchy-Schwarz Inequality, we have

m∑
k=1

αkok

m∑
k=1

α−1k ≥

(
m∑
k=1

√
ok

)2

. (14)

which leads to
m∑
k=1

αkok ≥

(
m∑
k=1

√
ok

)2

. (15)

The equality holds when αk ∝ 1√
ok

. So its closed form so-
lution is:

αk =

∑m
j=1

√
oj

√
ok

. (16)

Note that ok indicates the difference between the k-th base
clustering result and the consensus one, which can be regard-
ed as the quality of the k-th clustering result. The smaller it
is, the better the k-th clustering result is. Since αk ∝ 1√

ok
,

αk indicates the quality of the k-th clustering result. If the
k-th clustering result is better, then its weight αk should be
larger and the k-th clustering result plays a more important
role in the ensemble learning. This achieves the base clus-
tering level of robustness.

Algorithm
Algorithm 1 summarizes the whole TRCE algorithm. Al-
though it involves some complicated sub-problems, we can
find the global optima of each sub-problem. At last, we ob-
tain the clustering result by directly finding the connective
components on A without any uncertain post-processing
like k-means or spectral clustering. Now, we analyse the
time complexity of the proposed method. When optimiz-
ing w, it costs O(n2m) time. When optimizing B, we de-
compose it into n sub-problems, and in each sub-problem,
we suppose the time complexity of root finding algorithm is
O(t). Then optimizing B costs O(nt + n2) time. The Eu-
clidean projection used in optimizing A costs O(n2) time.
Computing F costs O(n2c) time and computing α costs

Algorithm 1 TRCE Algorithm
Input: m base clustering results, number of clusters c, hyper-

parameter λ.
Output: Consensus clustering result C.
1: Construct the adjacent matrices S(1), · · · ,S(m) of the m mul-

tiple graphs from the base results.
2: Obtainm transition matrices A(k) = (D(k))−1S(k). Initialize

A = 1
m

∑m
k=1 A

(m), E = 0, αk = m, γ = 1.

3: Construct Laplacian matrix L = D− A+AT

2
, and initialize F

by solving Eq.(12)
4: while not converge do
5: Compute w by Eq.(6). // Instance level of robustness
6: Compute B by solving KKT conditions Eq.(10).
7: Compute A by solving Eq.(11).
8: Compute E by E = B−A. // Graph level of robustness
9: Compute F by solving Eq.(12).

10: Compute α by Eq.(16). // Base clustering level of robust-
ness

11: Update γ by γ = 1.1 ∗ γ.
12: end while
13: Obtain the consensus clustering result C by finding the c con-

nective components on A.

Datasets #instances #features #classes
AR 840 768 120

Coil20 1440 1024 20
K1b 2340 21839 6
Lung 203 3312 5

Medical 706 1449 17
Tr41 878 7454 10
Tdt2 10212 36771 96
TOX 171 5748 4

UMIST 575 644 20
WarpAR 130 2400 10

Table 1: Information of the datasets.

O(n2m) time. Supposing the number of iterations is T , the
whole time complexity is O(T (n2m + n2c + nt)), which
is comparable with the existing graph based methods (Zhou
et al. 2015b; Tao et al. 2017, 2019). Despite this, we plan to
reduce the computation complexity in the future work.

Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of the proposed method.

Datasets
We use 10 datasets, including AR (Wang, Nie, and Huang
2014), Coil20 (Cai et al. 2010), K1b (Zhao and Karypis
2004), Lung (Hong and Yang 1991), Medical (Zhou et al.
2015b), Tr41 (Zhao and Karypis 2004), Tdt2 (Cai et al.
2007), TOX (Li et al. 2018), UMIST (Wechsler et al. 2012),
WarpAR (Li et al. 2018). The detailed information of these
datasets is shown in Table 1.

Experimental Setup
Following the experimental setup in (Zhou et al. 2015b), we
run k-means 200 times with different random initialization-
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Methods AR COIL20 K1b Lung Medical Tr41 Tdt2 Tox UMIST WarpAR
KM 0.3026 0.5474 0.6726 0.7114 0.3996 0.5626 0.4104 0.4229 0.3974 0.2455

KM-best 0.3243 0.6350 0.8559 0.8675 0.4707 0.6946 0.4460 0.4825 0.4362 0.3192
CSPA 0.3439 0.6380 0.4531 0.4138 0.3500 0.5213 0.2850 0.4246 0.4068 0.2377
HGPA 0.3574 0.5501 0.5326 0.5025 0.2950 0.4894 0.2959 0.3854 0.4031 0.2523
MCLA 0.3427 0.6627 0.7383 0.7084 0.4017 0.5698 0.4000 0.4152 0.4050 0.2323
NMFC 0.3376 0.6464 0.5860 0.6764 0.3789 0.6323 0.3716 0.4269 0.3979 0.2231
RCE 0.3383 0.6295 0.6887 0.7143 0.3851 0.6391 - 0.4105 0.4059 0.2054
MEC 0.2782 0.5727 0.8190 0.7379 0.3627 0.6559 - 0.4304 0.4130 0.2592

LWEA 0.3236 0.5943 0.8279 0.7458 0.4208 0.6719 0.5744 0.4234 0.4052 0.2131
LWGP 0.3407 0.6547 0.7172 0.6498 0.4047 0.6483 0.4288 0.4193 0.4176 0.2292
RSEC 0.2990 0.5358 0.8409 0.8217 0.3490 0.6367 0.4222 0.4041 0.3127 0.2423
DREC 0.3394 0.5463 0.6462 0.6379 0.3926 0.6243 0.3684 0.4205 0.4174 0.2062
TRCE 0.3619 0.7013 0.8899 0.9034 0.4356 0.6812 0.6273 0.4491 0.4410 0.2746

Table 2: ACC results on all the datasets

s to obtain 200 base results. Then we divide them into 10
subsets, with 20 in each one. We apply clustering ensemble
methods on each subset, and report the average results over
the 10 subsets. We compare with the following methods:
• KM, which is the average result of all base clustering.
• KM-best, which is the best result of all base results.
• CSPA (Strehl and Ghosh 2003), which constructs a rela-

tionship between instances in the same cluster to establish
a similarity measure for ensemble.

• HGPA (Strehl and Ghosh 2003), which combines base
results with a constrained minimum cut objective.

• MCLA(Strehl and Ghosh 2003), which transforms the
ensemble into a cluster correspondence problem.

• NMFC (Li and Ding 2008), which uses nonnegative ma-
trix factorization to aggregate base results.

• RCE (Zhou et al. 2015b), which learns a robust consensus
result via extracting the noises in the connective matrices.

• MEC (Tao et al. 2017), which learns a robust consensus
result by using low-rank and sparse decomposition.

• LWEA (Huang, Wang, and Lai 2018), which is a hierar-
chical agglomerative clustering ensemble method based
on local weighting strategy.

• LWGP (Huang, Wang, and Lai 2018), which is a graph
partition clustering ensemble method based on the local
weighting strategy.

• RSEC (Tao et al. 2019), which is a robust clustering en-
semble method based on spectral clustering.

• DREC (Zhou, Zheng, and Pan 2019), which learns a
dense representation for clustering ensemble.
On all data sets and for all methods, the number of clus-

ters is set to the true number of classes. Our method adjusts
γ automatically as introduced in Algorithm 1. The parame-
ter ρ is also automatically decided. We first initialize ρ = 1,
and then, if the rank of L is larger than n− c, which means
the rank constraint is not strong enough, we double it. If its
rank is smaller than n − c, i.e., the constraint is too strong,

we reduce it by half. The only hyper-parameter tuned manu-
ally is λ. We tune it in [10−5, 105]. We use Accuracy (ACC)
and Normalized Mutual Information (NMI) to evaluate the
clustering performance.
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Figure 2: Clustering results on different values of λ.

Experimental Results
Tables 2 and 3 show the ACC and NMI results of all methods
on all datasets, respectively. Note that, on the largest dataset
Tdt2, RCE and MEC run out-of-memory error due to their
high space complexity.

From Tables 2 and 3, we find that our TRCE can easily
outperform KM, which shows the effectiveness of the en-
semble. Moreover, on all datasets, TRCE also performs bet-
ter than other state-of-the-art clustering ensemble methods,
which demonstrates the superiority of our method.

Even compared with other robust clustering ensemble
methods (RCE, MEC and RSEC), TRCE can achieve bet-
ter performance. The reason may be in two folds. Firstly, the
compared methods often pay attention on single level robust.
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Methods AR COIL20 K1b Lung Medical Tr41 Tdt2 Tox UMIST WarpAR
KM 0.6560 0.7065 0.5493 0.5284 0.4209 0.5843 0.6111 0.1374 0.5855 0.2100

KM-best 0.6696 0.7527 0.6853 0.6558 0.4806 0.6713 0.6240 0.2164 0.6173 0.2960
CSPA 0.7030 0.7373 0.4071 0.3712 0.3992 0.5919 0.5589 0.1436 0.5806 0.2036
HGPA 0.7009 0.6710 0.3917 0.3372 0.3613 0.5084 0.5385 0.1083 0.5819 0.2183
MCLA 0.6914 0.7613 0.5944 0.5258 0.4296 0.6044 0.6070 0.1329 0.5962 0.1852
NMFC 0.6898 0.7597 0.4995 0.5202 0.4259 0.6512 0.5930 0.1434 0.5836 0.1968
RCE 0.6759 0.7588 0.6068 0.5248 0.4475 0.6499 - 0.1344 0.5951 0.1781
MEC 0.6098 0.7360 0.6818 0.5617 0.4089 0.6758 - 0.1313 0.5624 0.2058

LWEA 0.6712 0.7377 0.6948 0.5364 0.4185 0.6666 0.7183 0.1236 0.6055 0.1836
LWGP 0.6879 0.7639 0.6115 0.4993 0.4266 0.6535 0.6266 0.1333 0.6091 0.1951
RSEC 0.6030 0.7024 0.6615 0.6027 0.4036 0.6449 0.5243 0.1184 0.4214 0.1882
DREC 0.6770 0.7215 0.5774 0.4647 0.4510 0.6514 0.5971 0.1394 0.6040 0.1835
TRCE 0.7412 0.7924 0.7496 0.7216 0.4622 0.6849 0.7275 0.1541 0.6500 0.3487

Table 3: NMI results on all the datasets

Datasets Metric TRCE-α TRCE-w TRCE-E TRCE

Lung ACC 0.8936 0.8892 0.6847 0.9034
NMI 0.7039 0.6972 0.0000 0.7216

Tdt2 ACC 0.6024 0.6023 0.1806 0.6273
NMI 0.7102 0.7094 0.0000 0.7275

Table 4: Ablation study on Lung and Tdt2.

However, our method has a mechanism to control three lev-
els of robustness: base clustering level, graph level and in-
stance level. Therefore, TRCE provides a more sophisticat-
ed framework for robustness. Secondly, different from other
robust methods which focus on contaminated data, the pro-
posed one applies the self-paced learning which also consid-
ers the uncontaminated data. For those uncontaminated data,
TRCE involves them in the ensemble learning in order of d-
ifficulty, so that the side effects caused by the difficult data
would be alleviate because TRCE uses them for learning un-
til it is strong enough. Therefore, our self-paced framework
provides a more finely way to handle all instances (including
the contaminated and uncontaminated ones).

At last, on most data sets, TRCE is comparable with or
even better than KM-best. Note that, TRCE does not need
to exhaustively search on the pre-defined pool of base clus-
terings. Moreover, it only takes base results as input without
accessing original data or labels. This also well demonstrates
the effectiveness of our method.

Ablation Study
As a tri-level method, we turn off each level respectively
and get three degenerated versions: TRCE-α (without base
clustering level, i.e., α = 1), TRCE-E (without graph level,
i.e., E = 0), and TRCE-w (without instance level, i.e., w =
1). We show the results on Lung and Tdt2 in Table 4. The
results on other datasets are similar.

From Table 4, we find that TRCE performs better than
all three degenerated versions. It well demonstrates the ef-
fectiveness of the proposed tri-level model. Moreover, com-
pared with TRCE-α and TRCE-w, TRCE-E gets poor result-
s. As discussed before, if we drop E, A will be very dense

and may only contain one connective components, i.e., it
puts all instances into one cluster. That is why the NMI of
TRCE-E is often zero. So the graph level is the most crucial.
By further considering the base clustering level and instance
level robustness, the performance of the proposed method
can be improved to some extent.

Parameter Study
In our method, there is only one hyper-parameter (λ) which
needs to be tuned manually. Figure 2 shows the ACC and
NMI results with different values of λ on COIL20 and Tr41
datasets. The results on other datasets are similar. From Fig-
ure 2, we find that our method can achieve good performance
when λ is in the range [10−2, 101].

If λ is too small, E would be large, and thus the model
may mistake useful information for noises. If λ is too large,
to optimize the objective function Eq.(4), E should be close
to all-zero matrix. As discussed before, the numbers of con-
nective components may be smaller than c and caused poor
performance. In the extreme case (e.g. λ = 105), there is on-
ly one connective component, which leads to the zero NMI.

Conclusion
In this paper, we proposed a novel tri-level robust cluster-
ing ensemble methods with self-paced multiple graph learn-
ing. We transformed clustering ensemble task to a multiple
graph learning problem by constructing the transition ma-
trices from the base clustering results. In the multiple graph
learning, we considered three levels of robustness: base clus-
tering level by assigning a weight on each base clustering re-
sult; graph level by directly extracting the noises on the con-
sensus graph; instance level by applying self-paced learning
on the data. We carefully designed a unified objective func-
tion to characterize the three levels of robustness simulta-
neously. Then we provided an effective algorithm to opti-
mize the objective function. At last, we conducted extensive
experiments on benchmark datasets and shew that the pro-
posed TRCE outperformed other state-of-the-art clustering
ensemble methods, including the robust clustering ensemble
methods.
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