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Abstract

Humans can abstract prior knowledge from very little data and
use it to boost skill learning. In this paper, we propose routine-
augmented policy learning (RAPL), which discovers routines
composed of primitive actions from a single demonstration
and uses discovered routines to augment policy learning. To
discover routines from the demonstration, we first abstract
routine candidates by identifying grammar over the demon-
strated action trajectory. Then, the best routines measured by
length and frequency are selected to form a routine library. We
propose to learn policy simultaneously at primitive-level and
routine-level with discovered routines, leveraging the temporal
structure of routines. Our approach enables imitating expert
behavior at multiple temporal scales for imitation learning and
promotes reinforcement learning exploration. Extensive exper-
iments on Atari games demonstrate that RAPL improves the
state-of-the-art imitation learning method SQIL and reinforce-
ment learning method A2C. Further, we show that discovered
routines can generalize to unseen levels and difficulties on the
CoinRun benchmark.

Introduction
Extensive evidence from cognitive psychology and neuro-
science suggests that humans are remarkably capable of ab-
stracting knowledge from very few observations to boost
practice in new scenarios. For instance, behavioral experi-
ments on the Atari games (Tsividis et al. 2017) have demon-
strated that human game players could learn from a video
of one episode and earn more than double scores than those
who do not watch the video. On the contrary, previous Learn-
ing from Demonstrations (LfD) approaches either require a
large amount of pre-collected data (Esmaili, Sammut, and
Shirazi 1995), an active oracle (Ross, Gordon, and Bagnell
2010), or a family of similar tasks (Kipf et al. 2019). In this
paper, we focus on the following question: how can a single
demonstration promote policy learning?

Two challenges exist when learning from a single demon-
stration. First, the agent would often drift away from the
few seen expert observations and not return to demonstrated
states. Second, high-dimension value function approximators
such as deep neural networks (Mnih et al. 2015) may over-fit
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the few demonstrated state-action pairs and cannot overcome
unseen environment dynamics. We propose to abstract rou-
tines from the demonstration via a non-parametric algorithm
and use the routines to help policy learning to address these
problems. This idea can alleviate the out-of-distribution prob-
lem because routines force the agent to follow segments of
the demonstration. Besides, the process of decomposing the
demonstration is non-parametric, making the learned policy
generalizable to unseen states.

The overview of the proposed approach is shown in Fig-
ure 1. A library of routines that represent useful skills is
abstracted from the demonstration. The routines can be used
in two settings. First, the agent could imitate expert behav-
iors at multiple temporal scales without access to the reward
signal. Second, in reinforcement learning, the abstracted rou-
tines can promote deeper exploration and long-range value
learning. However, previous option learning approaches must
rely on reward signals (Bacon, Harb, and Precup 2016; Stolle
and Precup 2002; Sutton, Precup, and Singh 1999).

We propose a two-phase model for routine discovery. Dur-
ing the first phase, we adopt a non-parametric algorithm,
Sequitur (Nevill-Manning and Witten 1997), to discover the
structure of the demonstration. Each element in the structure
is treated as one routine proposal. In the second phase, we
select the best proposals by the frequency and lengths of rou-
tine candidates to form a routine library. Too similar routine
candidates are pruned to keep the parsimony of the routine
library. This model can effectively discover routines without
a time-consuming training procedure.

The discovered routines are then used as higher-level ac-
tions to boost exploration and policy learning. A naı̈ve ap-
proach is to run an off-the-shelf policy learning algorithm
based on the augmented action space composed by routines
and action primitives (Durugkar et al. 2016; Chang et al.
2019). The problem of such an approach is that it ignores
the inner structure of routines, so experiences from routine
execution are exclusively used to update values at the routine
level, which would slow down value learning at the primitive
level. Such conflict turns to be a bigger issue as the number
of routines grows. To address this problem, since the routines
are temporally decomposable, we reuse routine execution
experiences to update the value function at the primitive level.
Our approach harmonizes the relationship between routines
and primitives and has stronger performance when utilizing
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Figure 1: Schematic of routine-augmented policy learning
(RAPL). In the examples, the green ball represents an agent,
which needs to step on every square to change its color (a
mini version of Qbert from Bellemare et al. (2012)). a: We
propose to discover a library of routines from a single demon-
stration. The abstracted routines can be applied to augment
both imitation learning and reinforcement learning. b1: For
imitation learning (no reward signal), the discovered routines
can help the agent imitate the expert’s behavior at multiple
temporal scales. b2: For reinforcement learning (with reward
signal), routines can help exploration as policy shortcuts. The
experiences from routine execution are fully exploited to con-
duct value approximation at both the routine level and the
primitive level.

more and longer routines.
This paper’s main contribution is routine-augmented pol-

icy learning (RAPL): an approach to discover routines from
a single demonstration and use them to augment policy learn-
ing. Through extensive experiments on the Atari benchmark
(Bellemare et al. 2012), we find that our approach can im-
prove both A2C (Mnih et al. 2016) and SQIL (Reddy, Dra-
gan, and Levine 2019) on most of the games. Moreover,
we conduct generalization experiments on CoinRun (Cobbe
et al. 2018) and observe that the abstracted routines can suc-
cessfully generalize to unseen levels and harder cases. Our
code is now available at https://github.com/sjtuytc/AAAI21-
RoutineAugmentedPolicyLearning.

Related Work

Imitation Learning. The goal of imitation learning is to
learn a policy from the demonstration (Argall et al. 2009).
Behavior Cloning (Esmaili, Sammut, and Shirazi 1995) only
succeeds with a large amount of data. To efficiently leverage
the demonstrations, GAIL (Ho and Ermon 2016) utilizes ad-
versarial training to prioritizes the demonstration over others.
Our approach is different from those approaches because
they do not consider discovering higher-level actions from
the demonstrations. Besides, we only assume access to one

demonstration and need neither a large number of demonstra-
tions nor a family of similar tasks (Duan et al. 2017).

Demonstrations Guided RL. Reinforcement Learning (RL)
requires huge time costs and extensive sampling to learn a
good strategy (Thrun 1992; Pathak et al. 2017). Since humans
may have prior knowledge of the given task (Wingate et al.
2011), much recent work (Hester et al. 2018; Vecerik et al.
2017; Kang, Jie, and Feng 2018; Nair et al. 2018) proposes
to leverage demonstrations to help RL. These methods add
extra costs in policy learning to penalize the deviation be-
tween the learned and the expert policy. Another approach
(Salimans and Chen 2018) utilizes one demonstration to play
Montezuma’s Revenge, a hard exploration game, by resetting
the agent to states in the demonstration. These methods have
not considered discovering routines from the demonstration.
Moreover, DQfD-based (Hester et al. 2018; Vecerik et al.
2017; Kang, Jie, and Feng 2018) approaches assume access
to reward signals, while our proposed algorithm can also
improve imitation learning from one demonstration.

Macro-Actions. Macro-actions are temporally extended ac-
tions built on primitive actions. In robotics, the classical
STRIPS system (Fikes and Nilsson 1971; Minton 1985; Daw-
son and Siklossy 1977; Fikes, Hart, and Nilsson 1972; Mc-
Govern and Sutton 1998) uses predefined routines to acceler-
ate making plans. Notably, a few concurrent works consider
the discovery of macro actions from the agent’s good experi-
ences (Chang et al. 2019; Christodoulou et al. 2019; Garcia,
da Silva, and Thomas 2019). Our work is different from
them in several folds. First, they adopt an off-the-shelf RL
algorithm to train over an action space of macro-actions and
primitives. But we propose an efficient and sound manner
to train a routine policy. Besides, we propose using routines
to augment imitation learning, but they only study adopting
macro-actions under reinforcement learning. Third, we do
not require the knowledge or the approximation of the en-
vironment dynamics, different from Garcia, da Silva, and
Thomas (2019). We compare to Durugkar et al. (2016) in
experiments.

The Option Frameworks. Our work is also related to lit-
erature under the option framework which learns options
specified by an initialization set, an intra-option policy, and a
termination condition (Randlov 1999; Barto and Mahadevan
2003; Bacon, Harb, and Precup 2016; Machado, Bellemare,
and Bowling 2017; Riemer, Liu, and Tesauro 2018; Kulkarni
et al. 2016; Le et al. 2018). Our idea of learning at multiple
temporal scales originates from Hierarchical Reinforcement
Learning (Kulkarni et al. 2016), which jointly learns a meta-
controller over options and bottom-level modules to achieve
the targets specified in each option. No demonstrations are
involved in this work. PolicyBlocks (Pickett and Barto 2002)
attempts to discover reusable options from optimal policies.
However, it requires a family of tasks to discover options.
Some recent work (Fox et al. 2017; Krishnan et al. 2017;
Kipf et al. 2019; Shankar et al. 2020) proposes to discover
options from demonstrations and train a controller upon ab-
stracted options. Unlike options adopted in these approaches,
our routines are state-independent, and we leave the job of

11025



connecting the state with higher-level actions to the phase
of policy learning. Furthermore, learning sub-task policies
would consume a large number of demonstrations to over-
come unseen dynamics, while our approach requires only
a single demonstration. We compare to two option learn-
ing baselines (ComPILE (Kipf et al. 2019) and OptionCritic
(Bacon, Harb, and Precup 2016)) in our experiments.

Routine-Augmented Policy Learning (RAPL)
Model Basic

MDPs. During a timestep t on an Markov Decision Pro-
cess (MDP) Γ, the agent chooses an action at from a prede-
fined primitive action set A after receiving an observation
state st ∈ S . The environment provides a transition function
T (st, at), a reward rt (not available in imitation learning),
and a discount factor γ. The core problem of an MDP is to
find a policy function π(at|st). In this paper, we focus on
MDPs with high-dimensional states and discrete actions.

Routines and Routine Policies. We define a routine ρ to
be a sequence of primitive actions (a(1), a(2), ..., a(|ρ|)) and
|ρ| to be its length. The notion of routine appeared in Fikes
and Nilsson (1971) and we emphasis that routines are ab-
stracted from demonstrations in this paper (different from
hand-crafted macro actions). A routine library L is defined
to be a set of discovered routines for a task. After routines
are introduced, an agent can choose one routine ρt ∈ L or
a primitive action at ∈ A based on a state st ∈ S. When a
routine ρt is chosen, the primitive actions in ρt are executed
sequentially, and the agent would make the next decision after
the execution of a(|ρt|). For convenience, we use L̃ = A ∪ L
to represent the routine-augmented action space and ρ̃ ∈ L̃
to represent an extended routine. Plus, we define |ρ̃| to be
the length of ρ̃ (the length of a primitive action is one). The
goal is to find a routine policy π(ρ̃t|st), which specifies the
distribution of extended routines for a state at timestep t.

Routine Discovery
We propose a two-phase algorithm for routine discovery from
a single demonstration. During the first phase, we construct a
set of routine proposals from the demonstration. After that,
we select the best routines from the routine candidates mea-
sured by frequency and length. Those selected best routines
form a routine library to augment policy learning. The pseudo-
code of routine discovery is provided in the supplementary
material.

Routine Proposal. The key idea is that one can decompose
the demonstration and consider each segment as a routine
proposal. We adopt a non-parametric algorithm, Sequitur
(Nevill-Manning and Witten 1997), to recover the structure
of the demonstration. Sequitur takes the demonstrated action
trajectory as input and outputs a context-free grammar gener-
ating the whole action sequence. The grammar is represented
as a set of rules. Each rule in the grammar connects from
a variable to a sequence of variables. Sequitur introduces
intermediate variables, each of which can be transferred to

a sequence of terminal variables (variables that do not con-
nect to any variables in the rules). Each terminal variable
corresponds to a primitive action in the demonstrated ac-
tion sequence. Therefore, each intermediate variable can be
considered as a routine candidate. We refer readers to Nevill-
Manning and Witten (1997) for more details about Sequitur.

Routine Selection. After acquiring the routine candidates,
we use a selection procedure to limit the routine library’s
size to be K, a hyper-parameter. We adopt a hybrid metric,
considering both the frequency and length of the routine
proposals. On the one hand, routines frequently appear in
the demonstration may entail useful skills to conquer tasks.
On the other hand, we encourage selecting longer routines to
encode more expert policy patterns. Denote the occurrence
time of one routine ρ in the demonstrated action sequence to
be f(ρ), and its length to be |ρ|. The score of a routine can be
written as f(ρ)+λlength|ρ|, where λlength is a balancing factor.
To prevent introducing too many similar routines, we only
leave the routine with the highest score when similar routines
are detected. The similarity is measured by the Levenshtein
distance (Miller, Vandome, and McBrewster 2009), which
is the edit distance of two sequences. Finally, the K routine
candidates with the highest scores are selected to form a
routine library.

Routine Policy Learning
After introducing routine library L, the agent’s action space
becomes L̃ = A ∪ L. One naı̈ve approach is to regard rou-
tines as black-box actions and use an off-the-shelf policy
learning algorithm to train an agent with the augmented ac-
tion space L̃ (Durugkar et al. 2016; Garcia, da Silva, and
Thomas 2019). Such an approach fails to consider the tempo-
ral structure of routines and would slow down policy learning
when L̃ consists of more and longer routines. We propose
to reuse experiences at multiple temporal scales to update
policy efficiently.

We instantiate this idea in two settings. On the one hand,
when the reward is not available, routines are used to augment
SQIL (Reddy, Dragan, and Levine 2019), a state-of-the-art
imitation learning algorithm, to enable imitation learning
over multiple temporal scales. On the other hand, we use
routines to promote the standard reinforcement learning algo-
rithm A2C. We formulate the learning targets for those two
algorithms in the following paragraphs.

RAPL-SQIL. SQIL (Reddy, Dragan, and Levine 2019) is
a recently proposed simple yet effective imitation learning
approach. It gives all the experiences from the demonstration
a constant reward r = 1. Besides, all the newly explored
experiences are given a reward r = 0. This can encourage the
agent to go back to the demonstrated states. The demonstra-
tion is represented as Dprim, where each element in Dprim is a
tuple (st, a, st+1). We find all the occurrences of every dis-
covered routine ρ ∈ L in the demonstrated action sequence.
Combining each occurrence with the states before and after
routine execution in the demonstration, we get a higher-level
demonstration Droutine. Each entry in Droutine is represented
as (st, ρ, st+|ρ|), where st and st+|ρ| are the states before and
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after the execution of ρ correspondingly. Therefore, Droutine
and Dprim contain experiences in routine-level and primitive-
level accordingly. The squared soft Bellman error is given
as

δ2(D, r) =
1

|D|∑
(st,ρ̃,st+|ρ̃|)∈D

(
Qθ(st, ρ̃)−Qtarget(ρ̃, st+|ρ̃|, r)

)2
,

(1)
Qtarget(ρ̃, st+|ρ̃|, r) = Rsq(ρ̃, r)+

Γ(ρ̃) log

∑
ρ̃′∈L̃

exp
(
Qθ
(
st+|ρ̃|, ρ̃

′)) ,

(2)
where Rsq(ρ̃, r) and Γ(ρ̃) are the reward function and the
discount factor defined for the extended routine ρ̃. Since the
execution of routines connects two states with an interval
of |ρ̃|, we define the extended routine’s reward function to
be the sum of discounted primitive rewards and its discount
factor to be λ discounted by |ρ̃| times. Formally,

Rsq(ρ̃, r) =

|ρ̃|∑
τ=1

γτ−1r, Γ(ρ̃) = γ|ρ̃|. (3)

The final loss of SQIL with routines is

LSR = δ2(Dprim ∪ Droutine, 1) + λsampleδ
2(Dsample, 0), (4)

where Dsample represents the collected experiences of inter-
actions with the environments and λsample is the balancing
hyperparameter between the demonstrated and explored tran-
sitions.

RAPL-A2C. We apply the augmented action space to a state-
of-the-art reinforcement learning method Advantage Actor
Critic (A2C) (Mnih et al. 2016). A2C with routines learns
a policy function π(ρ̃t|st; θπ) and a state value function
V (st; θv). We compute two advantage functions to back-
track delayed rewards to the current state, differing in their
temporal granularity. In the first advantage function Aroutine,
we compute the return from N -step of routine experiences.
Denote the explored on-policy experiences of routine execu-
tion to be {(stτ , ρ̃tτ , Rtτ , stτ+1)|0 ≤ τ ≤ N − 1}, where
ti = t0 +

∑i−1
τ=0 |ρ̃tτ |. Note the total primitive steps are∑N−1

τ=0 |ρ̃tτ |, which could be much larger than N . The re-
ward of a routine is the sum of discounted primitive rewards,
so we have Rti =

∑ti+1−1
τ=ti

γτ−tirτ . Then we can write the
routine-level advantage function as

Aroutine =
N−1∑
i=0

γti−t0Rti + γtN−t0V (stN )− V (st0). (5)

In the second advantage function, we take care of the
primitive-level value approximation and compute N -step
bootstrapping for primitives. From the experiences of rou-
tine execution, we randomly sample an N -step consecutive
primitive experience, represented as {(sτ , aτ , rτ , sτ+1)|tj ≤

Figure 2: Relative performance of RAPL-A2C over A2C
on Atari. Denote SR as the score of RAPL-A2C and SA is
the score of A2C. The relative performance is calculated by
(SR − SA)/|SA| × 100%. Each number is averaged over
five random agents and we also plot the stand error of the
numbers.

τ ≤ tj + N − 1} (note that we can get access to the inter-
mediate states during routine execution). Then we give the
primitive-level advantage function as

Aprim =

N−1∑
i=0

γirtj+i + γNV (stj+N )− V (stj ). (6)

To optimize the policy function, we pose a policy gradient
loss and an entropy loss:

Lpolicy = −Aroutine log π(ρ̃t|st0 ; θπ), (7)

Lentropy =
∑
ρ̃

π(ρ̃|st0 ; θπ) log π(ρ̃|st0 ; θπ). (8)

The final loss for A2C with routines is
LAR = E(Lpolicy + λentropyLentropy

+ λvalue(‖Aroutine‖2 + λprim ‖Aprim‖2)),
(9)

where the expectation is taken over all sampled experiences.
We denote λvalue, λprim, λentropy to be the balancing factors for
each loss term.

Experiments
We investigate the following questions by experiments: 1)
Does RAPL improve imitation learning and reinforcement
learning methods? 2) Does our approach outperform other
baselines to learn from demonstrations? 4) How does our
approach perform when scaling to more and longer routines?
4) Can discovered routines generalize to unseen scenarios?
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Figure 3: Training curves on eight randomly selected Atari games in comparison with several RL baselines. We plot both the
mean and standard deviation in those curves across five agents with random seeds.

Alignment (± std) Mean (± std)

BC 0.18 (± 0.03) 18.3% (2.1%)
GAIL 0.16 (± 0.08) 26.4% (1.6%)
SQIL 0.28 (± 0.07) 29.4% (3.2%)

RAPL-SQIL 0.34 (± 0.07) 36.1% (± 3.6%)

Table 1: Comparing with several imitation learning baselines
on 33 Atari games. We shown both alignment scores (defined
in Eq. 10) and mean of human-normalized scores (Mnih
et al. 2015) which indicates the alignment performance with
regarding to the demonstration. Each number in the table is
averaged over five random seeds.

Experimental Setting

Environment Description. Our experiments are conducted
on the Atari benchmark (Bellemare et al. 2012) and Coin-
Run (Cobbe et al. 2018). We use 33 Atari games selected by
Sharma, Lakshminarayanan, and Ravindran (2017) (includ-
ing all the games in their experiments expect for Koolaid that
is not supported in our experiment platform Gym (Brock-
man et al. 2016)). We use a frame-skip of 4, a frame-stack
of 4, and the minimal action space (Bellemare et al. 2012).
We use the convolutional neural network described in Mnih
et al. (2015) on Atari games. CoinRun is a recent bench-
mark that has different levels that enable quantifying the
generalization ability of RL methods. It also provides two
difficulties modes: easy and hard. We adopt a minimal action
space composed of Left, Down, Up, Right, Nope
for the convenience of presentation. We do not paint velocity
information in the observation. No frame-stack is used in

CoinRun as in Cobbe et al. (2018). For CoinRun, we use the
IMPALA-CNN architecture (Espeholt et al. 2018). All the
environmental settings are kept the same for all approaches
to ensure fairness.

Demonstration Collection. For all the games, we only use
one demonstration generated by a trained A2C agent. We
use λvalue = 0.5 and λentropy = 0.01 to balance the value
loss and entropy loss accordingly. We set λprim = 1.0 when
using routine augmentation. The optimizer is RMSProp with
a learning rate 7× 10−4, a linear decay of 10−5 per timestep.
We use entropy regularization with β = 0.02. The return
is calculated for N = 5 steps. Each agent is trained for 10
million steps.

Routine Discovery. In all experiments, we set the balancing
factor between frequency and length to be λlength = 0.1.
Moreover, the number of routines is set to K = 3. We would
leave the best routine between routines whose Levenshtein
distance is smaller than α = 2. These hyper-parameters
are coarsely selected by validating on a few games (refer to
Supplementary for details), and they are kept all the same for
all the other games.

Imitation Learning with Routines
We validate whether discovered routines can improve SQIL
(Reddy, Dragan, and Levine 2019) and compare our results
with Behavior Cloning (BC) (Esmaili, Sammut, and Shirazi
1995), which conducts supervised learning from demonstra-
tion data without any environment interaction. Moreover, we
compare with a standard model-free imitation learning algo-
rithm GAIL (Ho and Ermon 2016). We thank the author of
SQIL (Reddy, Dragan, and Levine 2019) for providing the
implementation of these algorithms. As described in Reddy,
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Figure 4: Generalization curves on CoinRun. We use ”Levels”
and ”Difficulties” to indicate generalization to unseen levels
and difficulties accordingly. We show both the mean and the
standard deviation across five random seeds.

Dragan, and Levine (2019), we use λsample = 1. The opti-
mizer is Adam (Kingma and Ba 2015) with a learning rate
10−3. The agent is trained via 105 on-policy rollouts. Each
score reported is the average reward on 100 episodes after
training.

We propose a metric of alignment score to measure how
well the imitator imitates the expert. Given the demonstrated
action trajectory ιd and the action trajectory produced by the
trained agent ιt (note ιt is padded or cut to have the same
length with ιd), we compute the alignment score s as

s = 1− D(ιd, ιt)

|ιd|
, (10)

where D is the Levenshtein distance and |ιd| denotes the
length of the demonstration.

We present the results in Table 1. We notice that RAPL-
SQIL could help the agent perform in line with the demonstra-
tion. The agent effectively learns when to use routine through
a single demonstration and environmental interactions. The
results indicate that routines can effectively force the agent
to follow the patterns of the single demonstration. Besides,
this fact suggests that imitating expert’s policy at multiple
temporal scales would enhance imitation learning.

Reinforcement Learning with Routines
We first study whether routine discovery can improve model-
free reinforcement learning method A2C (Mnih et al. 2016).
We then compare with a recent proposed parametric routine
discovery approach ComPILE (Kipf et al. 2019). ComPILE

Figure 5: The scalability of our approach on Atari games.
Each number represents the relative performance over A2C
averaged on 33 Atari games. Mean and standard error over
five random agents are shown in the figure.

Figure 6: Comparison of ablated routine discovery models
on Atari games. Mean and standard error over five random
agents are shown in the figure.

first decomposes the demonstration into segments via a para-
metric recognition model; it then trains sub-policy and the
termination condition for each segment via supervised learn-
ing. After that, it trains an A2C controller over an augmented
space composed of those segments and primitives. We fur-
ther compare to an option learning baseline, OptionCritic
(Bacon, Harb, and Precup 2016), which is also based on the
actor-critic architecture and uses the two-layer optimization
of Bellman targets. For all the agents trained with A2C, we
use the same hyper-parameters used in expert training.

We list the relative performance of routine-augmented
A2C over A2C in Figure 2, which indicates that our approach
achieves the same or better performance in 25 out of 33
games. This fact indicates that the routines discovered from
the demonstration can effectively enhance the exploration
of reinforcement learning. The training curves of compar-
ison on Atari games are shown in Figure 3. Our approach
outperforms baselines on most of the games. We notice that
ComPILE usually deteriorates the baseline of A2C. The first
reason for this is that ComPILE requires many demonstra-
tions from a family of tasks to train the sub-task policies and
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termination conditions. When only a single demonstration
of a task is given, those parametric policies and conditions
cannot generalize to unseen states. The OptionCritic does not
use the demonstration but uses more parameters to model
the option policy, intra-option policy, and termination condi-
tions. Therefore, it achieves relatively limited performance
gain over A2C. In contrast, our proposed approach success-
fully discovers effective routines from a single demonstration,
which further generalizes to states that are not seen from the
demonstration.

Scalability of RAPL
We study the performance of RAPL when scale to more or
longer routines in comparison with a naı̈ve baseline MacroAc-
tion (Durugkar et al. 2016). MacroAction appends routines
into the agent’s action space and adopts an off-the-shelf A2C
algorithm to train the controller. To ensure fairness, we adopt
the same routines discovered from the demonstration for
MacroAction.

The results are shown in Figure 5. Our approach performs
better on more and longer routines. The first reason is that
MacroAction does not reuse the experience from routine
execution to update the value function at the primitive-level as
in Eq. 6. So when using longer routines, the value function’s
bootstrap involves too many primitive steps (they do not
interrupt during the execution of routines (Sutton, Precup,
and Singh 1999)). Therefore the value estimation of middle
states during execution is less accurate, leading to inferior
performance. When using more routines, RAPL-A2C can
efficiently share experiences of routines to primitives, so
more routines deteriorate the performance to a less extent.
Furthermore, it does not take care of the temporal discount
relationship when the execution of routines triggers temporal
abstraction. For example, it defines the reward of a routine
execution to be the sum of rewards during its execution,
which contradicts to Eq. 5.

Effectiveness of Routine Discovery
We compare the full model (Full) to the following ablated
versions to validate routine discovery effectiveness. Each
model is tested on eight Atari games listed in Figure 3. (1)
Random Routines (RR), where each routine is generated
randomly. (2) The proposal by Enumeration (PbE) where we
enumerate all the possible combinations of primitive actions
to form routine candidates. (3) Random Fetch (RF) where we
random fetch sub-sequences from the demonstration to form
routines. (4) Imperfect Demonstration (ID) where the expert
is only trained with 1 million steps. (5) Repeat (RP), where
the routines are the repetition of most frequently used atomic
actions in the demonstration (Sharma, Lakshminarayanan,
and Ravindran 2017).

Despite the specified ablated component, other details are
the same as the full model (including the number and the
length of each routine). We run each model for five random
seeds and report both the mean and standard deviation in
Figure 6. We observe that ablating any of the components
would harm the performance of discovered routines. Random
Routines and Proposal by Enumeration perform worst among

all the models because they do not leverage the demonstra-
tion’s information and only select routines by the heuristic.
The inferior performance of Random Fetch suggests it is
beneficial to propose routines via Sequitur. Our model also
outperforms simply repetition. We can also find that our ap-
proach is robust to imperfect demonstrations because useful
skills exist in the imperfect experts.

Generalization of Routines
We conduct various experiments on CoinRun to validate the
generalization ability of RAPL. We train two agents by both
A2C and RAPL-A2C on the same 100 easy levels. Then we
test them on 100 unseen easy levels to test the generalization
ability to unseen levels. After that, we test both agents on 100
hard levels to test the generalization ability across difficulties.

The results are shown in Figure 4. Both A2C and RAPL-
A2C fit well in the training levels. Notably, we find RAPL-
A2C improves generalization ability. On the one hand, we
observe that the discovered routines can successfully gener-
alize to unseen levels. On the other hand, discovering useful
skills from relatively simple domains might also promote pol-
icy learning in unseen hard domains. These facts indicate that
routines may alleviate over-fitting problems of deep neural
networks.

Visualization of Trained Agents. We provide a visualiza-
tion of two trained agents in the Supplementary. The dis-
covered routines represent the ability to jump far and high,
helping the agent to overcome obstacles. Besides, the policy
trained by plain A2C is pretty noisy due to the sparse reward
in CoinRun (the agent only gets positive rewards at the end
of each episode). Routines regularize the policy towards the
optimal policy, which contributes to the improvement in gen-
eralization. Finally, we observe that adopting routines can
benefit the interpretability of policy since routines are higher-
level actions that are easier for a human to understand.

Conclusion
In this paper, we have presented routine-augmented policy
learning (RAPL) to discover a set of routines from a single
demonstration and augment policy learning via the discov-
ered routines. From extensive experiments on Atari, we found
that routines can enhance imitation learning by learning at
multiple temporal scales, and routines can promote explo-
ration in reinforcement learning. Besides, from experiments
on CoinRun, we found that the discovered routines can gener-
alize to unseen levels and harder domains. We hope that our
proposed approach can inspire further work to extend RAPL
to continuous action domains. Moreover, discovering rou-
tines with rich semantic information would be a promising
future direction.
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