
Data Augmentation for Graph Neural Networks

Tong Zhao1*, Yozen Liu2, Leonardo Neves2, Oliver Woodford2, Meng Jiang1, Neil Shah2

1 University of Notre Dame, Notre Dame, IN 46556
2 Snap Inc., Santa Monica, CA 90405

{tzhao2, mjiang2}@nd.edu, {yliu2, lneves, oliver.woodford, nshah}@snap.com

Abstract

Data augmentation has been widely used to improve gener-
alizability of machine learning models. However, compara-
tively little work studies data augmentation for graphs. This
is largely due to the complex, non-Euclidean structure of
graphs, which limits possible manipulation operations. Aug-
mentation operations commonly used in vision and language
have no analogs for graphs. Our work studies graph data
augmentation for graph neural networks (GNNs) in the con-
text of improving semi-supervised node-classification. We
discuss practical and theoretical motivations, considerations
and strategies for graph data augmentation. Our work shows
that neural edge predictors can effectively encode class-
homophilic structure to promote intra-class edges and de-
mote inter-class edges in given graph structure, and our main
contribution introduces the GAUG graph data augmentation
framework, which leverages these insights to improve per-
formance in GNN-based node classification via edge predic-
tion. Extensive experiments on multiple benchmarks show
that augmentation via GAUG improves performance across
GNN architectures and datasets.

1 Introduction
Data driven inference has received a significant boost in gen-
eralization capability and performance improvement in re-
cent years from data augmentation techniques. These meth-
ods increase the amount of training data available by creat-
ing plausible variations of existing data without additional
ground-truth labels, and have seen widespread adoption in
fields such as computer vision (CV) (DeVries and Taylor
2017; Cubuk et al. 2019; Zhao et al. 2019; Ho et al. 2019),
and natural language processing (NLP) (Fadaee, Bisazza,
and Monz 2017; Şahin and Steedman 2019). Such augmen-
tations allow inference engines to learn to generalize better
across those variations and attend to signal over noise. At the
same time, graph neural networks (GNNs) (Hamilton, Ying,
and Leskovec 2017; Kipf and Welling 2016a; Veličković
et al. 2017; Xu et al. 2018a; Zhang et al. 2019a; Chen, Ma,
and Xiao 2018; Wu et al. 2019; Zhang, Cui, and Zhu 2018;
Xu et al. 2018b) have emerged as a rising approach for data-
driven inference on graphs, achieving promising results on

*Our work was done during first author’s internship at Snap Inc.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tasks such as node classification, link prediction and graph
representation learning.

Despite the complementary nature of GNNs and data
augmentation, few works present strategies for combining
the two. One major obstacle is that, in contrast to other
data, where structure is encoded by position, the structure
of graphs is encoded by node connectivity, which is irreg-
ular. The hand-crafted, structured, data augmentation oper-
ations used frequently in CV and NLP therefore cannot be
applied. Furthermore, this irregularity does not lend itself to
easily defining new augmentation strategies. The most obvi-
ous approaches involve adding or removing nodes or edges.
For node classification tasks, adding nodes poses challenges
in labeling and imputing features and connectivity of new
nodes, while removing nodes simply reduces the data avail-
able. Thus, edge addition and removal appears the best aug-
mentation strategy for graphs. But the question remains,
which edges to change.

Three relevant approaches have recently been proposed.
DROPEDGE (Rong et al. 2019) randomly removes a fraction
of graph edges before each training epoch, in an approach
reminiscent of dropout (Srivastava et al. 2014). This, in prin-
ciple, robustifies test-time inference, but cannot benefit from
added edges. In approaches more akin to denoising or pre-
filtering, ADAEDGE (Chen et al. 2019) iteratively add (re-
move) edges between nodes predicted to have the same (dif-
ferent) labels with high confidence in the modified graph.
This ad-hoc, two-stage approach improves inference in gen-
eral, but is prone to error propagation and greatly depends
on training size. Similarly, BGCN (Zhang et al. 2019b) it-
eratively trains an assortative mixed membership stochas-
tic block model with predictions of GCN to produce mul-
tiple denoised graphs, and ensembles results from multiple
GCNs. BGCN also bears the risk of error propagation.
Present work. Our work studies new techniques for graph
data augmentation to improve node classification. Section 3
introduces motivations and considerations in augmentation
via edge manipulation. Specifically, we discuss how facil-
itating message passing by removing “noisy” edges and
adding “missing” edges that could exist in the original graph
can benefit GNN performance, and its relation to intra-class
and inter-class edges. Figure 1 demonstrates, on a toy dataset
(a), that while randomly modifying edges (b) can lead to
lower test-time accuracy, strategically choosing ideal edges

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11015

1

2

3
4

5

6 1
1

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
0

7

8

1
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
3

3
0

1
3

9

3
1

3
2

0

(a) Original graph.
O : 92.4 F1

1

2

3
4

5

6 1
1

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
0

7

1
0

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

1
3

3
1

3
2

0

8

9

2
1

3
0

3
3

(b) Random mod.
M : 90.4, O : 91.0 F1

1

2

3
4

5

6 1
1

1
2

1
4

1
5

1
6

1
7

1
8

1
9

7

8

1
0

2
1

2
3

2
4

2
5

2
6

2
7

2
8

3
0

9

3
1

0

1
3

3
3

3
2

2
9

2
2

2
0

(c) Proposed GAUG mod.
M : 95.7, O : 94.3 F1

1

2

3
4

5

1
1

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
0

7

8

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1
3

9

3
2

0

3
3

6

1
0 3

1

(d) Omniscient mod.
M : 98.6, O : 95.6 F1

Figure 1: GCN performance (test micro-F1) on the original Zachary’s Karate Club graph in (a), and three augmented graph
variants in (b-d), evaluated on both original (O) and modified (M) graph settings. Black, solid-blue, dashed-blue edges de-
note original graph connectivity, newly added, and removed edges respectively. While random graph modification (b) hurts
performance, our proposed GAUG augmentation approaches (c) demonstrate significant relative performance improvements,
narrowing the gap to omniscient, class-aware modifications (d).

to add or remove given (unrealistic) omniscience of node
class labels (d) can substantially improve it.

Armed with this insight, Section 4 presents our major
contribution: the proposed GAUG framework for graph data
augmentation. We show that neural edge predictors like
GAE (Kipf and Welling 2016b) are able to latently learn
class-homophilic tendencies in existent edges that are im-
probable, and nonexistent edges that are probable. GAUG
leverages this insight in two approaches, GAUG-M and
GAUG-O, which tackle augmentation in settings where edge
manipulation is and is not feasible at inference time. GAUG-
M uses an edge prediction module to fundamentally modify
an input graph for future training and inference operations,
whereas GAUG-O learns to generate plausible edge aug-
mentations for an input graph, which helps node classifica-
tion without any modification at inference time. In essence,
our work tackles the problem of the inherent indetermi-
nate nature of graph data and provides graph augmentations,
which can both denoise structure and also mimic variabil-
ity. Moreover, its modular design allows augmentation to be
flexibly applied to any GNN architecture. Figure 1(c) shows
GAUG-M and GAUG-O achieves marked performance im-
provements over (a-b) on the toy graph.

In Section 5, we present and discuss an evaluation of
GAUG-O across multiple GNN architectures and datasets,
demonstrating a consistent improvement over the state-of-
the-art, and quite large in some scenarios. Our proposed
GAUG-M (GAUG-O) shows up to 17% (9%) absolute F1
performance improvements across datasets and GNN archi-
tectures without augmentation, and up to 16% (9%) over
baseline augmentation strategies.

2 Other Related Work
As discussed above, relevant literature in data augmentation
for graph neural networks is limited (Rong et al. 2019; Chen
et al. 2019; Zhang et al. 2019b). We discuss other related
works in tangent domains below.
Graph Neural Networks. GNNs enjoy widespread use in
modern graph-based machine learning due to their flexibil-
ity to incorporate node features, custom aggregations and
inductive operation, unlike earlier works which were based
on embedding lookups (Perozzi, Al-Rfou, and Skiena 2014;

Wang, Cui, and Zhu 2016; Tang et al. 2015). Many GNN
variants have been developed in recent years, following the
initial idea of convolution based on spectral graph theory
(Bruna et al. 2013). Many spectral GNNs have since been
developed and improved by (Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2016a; Henaff, Bruna,
and LeCun 2015; Li et al. 2018; Levie et al. 2018; Ma et al.
2020). As spectral GNNs generally operate (expensively)
on the full adjacency, spatial-based methods which perform
graph convolution with neighborhood aggregation became
prominent (Hamilton, Ying, and Leskovec 2017; Veličković
et al. 2017; Monti et al. 2017; Gao, Wang, and Ji 2018;
Niepert, Ahmed, and Kutzkov 2016), owing to their scalabil-
ity and flexibility (Ying et al. 2018). Several works propose
more advanced architectures which add residual connections
to facilitate deep GNN training (Xu et al. 2018b; Li et al.
2019; Verma et al. 2019). More recently, task-specific GNNs
were proposed in different fields such as behavior modeling
(Wang et al. 2020; Zhao et al. 2020a; Yu et al. 2020).

Data Augmentation. Augmentation strategies for improv-
ing generalization have been broadly studied in contexts
outside of graph learning. Traditional point-based classifi-
cation approaches widely leveraged oversampling, under-
sampling and interpolation methods (Chawla et al. 2002;
Barandela et al. 2004). In recent years, variants of such tech-
niques are widely used in natural language processing (NLP)
and computer vision (CV). Replacement approaches involv-
ing synonym-swapping are common in NLP (Zhang, Zhao,
and LeCun 2015), as are text-variation approaches (Kafle,
Yousefhussien, and Kanan 2017) (i.e. for visual question-
answering). Backtranslation methods (Sennrich, Haddow,
and Birch 2016; Xie et al. 2019; Edunov et al. 2018)
have also enjoyed success. In CV, historical image trans-
formations in the input space, such as rotation, flipping,
color space transformation, translation and noise injection
(Shorten and Khoshgoftaar 2019), as well as recent meth-
ods such as cutout and random erasure (DeVries and Tay-
lor 2017; Zhong et al. 2017) have proven useful. Recently,
augmentation via photorealistic generation through adver-
sarial networks shows promise in several applications, espe-
cially in medicine (Antoniou, Storkey, and Edwards 2017;
Goodfellow et al. 2014). Most-related to our work is liter-

11016

ature on meta-learning based augmentation in CV (Lemley,
Bazrafkan, and Corcoran 2017; Cubuk et al. 2019; Perez and
Wang 2017), which aim to learn neural image transforma-
tion operations via an augmentation network, using a loss
from a target network. While our work is similar in motiva-
tion, it fundamentally differs in network structure, and tack-
les augmentation in the much-less studied graph context.

3 Graph Data Augmentation via
Edge Manipulation

In this section, we introduce our key idea of graph data aug-
mentation by manipulating G via adding and removing edges
over the fixed node set. We discuss preliminaries, practical
and theoretical motivations, and considerations in evaluation
under a manipulated-graph context.

3.1 Preliminaries
Let G = (V, E) be the input graph with node set V and edge
set E . Let N = |V| be the number of nodes. We denote
the adjacency matrix as A ∈ {0, 1}N×N , where Aij = 0
indicates node i and j are not connected. We denote the node
feature matrix as X ∈ RN×F , where F is the dimension of
the node features and Xi: indicates the feature vector of node
i (the ith row of X). We define D as the diagonal degree
matrix such that Dii =

∑
j Aij .

Graph Neural Networks. In this work, we use the well-
known graph convolutional network (GCN) (Kipf and
Welling 2016a) as an example when explaining GNNs in the
following sections; however, our arguments hold straight-
forwardly for other GNN architectures. Each GCN layer
(GCL) is defined as:

H(l+1) = fGCL(A,H
(l);W(l))

= σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)),

(1)

where Ã = A + I is the adjacency matrix with added self-
loops, D̃ is the diagonal degree matrix D̃ii =

∑
j Ãij , and

σ(·) denotes a nonlinear activation such as ReLU.

3.2 Motivation
Practical reasons. Graphs aim to represent an underlying
process of interest. In reality, a processed or observed graph
may not exactly align with the process it intended to model
(e.g. “which users are actually friends?” vs. “which users are
observed to be friends?”) for several reasons. Many graphs
in the real world are susceptible to noise, both adversarial
and otherwise (with exceptions, like molecular or biological
graphs). Adversarial noise can manifest via spammers who
pollute the space of observed interactions. Noise can also be
induced by partial observation: e.g. a friend recommenda-
tion system which never suggests certain friends to an end-
user, thus preventing link formation. Moreover, noise can
be created in graph preprocessing, by adding/removing self-
loops, removing isolated nodes or edges based on weights.
Finally, noise can occur due to human errors: in citation
networks, a paper may omit (include) citation to a highly
(ir)relevant paper by mistake. All these scenarios can pro-
duce a gap between the “observed graph” and the so-called

“ideal graph” for a downstream inference task (in our case,
node classification).

Enabling an inference engine to bridge this gap suggests
the promise of data augmentation via edge manipulation. In
the best case, we can produce a graph Gi (ideal connec-
tivity), where supposed (but missing) links are added, and
unrelated/insignificant (but existing) links removed. Figure
1 shows this benefit realized in the ZKC graph: strategi-
cally adding edges between nodes of the same group (intra-
class) and removing edges between those in different groups
(inter-class) substantially improves node classification test
performance, despite using only a single training example
per class. Intuitively, this process encourages smoothness
over same-class node embeddings and differentiates other-
class node embeddings, improving distinction.
Theoretical reasons. Strategic edge manipulation to pro-
mote intra-class edges and demote inter-class edges makes
class differentiation in training trivial with a GNN, when
done with label omniscience. Consider a scenario of extrem-
ity where all possible intra-class edges and no possible inter-
class edges exists, the graph can be viewed as k fully con-
nected components, where k is the number of classes and all
nodes in each component have the same label. Then by The-
orem 1 (proof in supplementary material Section A.1 (Zhao
et al. 2020b)), GNNs can easily generate distinct node rep-
resentations between distinct classes, with equivalent repre-
sentations for all same-class nodes. Under this “ideal graph”
scenario, learned embeddings can be effortlessly classified.

Theorem 1. Let G = (V, E) be a undirected graph with ad-
jacency matrix A, and node features X be any block vector
in RN×F . Let f : A,X;W → H be any GNN layer with
a permutation-invariant neighborhood aggregator over the
target node and its neighbor nodes u ∪ N (u) (e.g. Eq. 1)
with any parameters W, and H = f(A,X;W) be the re-
sulting embedding matrix. Suppose G contains k fully con-
nected components. Then we have:
1. For any two nodes i, j ∈ V that are contained in the same

connected component, Hi: = Hj:.
2. For any two nodes i, j ∈ V that are contained in different

connected components Sa,Sb ⊆ V , Hi: 6= Hj: when W
is not all zeros and

∑
v∈Sa Xv: 6= ε

∑
u∈Sb Xu:, ∀ε ∈ R.

This result suggests that with an ideal, class-homophilic
graph Gi, class differentiation in training becomes trivial.
However, it does not imply such results in testing, where
node connectivity is likely to reflect G and not Gi. We would
expect that if modifications in training are too contrived, we
risk overfitting to Gi and performing poorly on G due to a
wide train-test gap. We later show techniques (Section 4) for
approximating Gi with a modified graph Gm, and show em-
pirically that these modifications in fact help generalization,
both when evaluating on graphs akin to Gm and G.

3.3 Modified and Original Graph Settings for
Graph Data Augmentation

Prior CV literature (Wang, Wang, and Lian 2019) consid-
ers image data augmentation a two-step process: (1) ap-
plying a transformation f : S → T to input images S
to generate variants T , and (2) utilizing S ∪ T for model

11017

0 20 40 60
% Edges added (by Edge Predictor)

2500

3000

3500

4000

4500

of

 to
ta

l e
dg

es

Intra-class
Inter-class

0.82

0.82

0.83

0.83

(a) Learned edge +

0 20 40 60
% Edges added (by Random)

1000

2000

3000

4000

Intra-class
Inter-class

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 m
icr

o
F1

(b) Random edge +

0 20 40 60
% Edges removed (by Edge Predictor)

2000

4000

6000

of

 to
ta

l e
dg

es

Intra-class
Inter-class

0.80

0.81

0.82

0.83

(c) Learned edge –

0 20 40 60
% Edges removed (by Random)

2500

3000

3500

4000

4500

5000
Intra-class
Inter-class

0.4

0.5

0.6

Te
st

 m
icr

o
F1

(d) Random edge –

Figure 2: GAUG-M uses an edge-predictor module to de-
terministically modify a graph for future inference. Neu-
ral edge-predictors (e.g. GAE) can learn class-homophilic
tendencies, promoting intra-class and demoting inter-class
edges compared to random edge additions (a-b) and re-
movals (c-d) respectively, leading to node classification per-
formance (test micro-F1) improvements (green).

training. Graph data augmentation is notably different, since
typically |S| = 1 for node classification, unlike the image
setting where |S| � 1. However, we propose two strate-
gies with analogous, but distinct formalisms: we can either
(1) apply one or multiple graph transformation operation
f : G → Gm, such that Gm replaces G for both training and
inference, or (2) apply many transformations fi : G → Gim
for i = 1 . . . N , such that G ∪ {Gim}Ni=1 may be used in
training, but only G is used for inference. We call (1) the
modified-graph setting, and (2) the original-graph setting,
based on their inference scenario.

One might ask: when is each strategy preferable? We rea-
son that the answer stems from the feasibility of applying
augmentation during inference to avoid a train-test gap. The
modified-graph setting is thus most suitable in cases where
a given graph is unchanging during inference. In such cases,
one can produce a single Gm, and simply use this graph for
both training and testing. However, when inferences must
be made on a dynamic graph (i.e. for large-scale, latency-
sensitive applications) where calibrating new graph connec-
tivity (akin to G) with Gm during inference is infeasible (e.g.
due to latency constraints), augmentation in the original-
graph setting is more appropriate. In such cases, test statis-
tics on Gm may be overly optimistic as performance indi-
cators. In practice, these loosely align with transductive and
inductive contexts in prior GNN literature.

4 Proposed GAUG Framework
In this section, we introduce the GAUG framework, covering
two approaches for augmenting graph data in the aforemen-
tioned modified-graph and original-graph settings respec-
tively. Our key idea is to leverage information inherent in
the graph to predict which non-existent edges should likely
exist, and which existent edges should likely be removed in

G to produce modified graph(s) Gm to improve model per-
formance. As we later show in Section 5, by leveraging this
label-free information, we can consistently realize improve-
ments in test/generalization performance in semi-supervised
node classification tasks across augmentation settings, GNN
architectures and datasets.

4.1 GAUG-M for Modified-Graph Setting
We first introduce GAUG-M, an approach for augmentation
in the modified-graph setting which includes two steps: (1)
we use an edge predictor function to obtain edge probabili-
ties for all possible and existing edges in G. The role of the
edge predictor is flexible and can generally be replaced with
any suitable method. (2) Using the predicted edge probabili-
ties, we deterministically add (remove) new (existing) edges
to create a modified graph Gm, which is used as input to a
GNN node-classifier.

The edge predictor can be defined as any model fep :
A,X → M, which takes the graph as input, and outputs
an edge probability matrix M where Muv indicates the pre-
dicted probability of an edge between nodes u and v. In
this work, we use the graph auto-encoder (GAE) (Kipf and
Welling 2016b) as the edge predictor module due to its sim-
ple architecture and competitive performance. GAE consists
of a two layer GCN encoder and an inner-product decoder:

M = σ
(
ZZT

)
, where Z = f

(1)
GCL

(
A, f

(0)
GCL (A,X)

)
. (2)

Z denotes the hidden embeddings learned by the encoder,
M is the predicted (symmetric) edge probability matrix pro-
duced by the inner-product decoder, and σ(·) is an element-
wise sigmoid function. Let |E| denote the number of edges
in G. Then, using the probability matrix M, GAUG-M de-
terministically adds the top i|E| non-edges with highest edge
probabilities, and removes the j|E| existing edges with least
edge probabilities from G to produce Gm, where i, j ∈ [0, 1].
This is effectively a denoising step.

Figure 2 shows the change in intra-class and inter-
class edges when adding/removing using GAE-learned edge
probabilities and their performance implications compared
to a random perturbation baseline on CORA: adding (re-
moving) by learned probabilities results in a much steeper
growth (slower decrease) of intra-class edges and much
slower increase (steeper decrease) in inter-class edges
compared to random. Notably, these affect classification
performance (micro-F1 scores, in green): random addi-
tion/removal hurts performance, while learned addition con-
sistently improves performance throughout the range, and
learned removal improves performance over part of the
range (until ∼20%). Importantly, these results show that
while we are generally not able to produce the ideal graph
Gi without omniscience (as discussed in Section 3.2), such
capable edge predictors can latently learn to approximate
class-homophilic information in graphs and successfully
promote intra-class and demote inter-class edges to realize
performance gains in practice.

GAUG-M shares the same time and space complexity as
its associated GNN architecture during training/inference,
while requiring extra disk space to save the dense O(N2)

11018

7KLV�LV�WKH�FXUUHQW�YHUVLRQ�LQ�WKH�SDSHU�

0

$

$

,QWHUSRODWLRQ�DQG�
6DPSOLQJ

$ł�

*UDSK�1HXUDO�1HWZRUN
1RGH�&ODVVLğHU

1HXUDO�(GJH�3UHGLFWRU

ʎ
"

"

"

,QSXW�*UDSK

Figure 3: GAUG-O is comprised of three main components: (1) a differentiable edge predictor which produces edge probability
estimates, (2) an interpolation and sampling step which produces sparse graph variants, and (3) a GNN which learns embeddings
for node classification using these variants. The model is trained end-to-end with both classification and edge prediction losses.

edge probability matrix M for manipulation. Note that M’s
computation can be trivially parallelized.

4.2 GAUG-O for Original-Graph Setting
To complement the above approach, we propose GAUG-O
for the original-graph setting, where we cannot benefit from
graph manipulation at inference time. GAUG-O is reminis-
cent of the two-step approach in GAUG in that it also uses an
edge prediction module for the benefit of node classification,
but also aims to improve model generalization (test perfor-
mance on G) by generating graph variants {Gim}Ni=1 via edge
prediction and hence improve data diversity. GAUG-O does
not require discrete specification of edges to add/remove, is
end-to-end trainable, and utilizes both edge prediction and
node-classification losses to iteratively improve augmenta-
tion capacity of the edge predictor and classification capac-
ity of the node classifier GNN. Figure 3 shows the overall ar-
chitecture: each training iteration exposes the node-classifier
to a new augmented graph variant.

Unlike GAUG-M’s deterministic graph modification step,
GAUG-O supports a learnable, stochastic augmentation pro-
cess. As such, we again use the graph auto-encoder (GAE)
for edge prediction. To prevent the edge predictor from ar-
bitrarily deviating from original graph adjacency, we inter-
polate the predicted M with the original A to derive an ad-
jacency P. In the edge sampling phase, we sparsify P with
Bernoulli sampling on each edge to get the graph variant
adjacency A′. For training purposes, we employ a (soft,
differentiable) relaxed Bernoulli sampling procedure as a
Bernoulli approximation. This relaxation is a binary spe-
cial case of the Gumbel-Softmax reparameterization trick
(Maddison, Mnih, and Teh 2016; Jang, Gu, and Poole 2016).
Using the relaxed sample, we apply a straight-through (ST)
gradient estimator (Bengio, Léonard, and Courville 2013),
which rounds the relaxed samples in the forward pass, hence
sparsifying the adjacency. In the backward pass, gradients
are directly passed to the relaxed samples rather than the
rounded values, enabling training. Formally,

A′ij =

⌊
1

1 + e−(logPij+G)/τ
+

1

2

⌋
,

where Pij = αMij + (1− α)Aij

(3)

where A′ is the sampled adjacency matrix, τ is the tempera-
ture of Gumbel-Softmax distribution, G ∼ Gumbel(0, 1) is

a Gumbel random variate, and α is a hyperparameter medi-
ating the influence of edge predictor on the original graph.

The graph variant adjacency A′ is passed along with node
features X to the GNN node classifier. We then backprop-
agate using a joint node-classification loss Lnc and edge-
prediction loss Lep

L = Lnc + βLep,
where Lnc = CE(ŷ,y)

and Lep = BCE(σ(fep(A,X)),A)

(4)

where β is a hyperparameter to weight the reconstruction
loss, σ(·) is an elementwise sigmoid, y, ŷ denote ground-
truth node class labels and predicted probabilities, and
BCE/CE indicate standard (binary) cross-entropy loss. We
train using Lep in addition to Lnc to control potentially
excessive drift in edge prediction performance. The node-
classifier GNN is then directly used for inference, on G.

During training, GAUG-O has a space complexity of
O(N2) in full-batch setting due to backpropagation through
all entries of the adjacency matrix. Fortunately, we can eas-
ily adapt the graph mini-batch training introduced by Hamil-
ton et al. (Hamilton, Ying, and Leskovec 2017) to achieve
an acceptable space complexity of O(M2), where M is the
batch size.

5 Evaluation
In this section, we evaluate the performance of GAUG-M
and GAUG-O across architectures and datasets, and over
alternative strategies for graph data augmentation. We also
showcase their abilities to approximate class-homophily via
edge prediction and sensitivity to supervision.

5.1 Experimental Setup
We evaluate using 6 benchmark datasets across domains:
citation networks (CORA, CITESEER (Kipf and Welling
2016a)), protein-protein interactions (PPI (Hamilton, Ying,
and Leskovec 2017)), social networks (BLOGCATALOG,
FLICKR (Huang, Li, and Hu 2017)), and air traffic (AIR-
USA (Wu, He, and Xu 2019)). Statistics for each dataset
are shown in Table 1. We follow the semi-supervised set-
ting in most GNN literature (Kipf and Welling 2016a;
Veličković et al. 2017) for train/validation/test splitting on
CORA and CITESEER, and a 10/20/70% split on other
datasets due to varying choices in prior work. We evaluate

11019

CORA CITESEER PPI BLOGCATALOG FLICKR AIR-USA

Nodes 2,708 3,327 10,076 5,196 7,575 1,190
Edges 5,278 4,552 157,213 171,743 239,738 13,599
Features 1,433 3,703 50 8,189 12,047 238
Classes 7 6 121 6 9 4
Training nodes 140 120 1,007 519 757 119
Validation nodes 500 500 2,015 1,039 1,515 238
Test nodes 1,000 1,000 7,054 3,638 5,303 833

Table 1: Summary statistics and experimental setup for the six evaluation datasets.

GNN Arch. Method CORA CITESEER PPI BLOGC FLICKR AIR-USA

GCN

Original 81.6±0.7 71.6±0.4 43.4±0.2 75.0±0.4 61.2±0.4 56.0±0.8

+BGCN 81.2±0.8 72.4±0.5 – 72.0±2.3 52.7±2.8 56.5±0.9
+ADAEDGE 81.9±0.7 72.8±0.7 43.6±0.2 75.3±0.3 61.2±0.5 57.2±0.8
+GAUG-M 83.5±0.4 72.3±0.4 43.5±0.2 77.6±0.4 68.2±0.7 61.2±0.5

+DROPEDGE 82.0±0.8 71.8±0.2 43.5±0.2 75.4±0.3 61.4±0.7 56.9±0.6
+GAUG-O 83.6±0.5 73.3±1.1 46.6±0.3 75.9±0.2 62.2±0.3 61.4±0.9

GSAGE

Original 81.3±0.5 70.6±0.5 40.4±0.9 73.4±0.4 57.4±0.5 57.0±0.7

+BGCN 80.5±0.1 70.8±0.1 – 73.2±0.2 58.1±0.3 53.5±0.3
+ADAEDGE 81.5±0.6 71.3±0.8 41.6±0.8 73.6±0.4 57.7±0.7 57.1±0.5
+GAUG-M 83.2±0.4 71.2±0.4 41.1±1.0 77.0±0.4 65.2±0.4 60.1±0.5

+DROPEDGE 81.6±0.5 70.8±0.5 41.1±1.0 73.8±0.4 58.4±0.7 57.1±0.5
+GAUG-O 82.0±0.5 72.7±0.7 44.4±0.5 73.9±0.4 56.3±0.6 57.1±0.7

GAT

Original 81.3±1.1 70.5±0.7 41.5±0.7 63.8±5.2 46.9±1.6 52.0±1.3

+BGCN 80.8±0.8 70.8±0.6 – 61.4±4.0 46.5±1.9 54.1±3.2
+ADAEDGE 82.0±0.6 71.1±0.8 42.6±0.9 68.2±2.4 48.2±1.0 54.5±1.9
+GAUG-M 82.1±1.0 71.5±0.5 42.8±0.9 70.8±1.0 63.7±0.9 59.0±0.6

+DROPEDGE 81.9±0.6 71.0±0.5 45.9±0.3 70.4±2.4 50.0±1.6 52.8±1.7
+GAUG-O 82.2±0.8 71.6±1.1 44.9±0.9 71.0±1.1 51.9±0.5 54.6±1.1

JK-NET

Original 78.8±1.5 67.6±1.8 44.1±0.7 70.0±0.4 56.7±0.4 58.2±1.5

+BGCN 80.2±0.7 69.1±0.5 – 65.7±2.2 53.6±1.7 55.9±0.8
+ADAEDGE 80.4±1.4 68.9±1.2 44.8±0.9 70.7±0.4 57.0±0.3 59.4±1.0
+GAUG-M 81.8±0.9 68.2±1.4 47.4±0.6 71.9±0.5 65.7±0.8 60.2±0.6

+DROPEDGE 80.4±0.7 69.4±1.1 46.3±0.2 70.9±0.4 58.5±0.7 59.1±1.1
+GAUG-O 80.5±0.9 69.7±1.4 53.1±0.3 71.0±0.6 55.7±0.5 60.4±1.0

Table 2: GAUG performance across GNN architectures and six benchmark datasets.

GAUG-M and GAUG-O using 4 widely used GNN architec-
tures: GCN (Kipf and Welling 2016a), GSAGE (Hamilton,
Ying, and Leskovec 2017), GAT (Veličković et al. 2017)
and JK-NET (Xu et al. 2018b). We compare our GAUG-
M (modified-graph) and GAUG-O (original-graph) perfor-
mance with that achieved by standard GNN performance,
as well as three state-of-the-art baselines: ADAEDGE (Chen
et al. 2019) (modified-graph), BGCN (Zhang et al. 2019b)
(modified-graph), and DROPEDGE (Rong et al. 2019)
(original-graph) evaluating on Gm and G, respectively. We
also show results of proposed GAUG methods on large
graphs (Hu et al. 2020) in Section D.2 (Zhao et al. 2020b) to
show their ability of mini-batching. We report test micro-
F1 scores over 30 runs, employing Optuna (Akiba et al.
2019) for efficient hyperparameter search. Note that for clas-
sification tasks which every object is guaranteed to be as-
signed to exactly one ground truth class (all datasets ex-
cept PPI), micro-F1 score is mathematically equivalent to
accuracy. Our implementation is made publicly available at

https://github.com/zhao-tong/GAug.

5.2 Experimental Results
We show comparative results against current baselines in Ta-
ble 2. Table 2 is organized per architecture (row), per dataset
(column), and original-graph and modified-graph settings
(within-row). Note that results of BGCN on PPI are missing
due to CUDA out of memory error when running the code
package from the authors. We bold best-performance per ar-
chitecture and dataset, but not per augmentation setting for
visual clarity. In short, GAUG-O and GAUG-M consistently
improve over GNN architectures, datasets and alternatives,
with a single exception for GAT on PPI, on which DROPE-
DGE performs the best.
Improvement across GNN architectures. GAUG achieves
improvements over all 4 GNN architectures (averaged
across datasets): GAUG-M improves 4.6% (GCN), 4.8%
(GSAGE), 10.9% (GAT) and 5.7% (JK-NET). GAUG-O
improves 4.1%, 2.1%, 6.3% and 4.9%, respectively. We note

11020

0 25 50

50

25

0

Add %

Re
m

ov
e

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

cora det gae

(a) CORA

0 25 50

50

25

0

Add %

Re
m

ov
e

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

(b) CITESEER

0 25 50

50

 2
5

0

Add %

Re
m

ov
e

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

(c) FLICKR

0 25 50

50

 2
5

0

Add %

Re
m

ov
e

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

(d) AIR-USA

Figure 4: Classification (test) performance heatmaps of
GAUG-M on various datasets when adding/dropping edges.
Red-white-blue indicate outperformance, at-par, and under-
performance w.r.t. GCN on G. Pixel (0, 0) indicates G, and
x (y) axes show % edges added (removed).

that augmentation especially improves GAT performance,
as self-attention based models are sensitive to connectivity.
Improvements across datasets. GAUG also achieves im-
provements over all 6 datasets (averaged across architec-
tures): GAUG-M improves 2.4%, 1.0%, 3.1%, 5.5%, 19.2%,
7.9% for each dataset (left to right in Table 2). Figure 4
shows GAUG-M (with GCN) classification performance
heatmaps on 4 datasets when adding/removing edges ac-
cording to various i, j (Section 4.1). Notably, while im-
provements(red) over original GCN on G differ over i, j
and by dataset, they are feasible in all cases. These im-
provements are not necessarily monotonic with edge ad-
dition(row) or removal(column), and can encounter transi-
tions. Empirically, we notice these boundaries correspond
to excessive class mixing (addition) or graph shattering
(removal). GAUG-O improves 1.6%, 2.5%, 11.5%, 3.6%,
2.2%, 4.7%. We note that both methods achieves large im-
provements in social data (BLOGCATALOG and FLICKR)
where noisy edges may be prominent due to spam or bots
(supporting intuition from Section 3.2): Figure 4(c) shows
substantial edge removal significantly helps performance.
Improvements over alternatives. GAUG also outper-
forms augmentation over BGCN, ADAEDGE, and DROPE-
DGE (averaged across datasets/architectures): GAUG-M im-
proves 9.3%, 4.8%, and 4.1% respectively, while GAUG-
O improves 4.9%, 2.7%, and 2.0% respectively. We rea-
son that GAUG-M outperforms BGCN and ADAEDGE
by avoiding iterative error propagation, as well as directly
manipulating edges based on the graph, rather than indi-
rectly through classification results. GAUG-O outperforms
DROPEDGE via learned denoising via addition and removal,
rather than random edge removal. Note that some baselines
have worse performance than vanilla GNNs, as careless aug-
mentation/modification on the graph can hurt performance

2 4 6 8 10 12 14 16 18
Epoch

0.65
0.70
0.75
0.80
0.85
0.90

In
tra

-c
la

ss
 F

ra
ct

io
n

GAug-O Sampled
Original Graph

0.10
0.15
0.20
0.25
0.30
0.35

In
te

r-c
la

ss
 F

ra
ct

io
n

GAug-O Sampled
Original graph

(a) Edge makeup

2 4 6 8 10 12
Epoch

L_ep
L_nc
Val_F1

(b) Learning curve

Figure 5: GAUG-O promotes class-homophily (a), produc-
ing classification improvements (b).

35 140 340 540 740 940 1140
Nodes in training

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Te
st

 F
1

Im
pr

ov
. GCN-GAug-M

GSAGE-GAug-M
GAT-GAug-M
JKNet-GAug-M

(a) GAUG-M

35 140 340 540 740 940 1140
Nodes in training

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Te
st

 F
1

Im
pr

ov
. GCN-GAug-O

GSAGE-GAug-O
GAT-GAug-O
JKNet-GAug-O

(b) GAUG-O

Figure 6: GAUG augmentation especially improves perfor-
mance under weak supervision.

by removing critical edges and adding incorrect ones.
Promoting class-homophily. Figure 5a shows (on CORA)
that the edge predictor in GAUG-O learns to promote intra-
class edges and demote inter-class ones, echoing results
from Figure 2 on GAUG-M, facilitating message passing
and improving performance. Figure 5b shows that Lnc de-
creases and validation F1 improves over the first few epochs,
while Lep increases to reconcile with supervision from Lnc.
Later on, the Lnc continues to decrease while intra-class ra-
tio increases (overfitting).
Sensitivity to supervision. Figure 6 shows that GAUG is es-
pecially powerful under weak supervision, producing large
F1 improvements with few labeled samples. Moreover, aug-
mentation helps achieve equal performance w.r.t standard
methods with fewer training samples. Naturally, improve-
ments shrink in the presence of more supervision. GAUG-
M has slightly larger improvements compared to GAUG-O
with more training nodes, as inference benefits from persis-
tent graph modifications in the former but not the latter.

6 Conclusion
Data augmentation for facilitating GNN training has unique
challenges due to graph irregularity. Our work tackles this
problem by utilizing neural edge predictors as a means of
exposing GNNs to likely (but nonexistent) edges and limit-
ing exposure to unlikely (but existent) ones. We show that
such edge predictors can encode class-homophily to pro-
mote intra-class edges and inter-class edges. We propose
the GAUG graph data augmentation framework which uses
these insights to improve node classification performance
in two inference settings. Extensive experiments show our
proposed GAUG-O and GAUG-M achieve up to 17% (9%)
absolute F1 performance improvements across architectures
and datasets, and 15% (8%) over augmentation baselines.

11021

References
Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; and Koyama, M.
2019. Optuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM SIGKDD.

Antoniou, A.; Storkey, A.; and Edwards, H. 2017. Data aug-
mentation generative adversarial networks. arXiv preprint
arXiv:1711.04340 .

Barandela, R.; Valdovinos, R. M.; Sánchez, J. S.; and Ferri,
F. J. 2004. The imbalanced training sample problem: Under
or over sampling? In Joint IAPR international workshops on
SPR and SSPR, 806–814. Springer.

Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432 .

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013.
Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203 .

Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. SMOTE: synthetic minority over-sampling tech-
nique. Journal of artificial intelligence research 16.

Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; and Sun, X. 2019.
Measuring and Relieving the Over-smoothing Problem for
Graph Neural Networks from the Topological View. arXiv
preprint arXiv:1909.03211 .

Chen, J.; Ma, T.; and Xiao, C. 2018. Fastgcn: fast learning
with graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247 .

Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2019. Autoaugment: Learning augmentation strategies
from data. In Proceedings of the IEEE conference on CVPR.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS, 3844–3852.

DeVries, T.; and Taylor, G. W. 2017. Improved regulariza-
tion of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552 .

Edunov, S.; Ott, M.; Auli, M.; and Grangier, D. 2018. Un-
derstanding Back-Translation at Scale. In Proceedings of the
2018 Conference on EMNLP, 489–500.

Fadaee, M.; Bisazza, A.; and Monz, C. 2017. Data augmen-
tation for low-resource neural machine translation. arXiv
preprint arXiv:1705.00440 .

Gao, H.; Wang, Z.; and Ji, S. 2018. Large-scale learnable
graph convolutional networks. In Proceedings of the 24th
ACM SIGKDD, 1416–1424.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurIPS, 2672–2680.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NeurIPS.

Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163 .

Ho, D.; Liang, E.; Stoica, I.; Abbeel, P.; and Chen, X.
2019. Population based augmentation: Efficient learn-
ing of augmentation policy schedules. arXiv preprint
arXiv:1905.05393 .

Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687 .

Huang, X.; Li, J.; and Hu, X. 2017. Label informed at-
tributed network embedding. In Proceedings of the Tenth
ACM International Conference on WSDM, 731–739.

Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144 .

Kafle, K.; Yousefhussien, M.; and Kanan, C. 2017. Data
Augmentation for Visual Question Answering. In Proceed-
ings of the 10th International Conference on Natural Lan-
guage Generation, 198–202.

Kipf, T. N.; and Welling, M. 2016a. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907 .

Kipf, T. N.; and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308 .

Lemley, J.; Bazrafkan, S.; and Corcoran, P. 2017. Smart
augmentation learning an optimal data augmentation strat-
egy. IEEE Access 5.

Levie, R.; Monti, F.; Bresson, X.; and Bronstein, M. M.
2018. Cayleynets: Graph convolutional neural networks
with complex rational spectral filters. IEEE Transactions
on Signal Processing 67(1): 97–109.

Li, G.; Muller, M.; Thabet, A.; and Ghanem, B. 2019. Deep-
gcns: Can gcns go as deep as cnns? In Proceedings of the
IEEE ICCV, 9267–9276.

Li, R.; Wang, S.; Zhu, F.; and Huang, J. 2018. Adaptive
graph convolutional neural networks. In 32th AAAI.

Ma, Y.; Liu, X.; Zhao, T.; Liu, Y.; Tang, J.; and Shah, N.
2020. A Unified View on Graph Neural Networks as Graph
Signal Denoising. arXiv preprint arXiv:2010.01777 .

Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2016. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. arXiv preprint arXiv:1611.00712 .

Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.;
and Bronstein, M. M. 2017. Geometric deep learning on
graphs and manifolds using mixture model cnns. In Pro-
ceedings of the IEEE Conference on CVPR, 5115–5124.

Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In ICML.

Perez, L.; and Wang, J. 2017. The effectiveness of data aug-
mentation in image classification using deep learning. arXiv
preprint arXiv:1712.04621 .

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD, 701–710.

11022

Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2019. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. In ICLR.

Şahin, G. G.; and Steedman, M. 2019. Data Augmenta-
tion via Dependency Tree Morphing for Low-Resource Lan-
guages. arXiv preprint arXiv:1903.09460 .

Sennrich, R.; Haddow, B.; and Birch, A. 2016. Improv-
ing Neural Machine Translation Models with Monolingual
Data. In Proceedings of the 54th ACL, 86–96.

Shorten, C.; and Khoshgoftaar, T. M. 2019. A survey on
image data augmentation for deep learning. Journal of Big
Data 6(1): 60.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research 15(1): 1929–1958.

Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
Proceedings of the 24th WWW, 1067–1077.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 .

Verma, V.; Qu, M.; Lamb, A.; Bengio, Y.; Kannala, J.; and
Tang, J. 2019. Graphmix: Regularized training of graph neu-
ral networks for semi-supervised learning. arXiv preprint
arXiv:1909.11715 .

Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep
network embedding. In Proceedings of the 22nd ACM
SIGKDD, 1225–1234.

Wang, D.; Jiang, M.; Syed, M.; Conway, O.; Juneja, V.; Sub-
ramanian, S.; and Chawla, N. V. 2020. Calendar Graph Neu-
ral Networks for Modeling Time Structures in Spatiotem-
poral User Behaviors. In Proceedings of the 26th ACM
SIGKDD.

Wang, X.; Wang, K.; and Lian, S. 2019. A survey on face
data augmentation. arXiv preprint arXiv:1904.11685 .

Wu, J.; He, J.; and Xu, J. 2019. DEMO-Net: Degree-specific
graph neural networks for node and graph classification. In
Proceedings of the 25th ACM SIGKDD, 406–415.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596 .

Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.-T.; and Le, Q. V. 2019.
Unsupervised Data Augmentation for Consistency Training.
arXiv preprint arXiv:1904.12848 .

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018a.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826 .

Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-
i.; and Jegelka, S. 2018b. Representation learning on
graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536 .

Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton,
W. L.; and Leskovec, J. 2018. Graph convolutional neural
networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD, 974–983.
Yu, W.; Yu, M.; Zhao, T.; and Jiang, M. 2020. Identifying
referential intention with heterogeneous contexts. In Pro-
ceedings of The Web Conference.
Zhang, C.; Song, D.; Huang, C.; Swami, A.; and Chawla,
N. V. 2019a. Heterogeneous graph neural network. In Pro-
ceedings of the 25th ACM SIGKDD, 793–803.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. arXiv preprint
arXiv:1509.01626 .
Zhang, Y.; Pal, S.; Coates, M.; and Ustebay, D. 2019b.
Bayesian graph convolutional neural networks for semi-
supervised classification. In AAAI, volume 33, 5829–5836.
Zhang, Z.; Cui, P.; and Zhu, W. 2018. Deep learning on
graphs: A survey. arXiv preprint arXiv:1812.04202 .
Zhao, A.; Balakrishnan, G.; Durand, F.; Guttag, J. V.; and
Dalca, A. V. 2019. Data augmentation using learned trans-
formations for one-shot medical image segmentation. In
Proceedings of the IEEE conference on CVPR, 8543–8553.
Zhao, T.; Deng, C.; Yu, K.; Jiang, T.; Wang, D.; and Jiang,
M. 2020a. Error-Bounded Graph Anomaly Loss for GNNs.
In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management.
Zhao, T.; Liu, Y.; Neves, L.; Woodford, O.; Jiang, M.; and
Shah, N. 2020b. Data Augmentation for Graph Neural Net-
works. arXiv preprint arXiv:2006.06830 .
Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; and Yang, Y.
2017. Random erasing data augmentation. arXiv preprint
arXiv:1708.04896 .

11023

