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Abstract

Regret bounds of online kernel selection in a finite kernel set
have been well studied, having at least an order O(

√
NT )

of magnitude after T rounds, where N is the number of can-
didate kernels. But it is still an unsolved problem to achieve
sublinear regret bounds of online kernel selection in a con-
tinuous kernel space under different learning frameworks. In
this paper, to represent different learning frameworks of on-
line kernel selection, we divide online kernel selection ap-
proaches in a continuous kernel space into two categories ac-
cording to the order of selection and training at each round.
Then we construct a surrogate hypothesis space that contains
all the candidate kernels with bounded norms and inner prod-
ucts, representing the continuously varying hypothesis space.
Finally, we decompose the regrets of the proposed online ker-
nel selection categories into different types of instantaneous
regrets in the surrogate hypothesis space, and derive optimal
regret bounds of order O(

√
T ) of magnitude under mild as-

sumptions, independent of the cardinality of the continuous
kernel space. Empirical studies verified the correctness of the
theoretical regret analyses.

Introduction
In contrast to offline kernel selection (Ding et al. 2019; Liu
et al. 2020), online kernel selection aims to select the opti-
mal kernel for online kernel learning at each round, which
conducts kernel selection and hypothesis training with re-
gret guarantees in a single-pass over the data. Online kernel
selection is one of the fundamental and critical problems of
online kernel learning, for the kernels used determine the
performance of online kernel learning. Existing offline ker-
nel selection approaches cannot be directly applied to online
kernel selection for the following two reasons: (1) there is
no delineation among training, validation and testing phases
in online learning (Diethe and Girolami 2013; Zhang, Liao,
and Liao 2019; Muthukumar et al. 2019); (2) offline setting
typically assumes that the data is generated independently
and identically distributed, but the assumption is relaxed or
eliminated in online settings (Rakhlin, Shamir, and Sridha-
ran 2012).
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Regret bounds of online kernel selection have been ex-
tensively studied for a finite kernel set containing a finite
number of candidate kernels. Online kernel selection can be
reduced to a problem of prediction with expert advice (Cesa-
Bianchi and Lugosi 2006), where the finite kernel set corre-
sponds to the set of experts, and predictions are obtained
according to the weights and advice of experts at each
round. Yang et al. (2012) presented an online approach to of-
fline kernel selection with online-to-batch conversion, which
has generalization guarantees. This online approach can be
transformed into a randomized approach of online kernel se-
lection with expert advice, which updates the weights using
the exponential weighted average, trains hypotheses using
the modified kernel perceptron. This randomized online ker-
nel selection approach is in a linear time complexity at each
round with respect to the current number of rounds and a lin-
ear space complexity with respect to the number of rounds.
Foster et al. (2017) formulated an algorithm framework for
online model selection with multi-scale expert advice, which
enjoys tight regret bounds when the losses of the optimal
hypotheses lie in different ranges. This framework can be
applied to online kernel selection, where a min-max opti-
mization problem needs to be solved. Another alternative
strategy under the expert advice framework is online multi-
ple kernel learning (Jin, Hoi, and Yang 2010; Nguyen 2017),
which assigns weights to multiple hypothesis sequences cor-
responding to each candidate kernel, and predicts by com-
bining the outputs of all the hypotheses at each round. But
existing regret analyses for online kernel selection with ex-
pert advice are not suitable for online kernel selection in
a continuous kernel space. More specifically, given a finite
kernel set containing N candidate kernels, after T rounds,
existing regret bounds of online kernel selection are at least
of order O(

√
NT ) against the best-in-hindsight hypothesis,

which cannot be applied to a continuous kernel space due to
the unbounded regrets when N =∞.

Recently, Zhang and Liao (2018) presented a novel online
kernel selection approach using incremental sketched kernel
alignment, which enjoys an optimal regret bound indepen-
dently of the number of candidate kernels. However, given
N candidate kernels, this online kernel selection approach
needs to maintainN kernel alignments at each round, having
a linear time complexity with respect to N at each updating
round, which is unfeasible when N = ∞. Adaptive kernel

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10931



approaches have been proposed for online kernel selection
in a continuous kernel space, which simultaneously update
the hypothesis and kernel parameter at each round using on-
line gradient descent (Singh and Prı́ncipe 2011; Chen et al.
2016). These adaptive kernel approaches require a linear
space complexity and a quadratic overall time complexity
with respect to the number of rounds. Nguyen et al. (2017)
proposed an efficient adaptive kernel approach using ran-
dom features (Rahimi and Recht 2007), which derives the
gradient of the random Fourier features using a reparam-
eterization trick, and optimizes the kernel parameter using
online gradient descent. Although existing adaptive kernel
approaches can be applied to online kernel selection in a
continuous kernel space, they lack sublinear regret guaran-
tees that are essential for online kernel selection. Zhang and
Liao (2020) focused on the budgeted online kernel selection
problem in a continuous kernel space, and proved a sublinear
regret bound under the assumption that the budget mainte-
nance function is of order O(lnT ) of magnitude. But it is
difficult to provide a lower bound of the budget, which may
lead to high computational complexities of the online kernel
selection process.

In this paper, we first define the hypothesis sketch se-
quence using the vectors of weight and basis with one buffer.
Then we formulate two categories of online kernel selec-
tion with the hypothesis sketch sequence by considering the
orders of selection and training at each round, in which
online kernel selection has polylogarithmic computational
complexities at each round with respect to the current num-
ber of rounds. We further derive the optimal regret bounds
for the two online kernel selection categories in a contin-
uous kernel space under mild assumptions. Finally, we em-
pirically evaluate the performances of different categories of
online kernel selection, verifying the correctness of the the-
oretical results.

Notations and Preliminaries
Let [T ] = {1, 2, . . . , T}, det(A) be the determinant of a
nonsingular matrix A, A† be the Moore-Penrose pseudoin-
verse of A, S = {zt}Tt=1 be a sequence of T instances,
where zt = (xt, yt) ∈ X × Y , X ⊆ Rd is compact
and Y = R or {−1, 1}. We denote a convex loss func-
tion by ` : Y × Y → R+ ∪ {0}, the gradient (or a sub-
gradient) of `(f(xt), yt) at f by ∇f `(f(xt), yt), a ker-
nel function by κ : X × X → R, and the reproducing
kernel Hilbert space (RKHS) associated with κ by Hκ =

span{κ(·,x) : x ∈ X}. Let Ω be a parameter interval of
candidate kernels, we define the continuous kernel space by
KΩ = {κσ | σ ∈ Ω}, where σ is the kernel parameter of κσ.

Online kernel selection in a continuous kernel space
KΩ aims to generate a hypothesis sequence {ft}Tt=1 ⊆⋃
κσ∈KΩ

Hκσ such that

RegT ({ft}Tt=1, f
∗) :=

T∑
t=1

[` (ft(xt), yt)− ` (f∗(xt), yt)]

= o(T ),

where f∗ is a competing hypothesis that is typically defined

as the best-in-hindsight hypothesis

f∗ = arg min
f∈Hκσ , κσ∈KΩ

T∑
t=1

` (f(xt), yt) .

We call RegT ({ft}Tt=1, f
∗) the regret of online kernel se-

lection in a continuous kernel space. In contrast to tradi-
tional online kernel learning (Lu et al. 2016; Zhang and
Liao 2019), the hypotheses generated by online kernel se-
lection may lie in different reproducing kernel Hilbert spaces
(RKHSs). Existing regret bounds of online kernel selection
do not hold for a continuous kernel space due to the infi-
nite number of candidate kernels. In the following section,
we focus on the regret analyses of online kernel selection
in a continuous kernel space under different learning frame-
works.

Online Kernel Selection Categories in
Continuous Kernel Space

In this section, we define the hypothesis sketch sequence
for online kernel selection. To represent different learning
frameworks of online kernel selection, we propose two cate-
gories of online kernel selection in a continuous kernel space
with the hypothesis sketch sequence.

Hypothesis Sketch Sequence
In this subsection, we define a hypothesis sketch sequence
for online kernel selection in a continuous kernel space. For
a given continuous kernel space KΩ, assuming that κσt ∈
KΩ is the kernel selected for prediction at round t, we first
define time-varying hypothesis sketch at round t as follows:

fσt,t(·) = 〈ω(t),ψ(t)
σt (·)〉, σt ∈ Ω,

where Vt = {x̃i}|Vt|i=1 ⊆ X is a buffer of size |Vt| (|Vt| � t)
at round t ,

ψ(t)
σt (·) =

[
κσt(·, x̃1), . . . , κσt(·, x̃|Vt|)

]ᵀ
, x̃i ∈ Vt,

ω(t) =
[
ω

(t)
1 , ω

(t)
2 , . . . , ω

(t)
|Vt|

]ᵀ
∈ R|Vt|,

are a basis vector and its corresponding weight vector, re-
spectively. The hypothesis sketch fσt,t(·) at round t can
be seen as an approximation of the original hypothesis
hσt,t(·) =

∑t−1
i=1 α

(t)
i κσt(·,xi). After T rounds, we call

{fσt,t}Tt=1 a time-varying hypothesis sketch sequence gen-
erated by online kernel selection. In contrast to the hypoth-
esis sketch using a fixed kernel parameter per round, de-
fined in (Zhang and Liao 2020), the time-varying hypothesis
sketches we defined have time-varying kernel parameters at
each round.

Two Online Kernel Selection Categories
In this subsection, we propose two categories of online ker-
nel selection in a continuous kernel space with hypothesis
sketch sequence. By considering all the possible orders of
selection and training at each round, given a continuous ker-
nel space KΩ, we perform online kernel selection at round
t in two different categories as follows: (a) Category 1 first
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Category 1: Online Kernel Selection by Selection-Post-
Training (OKS-SPT)

Require: the continuous kernel space KΩ, initial kernel κσ1

1: Initialize the weight vector ω(1) = 0
2: for t = 1, . . . , T do
3: Compute the hypothesis sketch fσt,t(·) = 〈ω(t),ψ

(t)
σt (·)〉

4: Predict ŷt = sgn(fσt,t(xt)) for classification or
ŷt = fσt,t(xt) for regression

5: Maintain the buffer
Vt+1 = BUFFERMAINTENANCE(Vt, zt) and obtain
fma
σt,t = 〈ω

(t),ψ
(t+1)
σt (·)〉

6: Update the weight vector
ω(t+1) = WEIGHTUPDATING(fma

σt,t, zt) and obtain
fma
σt,t+1 = 〈ω(t+1),ψ

(t+1)
σt (·)〉

7: if the buffer changes then
8: Select κσt+1 = KERNELSELECTION(κσt , zt) from KΩ

and obtain fσt+1,t+1

9: else
10: κσt+1 = κσt
11: end if
12: end for

maintains the buffer Vt, obtains the following maintained
hypothesis sketch with a new basis vector

fma
σt,t(·) = 〈ω(t),ψ(t+1)

σt (·)〉,

ψ(t+1)
σt (·) =

[
κσt(·, x̃1), . . . , κσt(·, x̃|Vt+1|)

]ᵀ
, x̃i ∈ Vt+1,

updates the weight vector of the maintained hypothesis
sketch, and then selects a new RKHS associated with κσt+1

only when Vt+1 6= Vt, termed OKS-SPT; (b) Category 2
first selects the optimal kernel using a kernel selection cri-
terion and the newly arrived instances, obtains fma

σt+1,t by
BUFFERMAINTENANCE in the new RKHS, and updates the
weight vector, termed OKS-TPS. The main differences be-
tween the two categories are the order of kernel selection
and hypothesis training at each round (see Figure 1) and
the frequency of performing kernel selection, which result
in completely different conditions for sublinear regret guar-
antees. We will specify the main steps of OKS-SPT and
OKS-TPS, including BUFFERMAINTENANCE, KERNELS-
ELECTION and WEIGHTUPDATING.

+1tk
tk +1tktk

Figure 1: Comparison between OKS-SPT (left) and OKS-
TPS (right) at round t, where OKS-SPT denotes the on-
line kernel selection by selection-post-training and OKS-
TPS denotes the online kernel selection by training-post-
selection.

Category 2: Online Kernel Selection by Training-Post-
Selection (OKS-TPS)

Require: the continuous kernel space KΩ, initial kernel κσ1

1: Initialize the weight vector ω(1) = 0
2: for t = 1, . . . , T do
3: Compute the hypothesis sketch fσt,t(·) = 〈ω(t),ψ

(t)
σt (·)〉

4: Predict ŷt = sgn(fσt,t(xt)) for classification or
ŷt = fσt,t(xt) for regression

5: Select a kernel κσt+1 = KERNELSELECTION(κσt , zt)
from KΩ

6: Maintain the buffer
Vt+1 = BUFFERMAINTENANCE(Vt, zt) and obtain
fma
σt+1,t = 〈ω

(t),ψ
(t+1)
σt+1 (·)〉

7: Update the weight vector
ω(t+1) = WEIGHTUPDATING(fma

σt+1,t, zt) and obtain
fσt+1,t+1

8: end for

Regret Analyses for the Two Categories
In this section, we formulate a surrogate hypothesis space
for regret analyses in a continuous kernel space, analyze the
regrets of the two online kernel selection categories in the
surrogate hypothesis space, and compare our regret guaran-
tees and computational complexities with those of the exist-
ing online kernel selection approaches. The detailed proofs
of the theorems can be found in the supplementary material.

Surrogate Hypothesis Space
Since online kernel selection dynamically selects the opti-
mal kernel at each round, the hypothesis sketches generated
by online kernel selection may lie in different RKHSs. This
poses new challenges of bounding the regret for online ker-
nel selection due to the unknown bounds of norms and inner
products of kernel functions in varying RKHSs. To address
these issues, we construct a surrogate hypothesis space con-
taining all the candidate kernels, and formulate the regret
in a surrogate hypothesis space for online kernel selection.
In the following section, we represent the parameter inter-
val of candidate kernels by Ω = [σmin, σmax]. The sur-
rogate hypothesis space Ĥ corresponding to a continuous
kernel space KΩ is the union of all the candidate RKHSs,
i.e., Ĥ =

⋃
κσ∈KΩ

Hκσ . Let σt ∈ Ω be the optimal ker-
nel parameter used at round t, {fσt,t}Tt=1 ⊆ Ĥ be a hy-
pothesis sketch sequence generated by the proposed online
kernel selection categories. We define the regret in the sur-
rogate hypothesis space Ĥ for online kernel selection with
{fσt,t}Tt=1 ⊆ Ĥ in the form

R̂egT ({fσt,t}Tt=1, f
∗)

=
T∑
t=1

[` (fσt,t(xt), yt)− ` (f∗(xt), yt)] ,
(1)

where the competing hypothesis f∗ ∈ Ĥ is defined as f∗ =

arg minf∈Ĥ
∑T
t=1 ` (f(xt), yt) .

We give an example of a surrogate hypothesis
space induced by the Gaussian kernel κσ(x1,x2) =
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exp
(
−‖x1 − x2‖2/2σ2

)
, x1,x2 ∈ X , where σ > 0 is

the kernel parameter of Gaussian kernel κσ . In contrast
to Theorem 2 in (Zhang and Liao 2018), we analyze the
surrogate hypothesis space in a more general framework,
in which we construct the hypothesis space using a varying
kernel parameter and bound both the norms and inner
products, as shown in Theorem 1.
Theorem 1. Let ξ ∈ (0, 1], KΩ = {κσ | σ ∈ Ω =
[σmin, σmax]} be a continuous kernel space containing
Gaussian kernels. Then, the RKHS Ĥ induced by the Gaus-
sian kernel κ̂ with kernel parameter σ̂ =

√
ξσmin is the sur-

rogate hypothesis space containing all the candidate kernels
in KΩ, and for κσ ∈ KΩ, x1,x2 ∈ X , the following bounds
hold

κσ(x1,x2) ≤ 〈κσ(·,x1), κσ(·,x2)〉Ĥ ≤ τ,
‖κσ(·,x1)‖2Ĥ = τ,

(2)

where τ =
[
2 (σmin/σ)

2
ξ − (σmin/σ)

4
ξ2
]− d2

.

Remark 1. From (2), for all x ∈ X , we have

‖κσ(·,x)‖Hκσ ≤ ‖κσ(·,x)‖Ĥ ≤
√
τ ‖κσ(·,x)‖Hκσ .

Thus, the norms ‖ ·‖Ĥ and ‖ ·‖Hκσ are equivalent for Gaus-
sian kernels κσ ∈ KΩ.

Regret Bounds of Online Kernel Selection
In this subsection, we bound the regrets of different cate-
gories of online kernel selection in the surrogate hypothesis
space. As implementations of the proposed online kernel se-
lection categories, we select the optimal kernel at each round
using a learning kernel approach. More specifically, we
perform WEIGHTUPDATING using Kernelized Online Gra-
dient Descent (KOGD) (Kivinen, Smola, and Williamson
2001) with a specific compensation strategy, and implement
KERNELSELECTION by Online Gradient Descent (OGD)
(Shalev-Shwartz 2011) over the instantaneous loss once the
loss is convex with respect to the kernel parameter.

Regret Bound for OKS-SPT (Category 1) In OKS-SPT,
at round t, we maintain the buffer and implement online ker-
nel selection via learning kernel in the following three steps:
1. BUFFERMAINTENANCE: If some condition holds, insert

the example xt into the buffer Vt at round t without dele-
tion.

2. WEIGHTUPDATING: If inserting xt into Vt, update the
weight vector

fσt,t+1(·) = fma
σt,t(·)− ηf∇fma

σt,t
`(fma

σt,t(xt), yt);

otherwise, fσt,t+1(·) = fma
σt,t(·) + δt(·), where δt(·) is a

compensation to the weight vector at round t and ηf > 0
is the stepsize of KOGD.

3. KERNELSELECTION: If the buffer changes, i.e., Vt+1 6=
Vt, select the kernel using OGD

σt+1 = σt − ησ∇σt`(fσt,t+1(xt), yt),

where ∇σt`(fσt,t+1(xt), yt) is the gradient or a sub-
gradient of `(fσt,t+1(xt), yt) at σt and ησ > 0 is the
stepsize of OGD.

We first analyze the instantaneous regrets for online ker-
nel selection via learning kernel in the surrogate hypothesis
space Ĥ. For convenience, we define three types of best-in-
hindsight hypotheses in different RKHSs as follows:
Best-in-hindsight hypothesis in Ĥ : The best-in-hindsight
hypothesis f̄∗ ∈ Ĥ and its corresponding kernel parameter
σ̄∗ are defined by

(f̄∗, σ̄∗) = arg min
f∈Hκσ , σ∈Ω

T∑
t=1

` (f(xt), yt) ,

where f̄∗(·) = 〈ω̄∗,ψ∗σ̄∗(·)〉 and

ψ∗σ̄∗(·) = [κσ̄∗(·,x1), κσ̄∗(·,x2), . . . , κσ̄∗(·,xT )]ᵀ.

Best-in-hindsight hypothesis in Hκσt : The best-in-
hindsight hypothesis inHκσt is denoted by

f∗σt = arg min
f∈Hκσt

T∑
t=1

`(f(xt), yt),

which can be expressed as f∗σt(·) = 〈ω∗σt ,ψ
∗
σt(·)〉.

Modified best-in-hindsight hypothesis in Hκσt : The hy-
pothesis f̄∗σt(·) = 〈ω̄∗,ψ∗σt(·)〉 ∈ Hκσt , which uses the
same kernel and basis vector as in f∗σt but the weight vec-
tor of f̄∗.

For regret analyses, we define the instantaneous regret of
fa against fb at round t as follows:

Regt(fa, fb) = ` (fa(xt), yt)− ` (fb(xt), yt) .

Then, we transform the regret in (1) for online kernel selec-
tion into

R̂egT ({fσt,t}Tt=1, f̄
∗) =

T∑
t=1

Regt(fσt,t, f̄
∗),

and split Regt(fσt,t, f̄
∗) into three instantaneous regrets

Regt(fσt,t, f̄
∗)

= Regt(fσt,t, f
∗
σt)︸ ︷︷ ︸

Optimization

+ Regt(f
∗
σt , f̄

∗
σt)︸ ︷︷ ︸

Estimation

+ Regt(f̄
∗
σt , f̄

∗)︸ ︷︷ ︸
Approximation

.

(3)
These three instantaneous regrets measure the performances
of optimization, estimation and approximation in OKS-SPT,
respectively, and the detailed interpretations of the three in-
stantaneous regrets are given in the supplementary material.

Then, we define the hypothesis sketch degradation ∆t at
round t for OKS-SPT as follows:

∆t = fσt,t(·)− ηf∇fσt,t`(fσt,t(xt), yt)− fσt,t+1(·),

and denote the gradient error and the average gradient error
with respect to the hypothesis sketch by∥∥∥E(t)

h

∥∥∥
Ĥ

= ‖∆t/ηf‖HĤ and Eh =
T∑
t=1

∥∥∥E(t)
h

∥∥∥
HĤ

/T.

In order to obtain regret guarantees, we make the follow-
ing assumption on OKS-SPT.
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Assumption 1. Let µ ∈ [0,maxκσ∈KΩ κσ(x,x)] , x ∈ X ,
Kσ,Vt = (κσ(x̃i, x̃j)) be the kernel matrix with sizes
|Vt| × |Vt| where x̃i, x̃j ∈ Vt. OKS-SPT satisfies the three
conditions:
• BUFFERMAINTENANCE inserts the example as Vt+1 =
Vt ∪ {xt} at round t if1

detKσt,Vt∪{xt}/ detKσt,Vt > µ. (4)

• KERNELSELECTION generates a sequence of kernel pa-
rameters {σt}Tt=1 such that maxt∈[T ] |∇σtfσt,t+1(xt)| ≤
L, and σmax < minx̃i,x̃j∈V,x̃j 6=x̃i ‖x̃j − x̃i‖/

√
3 for

Gaussian kernels, where V = ∪t∈[T ]Vt.
• When (4) does not hold at round t, WEIGHTUPDATING

compensates the weight vector using δt(·) to minimize
‖E(t)

h ‖Hκσt .

Finally, we choose the RKHS Ĥ induced by the Gaussian
kernel κ̂ with kernel parameter σ̂ =

√
ξσmin (ξ ∈ (0, 1])

as the surrogate hypothesis space as in Theorem 1, bound
the three instantaneous regrets in the surrogate hypothesis
space, and prove the regret bound of the proposed OKS-SPT
via learning kernel under Assumption 1.
Theorem 2. Let `(·, ·) be the hinge loss function, Y =
{−1, 1}, KΩ be a continuous kernel space that contains
Gaussian kernel functions, {fσt,t}Tt=1 ⊆ Ĥ be the hypoth-
esis sketch sequence generated by OKS-SPT satisfying As-
sumption 1. Define D̂(f, g) = maxt∈[T ] |f(xt) − g(xt)|,
where f, g ∈ Ĥ. Assume Cmax = maxi,j∈[T ] ‖xi − xj‖2
and R = supf∈Ĥ ‖f‖Ĥ, then there exists a constant C > 0

such that

R̂egT ({fσt,t}Tt=1, f̄
∗) ≤ U1 + U2 + U3,

where U2 = D̂(f̄∗σt , f
∗
σt),

U1 = 2RC
√
µ [T −O(lnT )] +

R2

2ηf
+

(
C
√
µ+ 1

)2
2

ηfT,

U3 = 2Cmax
σmax

σ3
min

D̂(f̄∗σt , fσt,t+1) +
(σ̄∗)2

2ησ
+[

σ−3
minCmaxD̂(f̄∗σt , fσt,t+1) + L

]2
2

ησT.

Remark 2. Setting the values of the hypotheses to
O(1/

√
T ) is a common assumption (Zhao et al. 2012; Hu

et al. 2015), since it has no influence on the prediction
when multiplying the weights by a factor of order O(1/

√
T )

of magnitude. Thus, we assume that |f∗σt(xt)|, |f̄
∗
σt(xt)|

and |fσt,t+1(xt)| are of order O(1/
√
T ) for t ∈ [T ], set

ηf , ησ = O(1/
√
T ) and µ = O(1/T ), and obtain aO(

√
T )

regret bound for online kernel selection with OKS-SPT. This
regret bound holds for a continuous kernel space and it is
optimal for a convex objective function and OGD (Hazan
2016).

1From the bordered matrix inverse formula, Kσt,Vt is nonsin-
gular at each round.

Regret Bound for OKS-TPS (Category 2) In OKS-TPS,
we perform online kernel selection at round t in three steps:
1. KERNELSELECTION: Select the kernel using OGD

σt+1 = σt − ησ∇σt`(fσt,t(xt), yt),
where ησ > 0 is the stepsize of OGD.

2. BUFFERMAINTENANCE: Insert the new example as
Vt+1 = Vt ∪ {xt} if some condition holds otherwise set
Vt+1 = Vt, and obtain fma

σt+1,t(·).

3. WEIGHTUPDATING: If Vt+1 = Vt ∪ {xt}, update the
weight vector with KOGD

fσt+1,t+1(·) = fma
σt+1,t(·)−ηf∇fma

σt+1,t
`(fma

σt+1,t(xt), yt);

otherwise, fσt+1,t+1(·) = fma
σt+1,t(·) + θt(·), where θt(·)

is a compensation to the weight vector at round t and
ηf > 0 is the stepsize of KOGD.

We first decompose Regt(fσt,t, f̄
∗) for OKS-TPS into

two instantaneous regrets as follows:

Regt(fσt,t, f̄
∗) = Regt(fσt,t, fσ̄∗,t)︸ ︷︷ ︸

Approximation

+ Regt(fσ̄∗,t, f̄
∗)︸ ︷︷ ︸

Optimization, Estimation

.

In contrast to the three instantaneous regrets (3) in OKS-
SPT, the two instantaneous regrets in OKS-TPS have differ-
ent interpretations, given in the supplementary material.

Then, we define the hypothesis sketch degradation Λt at
round t for OKS-TPS in a different form as follows:

Λt = fσt+1,t(·)−ηf∇fσt+1,t
`(fσt+1,t(xt), yt)−fσt+1,t+1(·).

The corresponding gradient error and average gradient er-
ror are∥∥∥F (t)

h

∥∥∥
Ĥ

= ‖Λt/ηf‖HĤ and F h =
∑
t∈[T ]

∥∥∥F (t)
h

∥∥∥
HĤ

/T,

respectively. For a sublinear regret guarantee, OKS-TPS re-
quires different assumptions from OKS-SPT as follows.
Assumption 2. Let ν ∈ [0,maxκσ∈KΩ

κσ(x,x)] , x ∈ X ,
Kσt,Vt = (κσt(x̃i, x̃j)) be the kernel matrix with size
|Vt| × |Vt| where x̃i, x̃j ∈ Vt. OKS-TPS satisfies the three
conditions:
• BUFFERMAINTENANCE inserts the example as Vt+1 =
Vt ∪ {xt} at round t if2

detKσt+1,Vt∪{xt}/ detKσt+1,Vt > ν. (5)

• KERNELSELECTION generates a sequence of kernel pa-
rameters {σt}Tt=1 such that maxt∈[T ] |∇σtfσt,t(xt)| ≤
M, and σt < minx̃i∈Vt ‖xt − x̃i‖/

√
3 for Gaussian ker-

nels and t ∈ [T ].
• When (5) does not hold at round t, WEIGHTUPDATING

compensates the weight vector using θt(·) to minimize
‖F (t)

h ‖Hκσt+1
. For hinge loss, this condition is equiva-

lent to θt(·) = ηfyt〈βσt+1

t ,ψ
(t)
σt+1(·)〉, where βσt+1

t =(
Kσt+1,Vt

)†
ψ

(t)
σt+1(xt).

2From the bordered matrix inverse formula, Kσt+1,Vt is non-
singular at each round.

10935



Approach
Computational complexities Regret guarantees

Time (round t) #Updates Time (overall) Space Candidate Regret bound

OKS (Yang et al. 2012) O(N + t) T O(T 2 +NT ) O(T ) Finite O
(√

N(lnN)T
)

MS-FTPL (Foster et al. 2017) O (Nt) T O
(
NT 2

)
O(NT ) Finite O

(√
NT lnT

)
OKL-GD (Chen et al. 2016) O(t) T O(T 2) O(T ) Continuous –
RRF (Nguyen et al. 2017) O(D) T O(DT ) O(D) Continuous –

OKS-SPT O
(
(ln t)2

)
ln(T ) O((lnT )2T ) O((lnT )2) Continuous O

(√
T
)

OKS-TPS O
(
(ln t)2

)
T O((lnT )2T ) O((lnT )2) Continuous O

(√
T
)

Table 1: Comparisons between the proposed categories with learning kernel and the existing approaches for online kernel se-
lection, where MS-FTPL uses a uniform prior distribution. (T : the number of rounds; N : the number of candidate kernels,
N < ∞; D: the dimension of random feature space; #Updates: the number of updates for optimal kernels; Time: time com-
plexity; Space: space complexity; Candidate: the types of the set of candidate kernels; Finite: the finite kernel set; Continuous:
the continuous kernel space; “–”: not available).

We finally give the bounds of the two instantaneous re-
grets in the surrogate hypothesis space, and derive the regret
bound of OKS-TPS under Assumption 2.
Theorem 3. Let `(·, ·) be the hinge loss function, Y =
{−1, 1}, KΩ be a continuous kernel space that contains
Gaussian kernel functions, {fσt,t}Tt=1 ⊆ Ĥ be the hypoth-
esis sketch sequence generated by OKS-TPS satisfying As-
sumption 2. Assume R = supf∈Ĥ ‖f‖Ĥ, then

R̂egT ({fσt,t}Tt=1, f̄
∗) ≤ J1 + J2,

where J1 = (σ̄∗)2/2ησ +M2ησT/2 and

J2 = 2R
T∑
t=1

D∗t + 2RTO(
√
ν) +

R2

2ηf
+

[
maxt∈[T ]D

∗
t +O(

√
ν) + 1

]2
2

ηfT,

where D∗t = 0 if Vt+1 = Vt ∪ {xt} and otherwise

D∗t =

(
detKσ̄∗,Vt∪{xt}

detKσ̄∗,Vt
+
〈
ψ

(t)
σ̄∗ (xt), β

σ̄∗

t − β
σt+1

t

〉) 1
2

.

Remark 3. In contrast to OKS-SPT, the optimal regret
bound of OKS-TPS does not need the assumptions for the
values of the hypotheses. Setting ηf , ησ = O(1/

√
T ) and

ν = O(1/T ), if the following conditions hold when (5) holds
at round t

detKσ̄∗,Vt∪{xt}/ detKσ̄∗,Vt = O(ν),

‖βσ̄
∗

t − β
σt+1

t ‖ = O(ν),
(6)

OKS-TPS enjoys aO(
√
T ) regret bound in a continuous ker-

nel space, which is optimal for a convex objective function
and OGD (Hazan 2016). (6) measures the quality of the con-
tinuous kernel space, which can be verified only using can-
didate kernels and the examples without labels.

Comparisons with Existing Theoretical Results
In this subsection, we summarize the comparable theoreti-
cal results for the online kernel selection, including compu-

tational complexities3 and regret guarantees .
For our two categories of online kernel selection, the run-

ning time is dominated by the computing the determinants in
(4) and (5). From the proofs of Theorem 2 and Theorem 3,
we can obtain that the number of the examples that satisfy
(4) is O(ln t) after t rounds. In practical implementations,
we use σmin instead of σt or σt+1 in the conditions (4), (5)
and the compensations δt(·), θt(·). Then the determinants
can be computed using rank-one Cholesky updates (Golub
and Van Loan 2012), resulting in a O

(
(ln t)2

)
time com-

plexity at round t and a polylogarithmic space complexity
for both categories of online kernel selection. Besides, since
OKS-SPT only needs a logarithmic number of updates for
optimal kernels, it has a O((lnT )3) overall time complexity
for kernel selection which is more efficient than OKS-TPS.

In regret analysis, we focus on the analyses and compar-
isons of worse-case regrets which are conceptually stronger
than expected regret. The reason is that the expected re-
grets ignore the variance information. OKS-SIL in (Zhang
and Liao 2020) can be seen as a special case of our Cate-
gory 1, but OKS-SIL does not satisfy our condition (4) for
sublinear worse-case regrets of Category 1, and only enjoys
a weaker expected regret bound. Thus, we obtain stronger
theoretical guarantees for online kernel selection in continu-
ous kernel space. Table 1 summarizes the theoretical results
of our two categories of online kernel selection and the ex-
isting approaches, from which we can observe the following
results: (a) in contrast to the existing linear time complex-
ity with respect to the number of candidate kernels, the time
complexity of the proposed two categories is independent of
the cardinality of the continuous kernel space, which is ef-
fective for a continuous kernel space; (b) the proposed two
categories reduce the linear space complexity to a logarith-
mic space complexity with respect to the number of rounds,
and have a polylogarithmic time complexity at each round
with respect to the current number of rounds compared with
the existing linear time complexity4; (c) unlike the existing

3We omit the dimension of input data in the computational com-
plexities.

4For online kernel learning using random features, a dimension
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Algorithm
german spambase mushrooms

Mistake rate (%) Time (s) Mistake rate (%) Time (s) Mistake rate (%) Time (s)
OKL-GD 34.960 ± 1.518 0.194 36.031 ± 0.421 6.700 4.226 ± 0.910 37.230
OKS 42.320 ± 1.307 0.226 34.355 ± 0.372 4.083 9.441 ± 0.282 9.787
RRF 31.140 ± 0.114 0.372 44.961 ± 0.820 4.767 16.166 ± 0.964 21.750
OKS-SPT 29.920 ± 0.286 0.244 28.436 ± 0.213 2.533 6.585 ± 0.246 4.240
OKS-TPS 29.760 ± 0.270 0.296 28.450 ± 0.188 2.590 3.139 ± 0.481 6.910

Algorithm
a9a w7a ijcnn1

Mistake rate (%) Time (s) Mistake rate (%) Time (s) Mistake rate (%) Time (s)
OKL-GD 23.936 ± 0.008 321.525 2.975 ± 0.062 857.268 9.575 ± 0.012 134.880
OKS 23.617 ± 0.127 1053.420 7.637 ± 0.024 943.855 9.578 ± 0.184 618.520
RRF 23.931 ± 0.001 152.265 2.978 ± 0.004 674.735 9.574 ± 0.001 39.290
OKS-SPT 20.368 ± 0.659 39.360 2.675 ± 0.023 94.530 9.478 ± 0.003 33.860
OKS-TPS 22.379 ± 0.192 48.815 2.631 ± 0.010 96.395 9.440 ± 0.002 35.165

Table 2: Performances of OKL-GD, OKS, RRF and the proposed OKS-SPT, OKS-TPS for online classification w.r.t. the
mistake rate =

∑T
t=1 I(ytfσt,t(xt) < 0)/T × 100 and the running time.

approaches for a continuous kernel space lacking sublinear
regrets, the proposed two categories enjoy sublinear regrets
in a continuous kernel space. Besides, although OKS-SPT
requires more conditions for a sublinear regret guarantee
than OKS-TPS, it is more efficient than OKS-TPS due to
its lower overall time complexity for kernel selection.

Empirical Studies
This section empirically evaluates the performances of dif-
ferent categories of online kernel selection, verifying the
correctness of the theoretical results. We merged the train-
ing set and testing set into one dataset for each benchmark
dataset5. We performed the experiments over 20 different
random permutations of the datasets, which were imple-
mented in R 3.3.2 on a machine with 4-core Intel Core
i7 3.60 GHz CPU and 16GB memory. We compared the
proposed categories of online kernel selection with the fol-
lowing state-of-the-art online kernel selection algorithms:
Online Kernel Learning with Gradient Descent6 (OKL-
GD) (Chen et al. 2016), Online Kernel Selection (OKS)
(Yang et al. 2012), Reparameterized Random Feature (RRF)
(Nguyen et al. 2017).

We adopted Gaussian kernels as the candidate kernels, in-
cluding a finite kernel set {2−(i+1)/2, i = [−14 : +2 : 14]}
for OKS and a continuous kernel space Ω = [2−15/2, 213/2]
for OKL-GD, RRF and our categories. For all the algo-
rithms, we used the hinge loss functions, tuned the stepsizes
of online gradient descent in a range of 10[−5:+1:0], and se-
lected the initial kernel σ1 in {2−(i+1)/2, i = [−14 : +1 :
−10]} uniform randomly, since small σ1 may lead to the
vanishing of the gradients. In our categories, we set µ = 0.1

of random feature space of order D = O(T ) is required for a
sublinear regret bound (Lu et al. 2016).

5http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
6For OKL-GD, we restricted the number of the support vectors

to 2000, preventing the curse of kernelization.

and used budgeted versions of the proposed categories that
stop updating the buffer under a fixed budget B = 200. Be-
sides, we set the dimension of random features D = 400 in
RRF, and set the smoothing parameter and stepsize of OKS
as in (Yang et al. 2012).

Table 2 lists the experimental results of the mistake rate
and the running time for online classification on benchmark
datasets. We summarize the observations as follows: (a) the
proposed categories are more efficient on large datasets and
more accurate on all the datasets than the other online ker-
nel selection algorithms, which conforms to the theoretical
results in Table 1; (b) OKS-SPT is more efficient than OKS-
TPS on all the datasets. The reason is that OKS-SPT requires
only polylogarithmic overall time complexity for kernel se-
lection compared with the quasilinear overall time complex-
ity of OKS-TPS for kernel selection; (c) OKS-TPS performs
better than OKS-SPT in terms of the mistake rates on most
datasets. This is because the sublinear regret bound of OKS-
TPS requires less conditions to hold than OKS-SPT. which
is analyzed in theoretical results.

Conclusion

Regret analysis for online kernel selection in a continuous
kernel space is a brand-new and complex problem. In this
paper, we divide online kernel selection in a continuous ker-
nel space into two categories according to the order of selec-
tion and training at each round. We give the conditions that
guarantee the optimal regret bounds for the two categories
in continuous kernel spaces, and demonstrate that the two
categories via the proposed kernel selection algorithms have
polylogarithmic computational complexities at each round
with respect to the current number of rounds. The theoret-
ical results establish a solid foundation for the regret ana-
lytics of online model selection and online learning under
different learning frameworks. Future work will extend our
regret analyses to decision problem under limited feedbacks.
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