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Abstract

Vertical federated learning (VFL) attracts increasing attention
due to the emerging demands of multi-party collaborative mod-
eling and concerns of privacy leakage. In the real VFL appli-
cations, usually only one or partial parties hold labels, which
makes it challenging for all parties to collaboratively learn
the model without privacy leakage. Meanwhile, most existing
VFL algorithms are trapped in the synchronous computations,
which leads to inefficiency in their real-world applications. To
address these challenging problems, we propose a novel VFL
framework integrated with new backward updating mecha-
nism and bilevel asynchronous parallel architecture (VFB2),
under which three new algorithms, including VFB2-SGD, -
SVRG, and -SAGA, are proposed. We derive the theoretical
results of the convergence rates of these three algorithms un-
der both strongly convex and nonconvex conditions. We also
prove the security of VFB2 under semi-honest threat models.
Extensive experiments on benchmark datasets demonstrate
that our algorithms are efficient, scalable and lossless.

Introduction
Federated learning (McMahan et al. 2016; Smith et al. 2017;
Kairouz et al. 2019) has emerged as a paradigm for collab-
orative modeling with privacy-preserving. A line of recent
works (McMahan et al. 2016; Smith et al. 2017) focus on
the horizontal federated learning, where each party has a sub-
set of samples with complete features. There are also some
works (Gascón et al. 2016; Yang et al. 2019b; Dang et al.
2020) studying the vertical federated learning (VFL), where
each party holds a disjoint subset of features for all samples.
In this paper, we focus on VFL that has attracted much at-
tention due to its wide applications to emerging multi-party
collaborative modeling with privacy-preserving.

Currently, there are two mainstream methods for VFL, in-
cluding homomorphic encryption (HE) based methods and
exchanging the raw computational results (ERCR) based
methods. The HE based methods (Hardy et al. 2017; Cheng
et al. 2019) leverage HE techniques to encrypt the raw data
and then use the encrypted data (ciphertext) for training
model with privacy-preserving. However, there are two major
drawbacks of HE based methods. First, the complexity of
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homomorphic mathematical operation on ciphertext field is
very high, thus HE is extremely time consuming for modeling
(Liu, Ng, and Zhang 2015; Liu et al. 2019). Second, approxi-
mation is required for HE to support operations of non-linear
functions, such as Sigmoid and Logarithmic functions, which
inevitably causes loss of the accuracy for various machine
learning models using non-linear functions (Kim et al. 2018;
Yang et al. 2019a). Thus, the inefficiency and inaccuracy of
HE based methods dramatically limit their wide applications
to realistic VFL tasks.

ERCR based methods (Zhang et al. 2018; Hu et al. 2019;
Gu et al. 2020b) leverage labels and the raw intermediate com-
putational results transmitted from the other parties to com-
pute stochastic gradients, and thus use distributed stochastic
gradient descent (SGD) methods to train VFL models effi-
ciently. Although ERCR based methods circumvent afore-
mentioned drawbacks of HE based methods, existing ERCR
based methods are designed with only considering that all
parties have labels, which is not usually the case in real-world
VFL tasks. In realistic VFL applications, usually only one
or partial parties (denoted as active parties) have the labels,
and the other parties (denoted as passive parties) can only
provide extra feature data but do not have labels. When these
ERCR based methods are applied to the real situation with
both active and passive parties, the algorithms even cannot
guarantee the convergence because only active parties can
update the gradient of loss function based on labels but the
passive parties cannot, i.e. partial model parameters are not
optimized during the training process. Thus, it comes to the
crux of designing the proper algorithm for solving real-world
VFL tasks with only one or partial parties holding labels.

Moreover, algorithms using synchronous computation
(Gong, Fang, and Guo 2016; Zhang et al. 2018) are ineffi-
cient when applied to real-world VFL tasks, especially, when
computational resources in the VFL system are unbalanced.
Therefore, it is desired to design the efficient asynchronous
algorithms for real-world VFL tasks. Although there have
been several works studying asynchronous VFL algorithms
(Hu et al. 2019; Gu et al. 2020b), it is still an open problem to
design asynchronous algorithms for solving real-world VFL
tasks with only one or partial parties holding labels.

In this paper, we address these challenging problems by
proposing a novel framework (VFB2) integrated with the
novel backward updating mechanism (BUM) and bilevel
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asynchronous parallel architecture (BAPA). Specifically, the
BUM enables all parties, rather than only active parties, to
collaboratively update the model securely and also makes
the final model lossless; the BAPA is designed for efficiently
asynchronous backward updating. Considering the advan-
tages of SGD-type algorithms in optimizing machine learn-
ing models, we thus propose three new SGD-type algorithms,
i.e., VFB2-SGD, -SVRG and -SAGA, under that framework.
We summarize the contributions of this paper as follows.

• We are the first to propose the novel backward updating
mechanism for ERCR based VFL algorithms, which en-
ables all parties, rather than only parties holding labels, to
collaboratively learn the model with privacy-preserving
and without hampering the accuracy of final model.

• We design a bilevel asynchronous parallel architecture
that enables all parties asynchronously update the model
through backward updating, which is efficient and scalable.

• We propose three new algorithms for VFL, including
VFB2-SGD, -SVRG, and -SAGA under VFB2. Moreover,
we theoretically prove their convergence rates for both
strongly convex and nonconvex problems.

Notations. ŵ denotes the inconsistent read of w. w̄ denotes
w to compute local stochastic gradient of loss function for
collaborators, which maybe stale due to communication delay.
ψ(t) is the corresponding party performing the t-th global
iteration. Given a finite set S, |S| denotes its cardinality.

Problem Formulation
Given a training set {xi, yi}ni=1, where yi ∈ {−1,+1} for
binary classification task or yi ∈ R for regression prob-
lem and xi ∈ Rd, we consider the model in a linear form
of w>x, where w ∈ Rd corresponds to the model param-
eters. For VFL, xi is vertically distributed among q ≥ 2
parties, i.e., xi = [(xi)G1 ; · · · ; (xi)Gq ], where (xi)G` ∈ Rd`
is stored on the `-th party and

∑q
`=1 d` = d. Similarly, there

is w = [wG1 ; · · · ;wGq ]. Particularly, we focus on the follow-
ing regularized empirical risk minimization problem.

min
w∈Rd

f(w) :=
1

n

n∑
i=1

L
(
w>xi, yi

)
+ λ

q∑
`=1

g(wG`)︸ ︷︷ ︸
fi(w)

, (P)

where w>xi =
∑q
`=1 w

>
G` (xi)G` , L denotes the loss func-

tion,
∑q
`=1 g(wG`) is the regularization term, and fi : Rd →

R is smooth and possibly nonconvex. Examples of problem P
include models for binary classification tasks (Conroy and
Sajda 2012; Wang et al. 2017) and models for regression
tasks (Shen et al. 2013; Wang et al. 2019).

In this paper, we introduce two types of parties: active
party and passive party, where the former denotes data
provider holding labels while the latter does not. Particularly,
in our problem setting, there are m (1 ≤ m ≤ q) active
parties. Each active party can play the role of dominator in
model updating by actively launching updates. All parties,
including both active and passive parties, passively launching
updates play the role of collaborator. To guarantee the model

Algorithm 1 Safe algorithm of obtaining wTxi.

Input: {wG`′}
q
`′=1 and {(xi)G`′}

q
`′=1 allocating at each

party, index i.
Do this in parallel

1: for `′ = 1, · · · , q do
2: Generate a ramdon number δ`′ and calculate

w>G`′ (xi)G`′ + δ`′ ,
3: end for
4: Obtain ξ1 =

∑q
`′=1(w>G`′ (xi)G`′ + δ`′) through tree

structure T1.
5: Obtain ξ2 =

∑q
`′=1 δ`′ through totally different tree

structure T2 6= T1.
Output: w>xi = ξ1 − ξ2

security, only active parties know the form of the loss func-
tion. Moreover, we assume that the labels can be shared by
all parties finally. Note that this does not obey our intention
that only active parties hold the labels before training. The
problem studied in this paper is stated as follows:
Given: Vertically partitioned data {xG`}

q
`=1 stored in q par-

ties and the labels only held by active parties.
Learn: A machine learning model M collaboratively learned
by both active and passive parties without leaking privacy.
Lossless Constraint: The accuracy of M must be compara-
ble to that of model M′ learned under non-federated learning.

VFB2 Framework
In this section, we propose the novel VFB2 framework. VFB2

is composed of three components and its systemic structure
is illustrated in Fig. 1a. The details of these components are
presented in the following.

The key of designing the proper algorithm for solving
real-world VFL tasks with both active and passive parties
is to make the passive parties utilize the label information
for model training. However, it is challenging to achieve this
because direct using the labels hold by active parties leads to
privacy leakage of the labels without training. To address this
challenging problem, we design the BUM with painstaking.
Backward Updating Mechanism: The key idea of BUM
is to make passive parties indirectly use labels to compute
stochastic gradient without directly accessing the raw label
data. Specifically, the BUM embeds label yi into an interme-

diate value ϑ :=
∂L(w>xi,yi)
∂(w>xi)

. Then ϑ and i are distributed
backward to the other parties. Consequently, the passive par-
ties can also compute the stochastic gradient and update the
model by using the received ϑ and i (please refer to Algo-
rithms 2 and 3 for details). Fig. 1b depicts the case where
ϑ is distributed from party 1 to the rest parties. In this case,
all parties, rather than only active parties, can collaboratively
learn the model without privacy leakage.

For VFL algorithms with BUM, dominated updates in dif-
ferent active parties are performed in distributed-memory
parallel, while collaborative updates within a party are per-
formed in shared-memory parallel. The difference of paral-
lelism fashion leads to the challenge of developing a new
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Figure 1: (a): System structure of VFB2 framework. (b): Illustration of the BUM and BAPA, where k is the number of threads.

parallel architecture instead of just directly adopting the ex-
isting asynchronous parallel architecture for VFL. To tackle
this challenge, we elaborately design a novel BAPA.
Bilevel Asynchronous Parallel Architecture: The BAPA
includes two levels of parallel architectures, where the up-
per level denotes the inner-party parallel and the lower one
is the intra-party parallel. More specifically, the inner-party
parallel denotes distributed-memory parallel between active
parties, which enables all active parties to asynchronously
launch dominated updates; while the intra-party one denotes
the shared-memory parallel of collaborative updates within
each party, which enables multiple threads within a specific
party to asynchronously perform the collaborative updates.
Fig. 1b illustrates the BAPA with m active parties.

To utilize feature data provided by other parties, a party
need obtain wTxi =

∑q
`=1 w

>
G`(xi)G` . Many recent works

achieved this by aggregating the local intermediate computa-
tional results securely (Hu et al. 2019; Gu et al. 2020a). In
this paper, we use the efficient tree-structured communication
scheme (Zhang et al. 2018) for secure aggregation, whose
security was proved in (Gu et al. 2020a).
Secure Aggregation Strategy: The details are summarized
in Algorithm 1. Specifically, at step 2, w>G`(xi)G` is com-
puted locally on the `-th party to prevent the direct leakage
of wG` and (xi)G` . Especially, a random number δ` is added
to w>G`(xi)G` to mask the value of w>G`(xi)G` , which can en-
hance the security during aggregation process. At steps 4
and 5, ξ1 and ξ2 are aggregated through tree structures T1
and T2, respectively. Note that T2 is totally different from
T1 that can prevent the random value being removed un-
der threat model 1 (defined in section ). Finally, value of
w>xi =

∑q
`=1(w>G`(xi)G` is recovered by removing term∑q

`=1 δ` from
∑q
`=1(w>G`(xi)G` + δ`) at the output step. Us-

ing such aggregation strategy, (xi)G` and wG` are prevented
from leaking during the aggregation.

Secure Bilevel Asynchronous VFL Algorithms
with Backward Updating

SGD (Bottou 2010) is a popular method for learning ma-

Algorithm 2 VFB2-SGD for active party ` to actively launch
dominated updates.

Input: Local data {(xi)G` , yi}
n
i=1 stored on the `-th party,

learning rate γ.
1: Initialize the necessary parameters.

Keep doing in parallel (distributed-memory parallel
for multiple active parties)

2: Pick up an index i randomly from {1, ..., n}.
3: Compute ŵ>xi =

∑q
`′=1 ŵ

>
G`′ (xi)G`′ based on Al

gorithm 1.

4: Compute ϑ =
∂L(ŵ>xi,yi)
∂(ŵ>xi)

.
5: Send ϑ and index i to collaborators.
6: Compute ṽ` = ∇G`fi(ŵ).
7: Update wG` ← wG` − γṽ`.

End parallel

chine learning (ML) models. However, it has a poor conver-
gence rate due to the intrinsic variance of stochastic gradient.
Thus, many popular variance reduction techniques have been
proposed, including the SVRG, SAGA, SPIDER (Johnson
and Zhang 2013; Defazio, Bach, and Lacoste-Julien 2014;
Wang et al. 2019) and their applications to other problems
(Huang, Chen, and Huang 2019; Huang et al. 2020; Zhang
et al. 2020; Dang et al. 2020; Yang et al. 2020a,b; Li et al.
2020; Wei et al. 2019). In this section we raise three SGD-
type algorithms, i.e. the SGD, SVRG and SAGA, which
are the most popular ones among SGD-type methods for
the appealing performance in practice. We summarize the
detailed steps of VFB2-SGD in Algorithms 2 and 3. For
VFB2-SVRG and -SAGA, one just needs to replace the up-
date rule with corresponding one.

As shown in Algorithm 2, at each dominated update, the
dominator (an active party) calculates ϑ and then distributes
ϑ together with i to the collaborators (the rest q − 1 par-
ties). As shown in Algorithm 3, for party `, once it has re-
ceived the ϑ and i, it will launch a new collaborative update
asynchronously. As for the dominator, it computes the local
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Algorithm 3 VFB2-SGD for the `-th party to passively
launch collaborative updates.

Input: Local data {(xi)G` , yi}
n
i=1 stored on the `-th party,

learning rate γ.
1: Initialize the necessary parameters (for passive parties).

Keep doing in parallel (shared-memory parallel for
multiple threads)

2: Receive ϑ and the index i from the dominator.
3: Compute ṽ` = ∇G`L(w̄) + λ∇G`g(ŵ) = ϑ · (xi)G`+

λ∇g(ŵG`).
4: Update wG` ← wG` − γṽ`.
5: End parallel

stochastic gradient as ∇G`fi(ŵ) = ∇G`L(ŵ) + λ∇g(ŵG`).
While, for the collaborator, it uses the received ϑ to compute
∇G`L and local ŵ to compute ∇G`g as shown at step 3 in
Algorithm 3. Note that active parties also need perform Algo-
rithm 3 to collaborate with other dominators to ensure that
the model parameters of all parties are updated.

Theoretical Analysis
In this section, we provide the convergence analyses. Please
see the arXiv version for more details. We first present pre-
liminaries for strongly convex and nonconvex problems.
Assumption 1. For fi(w) in problem P, we assume the fol-
lowing conditions hold:

1. Lipschitz Gradient: Each function fi, i = 1, . . . , n, there
exists L > 0 such that for ∀ w,w′ ∈ Rd, there is

‖∇fi(w)−∇fi(w′)‖ ≤ L‖w − w′‖. (1)

2. Block-Coordinate Lipschitz Gradient: For i =
1, . . . , n, there exists an L` > 0 for the `-th block G`,
where ` = 1, · · · , q such that

‖∇G`fi(w + U`∆`)−∇G`fi(w)‖ ≤ L`‖∆`‖, (2)

where ∆` ∈ Rd` , U` ∈ Rd×d` and [U1, · · · , Uq] = Id.
3. Bounded Block-Coordinate Gradient: There exists a

constant G such that for fi, i = 1, · · · , n and block G`,
` = 1, · · · , q, it holds that ‖∇G`fi(w)‖2 ≤ G.

Assumption 2. The regularization term g is Lg-smooth,
which means that there exists an Lg > 0 for ` = 1, . . . , q
such that ∀wG` , w′G` ∈ Rd` there is

‖∇g(wG`)−∇g(w′G`)‖ ≤ Lg‖wG` − w
′
G`‖. (3)

Assumption 2 imposes the smoothness on g, which is nec-
essary for the convergence analyses. Because, as for a specific
collaborator, it uses the received ŵ (denoted as w̄) to com-
pute∇G`L and local ŵ to compute∇G`g = ∇g(wG`), which
makes it necessary to track the behavior of g individually.
Similar to previous research works (Lian et al. 2015; Huo
and Huang 2017; Leblond, Pedregosa, and Lacoste-Julien
2017), we introduce the bounded delay as follows.
Assumption 3. Bounded Delay: Time delays of inconsis-
tent reading and communication between dominator and its
collaborators are upper bounded by τ1 and τ2, respectively.

Given ŵ as the inconsistent read of w, which is used to
compute the stochastic gradient in dominated updates, fol-
lowing the analysis in (Gu et al. 2020b), we have

ŵt − wt = γ
∑

u∈D(t)

Uψ(u)ṽ
ψ(u)
u , (4)

where D(t) = {t − 1, · · · , t − τ0} is a subset of non-
overlapped previous iterations with τ0 ≤ τ1. Given w̄ as
the parameter used to compute the∇G`L in collaborative up-
dates, which is the steal state of ŵ due to the communication
delay between the specific dominator and its correspond-
ing collaborators. Then, following the analyses in (Huo and
Huang 2017), there is

w̄t = ŵt−τ0 = ŵt + γ
∑

t′∈D′(t)

Uψ(t′)ṽ
ψ(t′)
t′ , (5)

where D′(t) = {t − 1, · · · , t − τ0} is a subset of previous
iterations performed during the communication and τ0 ≤ τ2.

Convergence Analysis for Strongly Convex
Problem
Assumption 4. Each function fi, i = 1, . . . , n, is µ-strongly
convex, i.e., ∀ w, w′ ∈ Rd there exists a µ > 0 such that

fi(w) ≥ fi(w′) + 〈∇fi(w′), w−w′〉+
µ

2
‖w−w′‖2. (6)

For strongly convex problem, we introduce notation K(t)
that denotes a minimum set of successive iterations fully vis-
iting all coordinates from global iteration number t. Note that
this is necessary for the asynchronous convergence analyses
of the global model. Moreover, we assume that the size of
K(t) is upper bounded by η1, i.e., |K(t)| ≤ η1. Based on
K(t), we introduce the epoch number v(t) as follow.
Definition 1. Let P (t) be a partition of {0, 1, · · · , t − σ′},
where σ′ ≥ 0. For any κ ⊆ P (t) we have that there exists
t′ ≤ t such that K(t′) = κ, and κ1 ⊆ P (t) such that
K(0) = κ1. The epoch number for the t-th global iteration,
i.e., v(t) is defined as the maximum cardinality of P (t).

Given the definition of epoch number v(t), we have the
following theoretical results for µ-strongly convex problem.
Theorem 1. Under Assumptions 1-3 and 4, to achieve
the accuracy ε of problem P for VFB2-SGD, i.e.,
E(f(wt) − f(w∗)) ≤ ε, let γ ≤ εµ1/3

(G96L2
∗)

1/3 , if τ ≤

min{ε−4/3, (GL
2
∗)

2/3

ε2µ2/3 } , the epoch number v(t) should sat-

isfy v(t)≥ 44(GL2
∗)

1/3

µ4/3ε
log( 2(f(w0)−f(w∗))

ε ) , where L∗ =

max{L, {L`}q`=1, Lg}, τ = max{τ21 , τ22 , η21}, w0 and w∗ de-
note the initial point and optimal point, respectively.
Theorem 2. Under Assumptions 1-3 and 4, to achieve the
accuracy ε of problem P for VFB2-SVRG, let C = (L2

∗γ +

L∗)
γ2

2 and ρ = γµ
2 −

16L2
∗η1C
µ , we can carefully choose γ

such that

1) 1− 2L2
∗γ

2τ > 0; 2) ρ > 0; 3)
8L2
∗τ

1/2C

ρµ
≤ 0.05;

4) L2
∗γ

2τ3/2(28C + 5γ)
36G

ρ(1− 2L2
∗γ

2τ)
≤ ε

8
, (7)
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where v(t) should satisfy v(t) ≥ log0.25
log(1−ρ) and the outer loop

number S should satisfy S ≥ 1
log 4

3

log 2f(w0)−f(w∗)
ε .

Theorem 3. Under Assumptions 1-3 and 4, to achieve
the accuracy ε of problem P for VFB2-SAGA, let c0 =(
2γ3τ3/2 + (L2

∗γ
3τ + L∗γ

2)180γ2τ3/2 + 8γ2τ
) 18GL2

∗
1−72L2

∗γ
2τ ,

c1 = 2L2
∗τ(L2

∗γ
3τ + L∗γ

2), c2 = 4(L2
∗γ

3τ + L∗γ
2)
L2
∗τ
n ,

and ρ ∈ (1− 1
n , 1), we can choose γ such that

1) 1− 72L2
∗γ

2τ > 0; 2) 0 < 1− γµ

4
< 1;

3)
4c0

γµ(1− ρ)
(
γµ2

4 − 2c1 − c2
) ≤ ε

2
;

4) − γµ2

4
+ 2c1 + c2

(
1 + (1−

1− 1
n

ρ
)−1
)
≤ 0;

5) − γµ2

4
+ c2 + c1

(
2 + (1−

1− 1
n

ρ
)−1
)
≤ 0,(8)

the epoch number v(t) should satisfy v(t) ≥
1

log 1
ρ

log
2(2ρ−1+ γµ

4 )(f(w0)−f(w∗))

ε(ρ−1+ γµ
4 )
(
γµ2

4 −2c1−c2
) .

Remark 1. For strongly convex problems, given the assump-
tions and parameters in corresponding theorems, the con-
vergence rate of VFB2-SGD is O( 1

ε log( 1
ε )), and those of

VFB2-SVRG and VFB2-SAGA are O(log( 1
ε )).

Convergence Analysis for Nonconvex Problem
Assumption 5. Nonconvex function f(w) is bounded below,

f∗ := inf
w∈Rd

f(w) > −∞. (9)

Assumption 5 guarantees the feasibility of nonconvex prob-
lem (P). For nonconvex problem, we introduce the nota-
tion K ′(t) that denotes a set of q iterations fully visiting
all coordinates, i.e., K ′(t) = {{t, t + t̄1, · · · , t + t̄q−1} :
ψ({t, t + t̄1, · · · , t + t̄q−1}) = {1, · · · , q}}, where the t-
th global iteration denotes a dominated update. Moreover,
these iterations are performed respectively on a dominator
and q − 1 different collaborators receiving ϑ calculated at
the t-th global iteration. Moreover, we assume that K ′(t)
can be completed in η2 global iterations, i.e., for ∀t′ ∈ A(t),
there is η2 ≥ max{u|u ∈ K ′(t′)} − t′. Note that, different
from K(t), there is |K ′(t)| = q and the definition of K ′(t)
does not emphasize on “successive iterations” due to the
difference of analysis techniques between strongly convex
and nonconvex problems. Based on K ′(t), we introduce the
epoch number v′(t) as follow.
Definition 2. A(t) denotes a set of global iterations, where
for ∀ t′ ∈ A(t) there is the t′-th global iteration denoting a
dominated update and ∪∀t′∈A(t)K

′(t′) = {0, 1, · · · , t}. The
epoch number v′(t) is defined as |A(t)|.

Give the definition of epoch number v′(t), we have the
following theoretical results for nonconvex problem.
Theorem 4. Under Assumptions 1-3 and 5, to achieve the ε-
first-order stationary point of problem P, i.e. E‖∇f(w)‖ ≤ ε
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Figure 2: q-parties speedup scalability with m = 2 on D4.

for stochastic variable w, for VFB2-SGD, let γ = ε
L∗qG

, if

τ ≤ 512qG
ε2 , the total epoch number T should satisfy

T ≥
E
[
f(w0)− f∗

]
L∗qG

ε2
, (10)

where L∗ = max{L, {L`}q`=1, Lg}, τ = max{τ21 , τ22 , η22},
f(w0) is the initial function value and f∗ is defined in Eq. 9.
Theorem 5. Under Assumptions 1-3 and 5, to solve prob-
lem P with VFB2-SVRG, let γ = m0

L∗nα
, where 0 < m0 <

1
8 ,

0 < α ≤ 1, if epoch number N in an outer loop satisfies
N ≤ b n

α

2m0
c, and τ < min{ n

2α

20m2
0
, 1−8m0

40m2
0
}, there is

1

T

S∑
s=1

N−1∑
t=0

E||∇f(wst0)||
2 ≤ L∗n

αE [f(w0)− f(w∗)]
Tσ

, (11)

where T is the total number of epoches, t0 is the start itera-
tion of epoch t, σ is a small value independent of n.
Theorem 6. Under Assumptions 1-3 and 5, to solve prob-
lem P with VFB2-SAGA, let γ = m0

L∗nα
, where 0 < m0 <

1
20 ,

0 < α ≤ 1, if total epoch number T satisfies T ≤ b n
α

4m0
c

and τ < min{ n2α

180m2
0
, 1−20m0

40m2
0
}, there is

1

T

T−1∑
t=0

E||∇f(wt0)||2 ≤ L∗n
αE [f(w0)− f(w∗)]

Tσ
. (12)

Remark 2. For nonconvex problems, given conditions in the
theorems, the convergence rate of VFB2-SGD is O(1/

√
T ),

and those of VFB2-SVRG and VFB2-SAGA are O(1/T ).

Security Analysis
We discuss the data security and model security of VFB2 un-
der two semi-honest threat models commonly used in security
analysis (Cheng et al. 2019; Xu et al. 2019; Gu et al. 2020a).
Specially, these two threat models have different threat abili-
ties, where threat model 2 allows collusion between parties
while threat model 1 does not.
• Honest-but-curious (threat model 1): All workers will

follow the algorithm to perform the correct computations.
However, they may use their own retained records of the
intermediate computation result to infer other worker’s
data and model.

• Honest-but-colluding (threat model 2): All workers will
follow the algorithm to perform the correct computa-
tions. However, some workers may collude to infer other
worker’s data and model by sharing their retained records
of the intermediate computation result.
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Similar to (Gu et al. 2020a), we prove the security of VFB2 by
analyzing and proving its ability to prevent inference attack
defined as follows.

Definition 3 (Inference attack). An inference attack on the `-
th party is to infer (xi)G` (or wG` ) belonging to other parties
or yi hold by active parties without directly accessing them.

Lemma 1. Given an equation oi = w>G`(xi)G` or oi =
∂L(ŵ>xi,yi)
∂(ŵ>xi)

with only oi being known, there are infinite dif-
ferent solutions to this equation.

The proof of lemma 1 is shown in the arXiv version. Based
on lemma 1, we obtain the following theorem.

Theorem 7. Under two semi-honest threat models, VFB2

can prevent the inference attack.

Feature and model security: During the aggregation, the
value of oi = w>G`(xi)G` is masked by δ` and just the value of
w>G`(xi)G`+δ` is transmitted. Under threat model 1, one even
can not access the true value of oi, let alone using relation
oi = w>G`(xi)G` to refer w>G` and (xi)G` . Under threat model
2, the random value δ` has risk of being removed from term
w>G`(xi)G` + δ` by colluding with other parties. Applying
lemma 1 to this circumstance, and we have that even if the
random value is removed it is still impossible to exactly refer
w>G` and (xi)G` . Thus, the aggregation process can prevent
inference attack under two semi-honest threat models.
Label security: When analyze the security of label, we do
not consider the collusion between active parties and pas-
sive parties, which will make preventing labels from leaking
meaningless. In the backward updating process, if a passive
party ` wants to infer yi through the received ϑ, it must solve

the equation ϑ =
∂L(ŵ>xi,yi)
∂(ŵ>xi)

. However, only ϑ is known
to party `. Thus, following from lemma 1, we have that it is
impossible to exactly infer the labels. Moreover, the collusion
between passive parties has no threats to the security of la-
bels. Therefore, the backward updating can prevent inference
attack under two semi-honest threat models.

From above analyses, we have that the feature security,
label security and model security are guaranteed in VFB2.

Experiments
In this section, extensive experiments are conducted to
demonstrate the efficiency, scalability and losslessness of
our algorithms. More experiments are presented in the arXiv
version.
Experiment Settings: All experiments are implemented on
a machine with four sockets, and each sockets has 12 cores.
To simulate the environment with multiple machines (or par-
ties), we arrange an extra thread for each party to schedule its
k threads and support communication with (threads of) the
other parties. We use MPI to implement the communication
scheme. The data are partitioned vertically and randomly
into q non-overlapped parts with nearly equal number of fea-
tures. The number of threads within each parties, i.e. k, is
set as m. We use the training dataset or randomly select 80%
samples as the training data, and the testing dataset or the

Financial Large-Scale

D1 D2 D3 D4

#Samples 24,000 96,257 17,996 175,000
#Features 90 92 1,355,191 16,609,143

Table 1: Dataset Descriptions.

rest as the testing data. An optimal learning rate γ is cho-
sen from {5e−1, 1e−1, 5e−2, 1e−2, · · · } with regularization
coefficient λ = 1e−4 for all experiments.
Datasets: We use four classification datasets summarized
in Table 1 for evaluation. Especially, D1 (UCICreditCard)
and D2 (GiveMeSomeCredit) are the real financial datsets
from the Kaggle website∗, which can be used to demon-
strate the ability to address real-world tasks; D3 (news20)
and D4 (webspam) are the large-scale ones from the LIB-
SVM (Chang and Lin 2011) website†. Note that we apply
one-hot encoding to categorical features of D1 and D2 , thus
the number of features become 90 and 92, respectively.
Problems: We consider `2-norm regularized logistic regres-
sion problem for µ-strong convex case

min
w∈Rd

f(w) :=
1

n

n∑
i=1

log(1 + e−yiw
>xi) +

λ

2
‖w‖2, (13)

and the nonconvex logistic regression problem

min
w∈Rd

f(w) :=
1

n

n∑
i=1

log(1 + e−yiw
>xi) +

λ

2

d∑
i=1

w2
i

1 + w2
i

.

Evaluations of Asynchronous Efficiency and
Scalability
To demonstrate the asynchronous efficiency, we introduce
the synchronous counterparts of our algorithms (i.e., syn-
chronous VFL algorithms with BUM, denoted as VFB)
for comparison. When implementing the synchronous algo-
rithms, there is a synthetic straggler party which may be 30%
to 50% slower than the faster party to simulate the real appli-
cation scenario with unbalanced computational resource.
Asynchronous Efficiency: In these experiments, we set
q = 8, m = 3 and fix the γ for algorithms with a same
SGD-type but in different parallel fashions. As shown in
Figs. 3 and 4, the loss v.s. run time curves demonstrate that
our algorithms consistently outperform their synchronous
counterparts regarding the efficiency.

Moreover, from the perspective of loss v.s. epoch number,
we have that algorithms based on SVRG and SAGA have the
better convergence rate than that of SGD-based algorithms
which is consistent to the theoretical results.
Asynchronous Scalability: We also consider the asyn-
chronous speedup scalability in terms of the number of total
parties q. Given a fixed m, q-parties speedup is defined as

q-parties speedup =
Run time of using 1 party

Run time of using q parties
, (14)

∗https://www.kaggle.com/datasets
†https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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Figure 3: Results for solving µ-strongly convex VFL models (Problem 13), where the number of epoches (points) denotes how
many passes over the dataset the algorithm makes.
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Figure 4: Results for solving nonconvex VFL models (Problem 14), where the number of epoches (points) denotes how many
passes over the dataset the algorithm makes.

Algorithm D1 D2 D3 D4

Problem (13)
NonF 81.96%±0.25% 93.56%±0.19% 98.29%±0.21% 92.17%±0.12%

AFSVRG-VP 79.35%±0.19% 93.35%±0.18% 97.24%±0.11% 89.17%±0.10%
Ours 81.96%±0.22% 93.56%±0.20% 98.29%±0.20% 92.17%±0.13%

Problem (14)
NonF 82.03%±0.32% 93.56%±0.25% 98.45%±0.29% 92.71%±0.24%

AFSVRG-VP 79.36%±0.24% 93.35%±0.22% 97.59%±0.13% 89.98%±0.14%
Ours 82.03%±0.34% 93.56%±0.24% 98.45%±0.33% 92.71%±0.27%

Table 2: Accuracy of different algorithms to evaluate the losslessness of our algorithms (10 trials).

where run time is defined as time spending on reaching a
certain precision of sub-optimality, i.e., 1e−3 for D4. We
implement experiment for Problem (14), results of which are
shown in Fig. 2. As depicted in Fig. 2, our asynchronous
algorithms has much better q-parties speedup scalability than
synchronous ones and can achieve near linear speedup.

Evaluation of Losslessness
To demonstrate the losslessness of our algorithms, we com-
pare VFB2-SVRG with its non-federated (NonF) counterpart
(all data are integrated together for modeling) and ERCR
based algorithm but without BUM, i.e., AFSVRG-VP pro-
posed in (Gu et al. 2020b). Especially, AFSVRG-VP also uses
distributed SGD method but can not optimize the parameters
corresponding to passive parties due to lacking labels. When
implementing AFSVRG-VP, we assume that only half par-
ties have labels, i.e., parameters corresponding to the features
held by the other parties are not optimized. Each compari-

son is repeated 10 times with m = 3, q = 8, and a same
stop criterion, e.g., 1e−5 for D1. As shown in Table 2, the
accuracy of our algorithms are the same with those of NonF
algorithms and are much better than those of AFSVRG-VP,
which are consistent to our claims.

Conclusion
In this paper, we proposed a novel backward updating mecha-
nism for the real VFL system where only one or partial parties
have labels for training models. Our new algorithms enable
all parties, rather than only active parties, to collaboratively
update the model and also guarantee the algorithm conver-
gence, which was not held in other recently proposed ERCR
based VFL methods under the real-world setting. Moreover,
we proposed a bilevel asynchronous parallel architecture to
make ERCR based algorithms with backward updating more
efficient in real-world tasks. Three practical SGD-type of
algorithms were also proposed with theoretical guarantee.
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