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Abstract

Recently, 3D medical image reconstruction (MIR) and seg-
mentation (MIS) based on deep neural networks have been
developed with promising results, and attention mechanism
has been further designed for performance enhancement.
However, the large size of 3D volume images poses a great
computational challenge to traditional attention methods. In
this paper, we propose a folded attention (FA) approach to
improve the computational efficiency of traditional attention
methods on 3D medical images. The main idea is that we
apply tensor folding and unfolding operations to construct
four small sub-affinity matrices to approximate the original
affinity matrix. Through four consecutive sub-attention mod-
ules of FA, each element in the feature tensor can aggregate
spatial-channel information from all other elements. Com-
pared to traditional attention methods, with the moderate im-
provement of accuracy, FA can substantially reduce the com-
putational complexity and GPU memory consumption. We
demonstrate the superiority of our method on two challenging
tasks for 3D MIR and MIS, which are quantitative suscepti-
bility mapping and multiple sclerosis lesion segmentation.

Introduction
Recent deep convolutional neural networks (CNNs) are
driving advances in various computer vision tasks. These
tasks include high-level image recognition (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman
2015), object detection (Ren et al. 2015; Law and Deng
2018), and semantic segmentation (Fu et al. 2019). CNN
also significantly improves the performance of several low-
level tasks such as super resolution (Dong et al. 2014) and
image denoising (Yang et al. 2017), where full functional
mapping between source and target images is required. Be-
sides the breakthrough of natural image processing, med-
ical image processing also benefits from CNN in various
aspects. CNN based methods surpass traditional methods
and achieve the near-radiologist-level performance on MRI
brain tumor segmentation (Myronenko 2018), MRI multiple
sclerosis segmentation (Zhang et al. 2019), and left atrial
segmentation (Zhang et al. 2021a), etc. For full functional
mapping task, CNNs (Yoon et al. 2018; Zhang et al. 2020d,
2021b) also outperform traditional optimization-based 3D
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Figure 1: Computational comparison of GPU memory and
floating point number operations per second (FLOPs) be-
tween four different attention approaches: DA (Fu et al.
2019), AG (Oktay et al. 2018), SA (Wang et al. 2018), and
our FA. We get all the numbers from a machine with a sin-
gle Titan Xp GPU. We test each module using a input feature
tensor with size (64×32×32×32). Our FA module substan-
tially reduced computational cost compared to DA, AG and
SA modules (97.9%, 92.5% and 95.8% of GPU memory re-
duction, and 88.9%, 63.0% and 25.6% of FLOPs reduction).

MRI image reconstruction (Liu et al. 2012) that requires
hand-crafted regularizers or priors.

These CNN models benefit from capturing contextual
information that is essential for many computer vision
tasks. Traditional models (Krizhevsky, Sutskever, and Hin-
ton 2012; Simonyan and Zisserman 2015; He et al. 2016;
Huang et al. 2017) stack many layers of convolutional oper-
ations to capture the global contextual dependency. How-
ever, this stacking procedure has three major drawbacks:
1) Too many convolution layers introduce redundant net-
work parameters that can cause unnecessary memory usage
and computational overhead, and makes it prone to overfit-
ting (Simonyan and Zisserman 2015; Peng et al. 2017); 2)
Network optimization becomes increasingly difficult as the
network depth increases (He et al. 2016; Huang et al. 2017);
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Figure 2: Example illustration of the regularization of FA.

3) Information propagation among elements with large spa-
tial distances in the feature tensor can be inefficient due to
the issue of vanishing gradients (He et al. 2016) and satu-
rated activation units (Ioffe and Szegedy 2015).

The recent attention methods have shed light to the above
issues. Self-attention methods (Wang et al. 2018; Zhang
et al. 2019; Huang et al. 2019; Fu et al. 2019) aim at cap-
turing long-range dependencies by aggregating contextual
information of each pixel from all other pixels in the feature
map (pixel here indicates a feature vector of that pixel). An-
other stream of attention methods (Wang et al. 2017a; Hu,
Shen, and Sun 2018; Oktay et al. 2018) focus on creating a
mask that can implicitly assist CNN to pay more attention to
salient areas. Most of these attention methods operate either
on spatial dimensions (Zhang et al. 2019; Wang et al. 2018;
Oktay et al. 2018; Wang et al. 2017a), or solely on the chan-
nel dimension (Hu, Shen, and Sun 2018), which reduces the
performance of feature aggregation. Besides, unlike natural
images, processing 3D medical images using CNNs usually
demands high GPU memory usage, and most of these meth-
ods are not satisfactory due to the computation of huge at-
tention maps. We argue that a unified attention approach that
considers both the spatial-channel dependency and the effi-
ciency of computation is of great practical value for modern
3D Medical image tasks. In this paper, we present our folded
attention (FA) approach, effective and yet efficient, for mod-
eling the global contextual information with negligible com-
putational cost (see Fig. 1 and Fig. 4).

Our FA approach can be considered as the generaliza-
tion of original self-attention (SA) mechanism (Wang et al.
2018). The original SA ignores channel-wise dependency
and only aggregates information from spatial domain, while
in our FA, each element in the output feature tensor is the
weighted sum of all elements in the input feature tensor (a
pixel is denoted as a vector with multiple elements). Chan-
nel information does help the network learn better seman-
tic information (Fu et al. 2019; Hu, Shen, and Sun 2018),
but directly applying SA to incorporate spatial and chan-
nel information will cause unacceptable GPU memory us-
age (more details in the methodology section). Though DA
network (Fu et al. 2019) combines spatial and channel at-
tention by element-wise sum operation, it suffers from the
heavy computational cost. (see Fig. 1) FA module resolves

the issue by introducing tensor folding and unfolding oper-
ations, where the input feature tensor will be broadcast and
unfolded to compute four sub-affinity matrices that can ap-
proximate the function of original affinity matrix with cas-
caded aggregation. (see Fig. 3)

Through the approximation, FA can also be considered as
the regularization of the SA mechanism. For simplicity and
to be visually interpretable, we use a 1D image represented
by a 2D feature tensor to illustrate the concept. As shown
in Fig. 2, we use two smaller sub-affinity matrices Apw and
Apc to replace the original element-to-element affinity ma-
trix A ∈ RCW×CW . Let Z denotes the matrix obtained after
FA operation to X and then Z can be constructed as follows:

Aij = apwi ⊗ apcj , (1)

Zij = Aij � g(X), (2)

where ⊗ is the tensor product, � is the element-wise multi-
plication and sum, Aij is the affinity matrix of element Xij

(Aij,pq denotes the entry at pq of matrixAij , and is also the
affinity between element Xij and Xpq ), and apwi and apcj
denote the transpose of ith and jth row of matrix Apw and
Apc respectively. It is obvious that Aij is a rank-one matrix
thus imposing regularization on the original affinity matrix.

Our FA approach can be applied to many other 3D im-
age analysis tasks due to its efficiency and simplicity, and
in this paper, we demonstrate the performance on two chal-
lenging tasks in 3D Medical images. One task is quanti-
tative susceptibility mapping (QSM) (de Rochefort et al.
2010; Wang and Liu 2015), a functional image mapping
task, which enables studying tissue magnetic susceptibility
properties (Wang et al. 2017b). This reconstruction problem
is challenging due to the ill-posedness of dipole inversion.
For deep learning based QSM reconstruction, training data
can only be obtained with COSMOS (Liu et al. 2009) that
is regarded as a reference standard, but only very limited
data samples are available (Yoon et al. 2018; Zhang et al.
2020b). Another task is multiple sclerosis (MS) lesion seg-
mentation, a image semantic segmentation task. Unlike tu-
mor or other organ segmentation problems, MS lesion seg-
mentation is more difficult (Zhang et al. 2020a) as lesions
vary enormously in terms of size, shape, and location.

Related Works
The attention concept was first introduced in neural ma-
chine translation (Bahdanau, Cho, and Bengio 2014; Luong,
Pham, and Manning 2015) to improve the performance of
recurrent neural networks (RNN) by capturing dependen-
cies between long-range words in a sentence. Later, RNN
was entirely replaced with self-attention operations by trans-
former (Vaswani et al. 2017). Further, attention mechanism
has then been widely adopted in vision tasks, such as image
recognition (Wang et al. 2017a; Hu, Shen, and Sun 2018)
and image segmentation (Zhang et al. 2019; Fu et al. 2019).
In general, most of these methods can be divided into two
types: mask-based attention (MA) that learns a salience fea-
ture map and self-attention (SA) that learns feature aggrega-
tion. MA methods usually generate a mask that emphasizes
the importance or saliency on a portion of the feature tensor,
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Figure 3: The left panel is the overall FA pipeline and the upper right panel is the visualization of fold and unfold operations.
For simplicity and visualization-friendly, we use a 3D input tensor to illustrate, but 4D or higher dimensional tensors can be
easily extended. In the left panel, Ph = (0, 1, 2), Pw = (1, 0, 2) and Pc = (3, 0, 1); we first compute three sub-affinity matrices
Aph , Apw , and Apc ; With these sub-affinity matrices, we then use three consecutive unfolding-and-folding steps to perform
the feature aggregation and get output Z. In the right panel, we show how function f and u works; each element of the tensor
is marked with a different color, and the color remains its position after folding or unfolding operations. (best view in color)

either spatial-wise (Wang et al. 2017a; Oktay et al. 2018)
or channel-wise (Hu, Shen, and Sun 2018). Though AG-
Net (Oktay et al. 2018) improves by using grid-based gat-
ing scheme, MA methods is not suitable for image-to-image
functional mapping tasks as any pixel matters and salient
area is unnecessary. SA methods produce a function that
pass through a feature map without any modification of the
input size, and features either from spatial locations (Zhang
et al. 2019; Wang et al. 2018) or channel maps (Fu et al.
2019) are aggregated during the pass, where each element
is replaced with a weighted sum of features from some of
other elements. SA methods raise memory issue in 3D med-
ical images as it needs to compute huge attention maps (See
DA and SA in Fig. 1). Though RSA-Net (Zhang et al. 2019)
solves the memory issue by iterative feature aggregation, it
ignores the channel information aggregation.

Contributions
In this paper, we propose a novel FA approach that can effi-
ciently capture global contextual dependencies with negligi-
ble computational cost. We exploit the superiority of FA in
QSM reconstruction and MS lesion segmentation tasks, and
the contributions of FA can be summarized as follows:
• We propose a folded attention approach that can im-

prove the performance of general 3D medical image tasks
by global contextual information aggregation, and our
method can tremendously reduce the computational cost
of GPU memory (at least 95.8%) and FLOPs (at least
25.6%) compared to most existing attention approaches.
• Extensive experimental results from both a semantic seg-

mentation task and a functional image mapping task on
3D medical images show the effectiveness and the effi-
ciency of our method. By insertion of our FA module,
with negligible cost, we outperform all other attention
methods, and improve the baseline Dice metric of MS le-
sion segmentation by 3% and the baseline RMSE metric
of QSM reconstruction by 3%.

Methodology
In this section, we will present details of the proposed folded
attention (FA) approach. We will first review traditional SA

mechanism and its simple generalization to channel dimen-
sion. We then illustrate how our FA approach can generalize
and regularize the SA mechanism. Complexity analysis of
memory and computational cost on FA will be discussed.

Self Attention Mechanism
In this paper, we adopt a widely used instantiation of SA
as the rest shares similar performance (Wang et al. 2018).
The adopted embedded Gaussian SA can be described as
follows:

A = SM(θ(X)φ(X)>), (3)
Z = Ag(X), (4)

where SM is the Softmax function along each matrix row,
X ∈ RN×C is the input feature tensor, A ∈ RN×N is the
affinity matrix, Z ∈ RN×C is the output feature tensor of
SA, and N = HWD is the number of pixels in the image.
Function θ and φ are single-layer perceptrons that can lin-
early transform features of X to facilitate the computation
of affinity matrix. The inner product between θ and φ com-
putes the pixel-to-pixel affinity. Function g is also a single-
layer perceptron that can help the network to learn a better
feature embedding.

Generalization of SA to Channel Dimension
DA-Net (Fu et al. 2019) uses the element-wise sum of the
outputs of spatial attention and channel attention to approx-
imate spatial-channel attention. However, separate opera-
tions on spatial and channel dimensions are prone to be sub-
optimal. One natural idea to generalize the original SA is
to replace X ∈ RN×C as X̂ ∈ RNC×1, where element-to-
element instead of pixel-to-pixel affinity matrix can be ob-
tained by Â ∈ RNC×NC . Unfortunately, the matrix Â is
too huge for modern commercial GPU to process. (Accord-
ing to our experiments, Â may consume several hundred Gi-
gabytes memory on our 3D image tasks.) It is obvious that
direct computation of such huge matrix Â is not realistic,
thus we propose our FA to ease the problem.

Folded Attention (FA)
The FA approach can relieve the above issue by considering
spatial-channel attention in a single module with negligible
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additional computational resources. Next, we will introduce
modules of our FA approach, including the folding and un-
folding operations and sub-affinity matrix computation, and
feature aggregation.

Fold and Unfold Operations Let X ∈ RH×W×D×C ,
where H,W,D are sizes of three spatial dimensions of the
feature tensor X andC is the number of channels. We define
an unfold function u, where u(X, p) = Xp, and P is a per-
mutation that indicates how to unfold the tensor. Here we use
an example to illustrate the function u. Let p = (1, 0, 2, 3),
we can get u(X, p) = Xp ∈ RW×HDC , where u first per-
mutes the four dimensions of X according to p, and then f
unfolds the last three dimensions into one dimension, result-
ing in a 2D matrix Xp. Also, we define a function f as the
inverse operation of u, where f(Xp, p) = X. For simplicity,
we further set four permutation vectors as ph = (0, 1, 2, 3),
pw = (1, 0, 2, 3), pd = (2, 0, 1, 3), and pc = (3, 0, 1, 2).

Sub-Affinity Matrix The generalization of SA with chan-
nel attention requires the computation of a huge affinity ma-
trix Â, which suffers from heavy memory cost. In our pro-
posed FA approach, we use four sub-affinity matrices to re-
place the huge one. We denote the four matrices as Aph ,
Apw , Apd , and Apc , where ph, ..., pc are the permutation
vectors defined in the last section. The sub-affinity matrix
can be computed as follows:

Ap = SM(u(θ(X), p)u(φ(X), p)>). (5)

The size of each sub-affinity matrix Ap is much smaller than
the original affinity matrix Â. Even the sum of the sizes of
all four sub-affinity matrices is several orders of magnitude
smaller than Â. (see more details in complexity analysis)

Feature Aggregation The next step after obtaining affin-
ity matrix is to aggregate features from the original feature
tensor X. Suppose we have obtained a sub-affinity matrix
Ap from Eq. (5), the feature aggregation based on the sub-
affinity matrix can be described as follows:

Z = f(Apu(g(X), p), p). (6)

For simplicity, we denote Eq. (6) as: Z = Uγ(g(X), p),
where γ represents the parameters of the function g. Also,
Eq. (5) can be simplified as Mβ(X, p), where β denotes
the parameters of function θ and φ. We can then get our
four sub-affinity matrices by Aph = Mβ(X, ph), Apw =
Mβ(X, pw), Apd = Mβ(X, pd), and Apc = Mβ(X, pc).
Now our proposed FA operation is derived as follows:

Z = Uγ(Uγ(Uγ(Uγ(X, ph), pw), pd), pc) (7)

Rank-One Constraint For any input feature tensor
X, we can compute four sub-affinity matrices Aph ∈
RH×H ,Apw ∈ RW×W ,Apd ∈ RD×D, and Apc ∈ RC×C .
Let Ap

i denotes the transpose of the ith row of the matrix
Ap. We further define Av ∈ RH×W×D×C as follows:

Av = Aph
i ⊗Apw

j ⊗Apd
k ⊗Apc

q , (8)

where v = (i, j, k, q) denotes the position of an element
in the feature tensor and ⊗ is the tensor product; Av is the
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Figure 4: The x-axis denotes the height, width, depth or
number of channels in a tensor, and we assume all these four
scalars have equal values. The y-axis represents the compu-
tational cost measured by FLOPs and GPU memory con-
sumption for (a) and (b) respectively. All numbers are ob-
tained with a Titan XP GPU.

affinity tensor of element xv that shares the same size as
input feature tensor, and all elements of the input feature
tensor have their own affinity tensors. The original affinity
matrix Â ∈ RNC×NC can be reconstructed using {Av|v ∈
Ω}, where Ω enumerates all possible element positions. We
can further derive Zv as follows:

Zv = Av � g(X) (9)

We have derived our full FA operation in Eq. 7, It is easy
to understand that enumerating all element positions using
Eq. 8 and Eq. 9 can get the same result as using Eq. (7).
However, using Eq. 7 with a cascaded process can tremen-
dously save the computational cost of GPU memory by tak-
ing advantages of replacing the original dense affinity matrix
with four smaller sub-affinity matrices. Since Av is a rank-
one tensor, FA can be considered as imposing an explicit
low-rank constraint on the affinity tensor of each element.

Complexity Analysis
Given the input feature tensor of size (H,W,D,C), we
analyze the computational complexity of the proposed FA
approach. Let N,M denotes the product and the sum of
H,W,D,C , we can obtain the complexity of our FA as
O(NC +NM).

We then numerically compare the computational com-
plexity and GPU memory consumption of FA with other
three approaches in Fig. 4. It can be seen that, compar-
ing with DA (Fu et al. 2019) that considers both spatial
and channel attention, our FA is much more computational-
efficient and GPU memory-friendly. Though numerically,
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(a) T1 (b) T2 (c) T2-FLAIR (d) Golden Mask

(e) 3D U-Net (f) DA-Net (g) RSA-Net (h) AG-Net (i) FA-Net

Figure 5: Example MS lesion segmentation results. T1, T2, T2-FLAIR images and the corresponding golden mask are shown
in the first line. Segmentations from 3D U-Net, DA-Net, RSA-Net, AG-Net, and FA-Net are shown in the second line.

FA has little improvement of FLOPs over SA (Wang et al.
2018), it reduces the GPU memory usage dramatically and
in the meanwhile incorporates channel attention. Compar-
ing with FA, AG (Oktay et al. 2018) has its limitation in 3D
medical image applications as it still requires large memory
for computation and suffers from scaling.

Experimental Results
We use PyTorch (Paszke et al. 2019) for all of our implemen-
tations. We compare our models with several recent state-of-
the-art attention approaches, including baseline 3D U-Net
(Çiçek et al. 2016), dual attention (DA) (Fu et al. 2019), re-
current slice-wise attention (RSA) (Zhang et al. 2019) and
attention gated (AG) net (Oktay et al. 2018). For fairness,
we adopt methods from their open-source implementations
and do our best to adjust their parameters to achieve the best
performance. Particularly, DA is originally designed for 2D
images, so it is modified and adjusted to be capable of pro-
cessing 3D MR images. All models in the experiments are
trained in a machine with a Titan Xp GPU. Our implemen-
tation is made publicly available 1.

Multiple Sclerosis (MS) Lesion Segmentation
We conduct our first experiment on MS lesion segmenta-
tion, a high-level segmentation task. MS is a chronic, inflam-
matory demyelinating disease of central nervous system in
the brain. Precise lesion tracing can provide important bio-
markers for clinical diagnosis and disease progress assess-
ment. However, MS lesion segmentation is challenging as

1https://github.com/tinymilky/FANet

lesions vary vastly in terms of location, appearance, shape,
and conspicuity (see Fig. 5 for more details).

We use a dataset with 30 MR images acquired from a
3.0 T GE scanner. Images from T1, T2, and T2-FLAIR se-
quences are collected, and each voxel size is 0.7 × 0.7 ×
3.0mm3. Golden masks are traced by a neural radiologist
with over 8 years’ lesion tracing experience. Images are lin-
early co-registered using FLIRT at FSL (Jenkinson et al.
2012) neuroimaging toolbox. All images are normalized to
zero-mean with a unit-variance during the pre-processing
step.

Implementation Details We perform five random splits
on the dataset, where each split contains 15, 5, and 10
subjects for training, validation, and testing. A Model that
achieves the minimum loss on the validation set will be used
for testing. We perform random crop with fixed cropping
size (128 × 160 × 32), and use elastic deformation, inten-
sity shifting for data augmentation. We adopt the sum of
weighted cross entropy and soft dice (Dice 1945) as our loss
function. Adam (Kingma and Ba 2014) with the initial learn-
ing rate of 1e−3 and a multi-step learning rate scheduler
with milestones at 50%, 70% and 90% of the total epochs
are used for optimal convergence. A batch size of four is
used for training, and training would stop after 120 epochs.

Dice score (DSC), lesion-wise true positive rate (LTPR),
lesion-wise positive predicted value (LPPV), and lesion-
wise F1 score (L-F1) are used for evaluations. LTPR and

LPPV are defined as LTPR =
TPR
GL

,LPPV =
TPR
PL

, where
TPR denotes the number of lesions in the Golden segmen-
tation that overlaps with a lesion in the produced segmen-
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Figure 6: Example QSM reconstruction results (upper line with window level: [-0.15, 0.15] ppb) and absolute error maps
(lower line with window level: [0, 0.05] ppb) on one test case with COSMOS label. From left to right are COSMOS (golden
ground-truth), predictions of QSMnet, DA-Net, RSA-Net, and FA-Net.

tation, and GL, PL is the number of lesions in ground-
truth segmentation and produced segmentation respectively.
L-F1 can be obtained from LTPR and LPPV as L-F1 =

2
LTPR · LPPV

LTPR + LPPV
.

Quantitative Results We use DA-Net, RSA-Net, and FA-
Net to denote a backbone 3D U-Net with the corresponding
attention module inserted at the bottom layer of 3D U-Net.
Specifically, AG-Net inserts three attention modules accord-
ing to the literature (Oktay et al. 2018). As shown in Table 1,
all attention methods outperform 3D U-Net backbone net-
work in all metrics by a significant margin. RSA-Net and
AG-Net have no clues about dependencies or salience of
channels; thus, we can see from the table that our FA-Net
outperform them in both DSC and L-F1 metrics; Though
RSA-Net obtains similar LTPR as our FA-Net, it falls be-
hind a lot in LPPV. Though DA-Net considers both spatial
and channel attention and our FA-Net has only marginal im-
provement compared to DA-Net, incorporation of our FA
module consumes negligible additional GPU memory and
FLOPs (See Fig. 1 and Fig. 4).

Qualitative Results We showcase one slice from a test-
ing subject, and compare the qualitative results of different
models with the golden mask. We can see from Fig. 5 that
besides MS lesions, there still exists many other concurrent

Method DSC LPPV LTPR L-F1
3D U-Net 0.667 0.682 0.838 0.752
DA-Net 0.682 0.689 0.871 0.770
RSA-Net 0.677 0.678 0.870 0.762
AG-Net 0.682 0.702 0.830 0.761
FA-Net (ours) 0.684 0.703 0.867 0.776

Table 1: Quantitative comparison of MS lesion segmentation
with different approaches.

hyper-intensities in the T2-FLAIR image. Particularly, the
hyper-intensities near the lateral ventricles are prone to be
over-segmented. This is because some hyper-intensities near
ventricles are MS lesions, but some are not, depending on
their anatomical and surrounding structures. We can see that
all attention models help ease the over-segmenting problem
in some degree. DA-Net and our FA-Net perform the best as
these two models both consider the dependencies of spatial
and channel dimensions.

Quantitative Susceptibility Mapping (QSM)
We conduct our second experiment on a challenging im-
age reconstruction problem in MRI: quantitative suscepti-
bility mapping (QSM) (de Rochefort et al. 2010; Wang and
Liu 2015). QSM can measure the underlying tissue apparent
magnetic susceptibility, which can be used to quantify spe-
cific bio-markers such as iron that is independent of imaging
parameters (Stüber, Pitt, and Wang 2016; Kirui et al. 2013),
and filed strength (Deh et al. 2015). The forward model of
generating magnetic field from susceptibility map with ad-
ditive noise is a 3D spatial convolutional process and can be
described as following:

b = χ ∗ d+ n, (10)

where b is the magnetic field, χ is the tissue susceptibility, d
is the dipole convolution kernel, and n is the additive mea-
surement noise. The aim of QSM is to solve the deconvolu-
tional problem from measured noisy magnetic field b to tis-
sue susceptibility χ. This is intrinsically an ill-posed inverse
problem due to the zero cone surfaces of the dipole kernel in
k-space (Wang and Liu 2015). To tackle the ill-posedness,
COSMOS (Calculation Of Susceptibility through Multiple
Orientation Sampling) (Liu et al. 2009) reconstruction is
proposed to eliminate all zeros in the k-space cone surface
by multiple orientation scans, thereby serving as the refer-
ence standard for further susceptibility analysis.
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(a) QSMNet (b) DA-Net (c) RSA-Net (d) FA-Net

Figure 7: Example QSM reconstruction results (window level: [-0.15, 0.15] ppb) on a subject with MS lesions (patient data
without ground-truth COSMOS). Hyperintense MS lesions are pointed out by red arrows.

Recently, several deep learning based QSM reconstruc-
tion methods (Yoon et al. 2018; Zhang et al. 2020b,c; Chen
et al. 2020) have been developed with promising results.
They use 3D U-Net as the backbone network to perform
the functional mapping from the magnetic field input to sus-
ceptibility output. In this experiment, we follow previous
work and use COSMOS data to train our deep networks. To
acquire and reconstruct COSMOS data, 6 healthy subjects
were recruited to do MRI scan with 5 brain orientations us-
ing a 3.0T GE scanner (Please note that COSMOS technique
cannot be applied to patients as it needs four additional head
orientations that are very difficult or impossible for patients
to perform). Acquisition matrix was 256×256×48 and voxel
size was 1× 1× 3 mm3. Reference tissue was reconstructed
from five orientations of each subject with local magnetic
field estimated from phase data (Liu et al. 2011).

Implementation Details We perform six splits on the
dataset, where each split contains 4, 1, and 1 subjects(s) for
training, validation, and testing, and each subject contains
5 volumes. During training, we cropped each volume into
3D patches in size (64× 64× 32) and use in-plane rotation
of ±15◦ for data augmentation. Loss function from QSM-
net (Yoon et al. 2018) is adopted. Adam (Kingma and Ba
2014) optimizer is used for training with the same hyper-
parameters as MS lesion segmentation experiment. Training
is performed with a batch size of 16 and training would stop
after 60 epochs . During testing, a model with the best vali-
dation loss is used to evaluate the performance. In addition,
a patient subject with MS lesion is also used to qualitatively
verify the performance of our networks. (Note that a patient
subject does not have the COSMOS ground-truth) Differ-
ent from MS lesion segmentation, we use QSM-Net (Yoon
et al. 2018), a modified U-Net, as our backbone network.
We use DA-Net, RSA-Net, and FA-Net to denote a QSM-
Net with the corresponding attention module inserted at its
bottom layer. AG-Net is excluded in the QSM experiment

Method RMSE HFEN SSIM PSNR
QSMnet 31.99 33.37 0.9824 48.86
DA-Net 32.15 33.84 0.9826 48.78
RSA-Net 31.65 33.18 0.9830 48.91
FA-Net (Ours) 31.18 32.49 0.9833 49.06

Table 2: Quantitative comparison of QSM.

as it is unfair to compare MA based methods with SA based
methods in a full functional image mapping task.

Quantitative Results We use root mean square error
(RMSE), peak signal-to-noise ratio (PSNR) (measures
general reconstruction error), high-frequency error norm
(HFEN) (measures the similarity at high spatial frequen-
cies), and structural similarity index (SSIM) (quantifies im-
age contrast, intensity, structural similarity between image
pairs (Wang et al. 2004)) to quantify the reconstruction ac-
curacy. Quantitative results averaged among six splits are
shown in Table 2, and we can see that our FA-Net shows
the best reconstruction results in all four metrics.

Qualitative Results We choose one slice from the testing
image of one split, and the chosen subject is diagnosed as
cerebral hemorrhage (hyper-intensity tissue area in Fig. 6);
however, the hemorrhage situation is not covered in the
training data. As we can see from Fig. 6, the error map from
our FA-Net achieves the minimum intensity which shows
the robustness of our FA-Net compared to others.

We use an additional MS lesion subject without ground-
truth COSMOS to compare the reconstruction performance
among four trained networks in Fig. 7. As can be seen from
Fig. 7, on one hand, our FA-Net generated the most hyperin-
tense lesions, and on the other hand, the lesion shows clearer
boundary in FA-Net produced image compared to others.
The superiority of our FA-Net is that it aggregates features
from both spatial and channel dimensions, and in the mean-
while, it regularizes the dense affinity matrix with rank-one
constraint and thus generalizes better to unseen situations.

Conclusions
We presented a novel folded attention module. Our FA mod-
ule exploits the spatial-channel correlations in an efficient
and effective way. FA not only achieves the highest accu-
racy on MS lesion segmentation and QSM reconstruction
among all state-of-the-art attention methods, but also re-
duces tremendously the computational overhead and mem-
ory usage. Our method can be easily plugged into any ex-
isting CNN model with negligible cost, thereby serving as a
new baseline for general 3D MR image processing.
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